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Introduction

Shape Memory Alloys (SMAs) are widely studied as smart materials because of its potentiality to be used as dampers, absorbers or actuator elements. For damping applications, the understanding of the material dynamic behavior is needed. One uses the loss of stiffness linked to the martensite transformation between a mother phase called austenite and a product phase called martensite. Also the process of reorientation of martensite platelets called sometimes pseudoplasticity can be used. In this case, the SMAs elements are used as absorbers mainly for seismic applications [START_REF] Bono | Characterisation of materials for the innovative antisismic techniques[END_REF], [START_REF] Tirelli | Characterisation of shape memory alloys applications to the retrofitting of brick masonry wall by the pseudo-dynamic method and numerical models[END_REF], [START_REF] Molina | Structural control : Experimental activity at elsa[END_REF]). The best example of structure control by SMAs can be founded in the basilic S t François d'Assise in Italy. For technological applications, the effect of a static strain offset on the dynamical response of a system is investigated. In order to evaluate stiffness and damping evolutions during the martensite transformation, a method based on an Equivalent Complex Young's Modulus determination [START_REF] Collet | Analysis of the behavior of a shape memory alloy beam under dynamical loading[END_REF]) is initiated. In this present paper at first, a phenomenological model at the macroscopic scale in the frame of the thermodynamics of irreversible process devoted to multiaxial pseudoelasticity is recalled. Taking into account that experiments are investigated on a SMA wire (one dimension), only a one-dimensional version of the so-called R l model [START_REF] Raniecki | Thermodynamic models of pseudoelastic behavior of Shape Memory Alloys[END_REF]) is written. In a second stage, Equivalent Complex Young's Modulus method is quickly described, a dynamic mechanical analysis leaded on SMAs wires samples is leaded. Finally the stiffness and damping evolution as the function of the loading path investigated and comparison between simulations and experiments, exposed.

A thermomechanic model for the pseudoelasticity

Modeling material behavior needs classically a choice of a thermodynamic potential and also a dissipation potential function or some yield functions of phase transformation (as it is the scheme in plasticity). Hence, a Helmholtz free energy and two yield functions, the first for the forward transformation (A M) and the second for the reverse phase transformation (M A) are chosen. The appropriate internal variable is the volume fraction of martensite M: ξ ( (1 ) ξ being the volume fraction of austenite A).

The free energy function of the two phases REV (Reference Elementary volume) is chosen as:
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where 0 () f T π represents the thermodynamic force associated to the phase transformation under the stress free state: (2.4) In a classical way, the stress can be obtained as:
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(2.5) The thermodynamic force associated to the progress of the phase transformation can be written as: 0 (,,) () ( 1 2) ()
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A classical calculation delivers the expression of the increment of dissipation dD which cannot be negative: 0
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(2.7) Thus, the present inequality precludes the forward phase transformation if 0 f π ≥ and the reverse one if 0 f π ≤ . One has to note that 0 f π = implies the equilibrium condition. In order to specify the kinetic equations driving the phase transformation, we presume that there exist two functions ( , )
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such that an active process of parent phase decomposition can only proceed when 1 0 dψ = and an active process of martensite decomposition can only proceed if 2 0 dψ = . These yield functions are chosen as:
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Thanks to derivation, the kinetic laws for forward and reverse phase transformation are obtained:
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It is known that the forward transformation is exothermic and the reverse transformation endothermic. Many studies have shown or just taken into account the temperature influence: for dynamic loadings by Collet [START_REF] Collet | Analysis of the behavior of a shape memory alloy beam under dynamical loading[END_REF]) or for the rate effects loading by Lexcellent and Rejzner (Lexcellent & al. (2001)). The phase transformation which occurs during a period of vibration is supposed to be adiabatic. In this case, the expression of the heat equation is thus obtained: .11) This equation is used to quantify the temperature evolution inside the SMA wire sample.
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Prediction of the dynamical behavior

This study will allow us to characterize the stiffness and damping of SMAs as function of a static strain offset 0 ε and the amplitude of vibration m ε by using the Equivalent Complex

Young's Modulus approach. First of all, a simple strain load/unload until 10% is done on a NiTi wire (length: L 0 =30mm and diameter: D=0.59mm) in order to identify the constants of the used SMA (NiTi). The following figure 1 shows us the tensile testing machine with the NiTi wire (a) and, the SMA wire response (b). 
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Numerical implementation

Taking into account the pseudoelastic behavior explained in the section 2, the equilibrium of a wire cross-section leads us to the vibration wave equation of the wire in tension:

(,) (,) uxt uxt EE tx x ξ ρ γ ∂∂ ∂ =- ∂∂ ∂ . (3.1)
This equation is thus coupled with both kinetic equations and the heat equation: only one linear Lagrange element is used to build the finite element model [START_REF] Thiebaud | Implementation of a multi-axial pseudoelastic model to predict the dynamic behavior of Shape Memory Alloys, Smart Material and structure[END_REF]). This model is illustrated on the figure 2a and a simulated cycle on the figure 2b. One can notice a good correspondence between the numerical simulated cycle and the tensile test of the sample. 

Equivalent Complex Young's Modulus

The Equivalent Complex Young's Modulus is a powerful tool usually used to describe the elastic behavior and the damping properties of a viscoelastic material under dynamical loading [START_REF] Collet | Analysis of the behavior of a shape memory alloy beam under dynamical loading[END_REF]). This modulus can be generalized to quantify, on the first harmonic, the response of a nonlinear hysteretic material. The constitutive relation between the stress σ and strain ε for a dissipative material subject to steady state harmonic can be written as:

( ) * 1 EEi σ εη ε ==+ (3.2)
where * E is the complex modulus, E the storage modulus and η the loss factor. For a harmonic strain input 

Experimental investigations

In order to predict the dynamical behavior of SMAs, a series of experimental tests is leaded on the tensile testing machine. This dynamic mechanical analysis is automatically done by the machine software, with a FFT Fourier analysis. The static strain offset 0 ε (and thus u 0 ) is reached linearly and ten vibration cycles are simulated with amplitude of m ε (and thus u m ) and a frequency of 1Hz in order to get a stabilize response cycle. Finally, only this last stabilized response is kept and used to evaluate the storage modulus and the loss factor by the resolution of both equations (3.5) and (3.6). A suitable value of 0 ε is fixed at 4%. Beyond this limit, the fatigue effects can be sufficient to quickly lead the wire to the rupture. Also, m The following observations can be made based on these experiments: as the excitation amplitude increases, a decrease of the storage modulus is observed. This storage modulus is minimal for a static strain offset between 1.25% to 4% which corresponds to a strain located on the plateau of transformation. As the excitation increases, an increase of the loss factor is observed. This loss factor is maximal for a static strain offset between 1.5% to 4% which corresponds to a deformation located on the plateau of transformation too. A priori, one can conclude that the wire must be partially transformed to present interesting damping properties.

Simulations, numerical results

In order to confront these previous results given in the section 3. The following observations can be made based on the results: as the excitation amplitude increases, an decrease of the storage modulus is observed. This storage modulus is minimal for a static strain offset between 1.5% to 4% which corresponds to a deformation located on the plateau of transformation. As the excitation increases, a increase of the loss factor is observed. This loss factor is maximal for a static strain offset between 1.5% to 4% which corresponds to a deformation located on the plateau of transformation too. But a difference is noticed for a static strain offset upper than 1.5% and small amplitude of vibration: whereas the experiments predict that the damping capacity is negligible, the computation shows a high damping capacity inside this area. Everywhere else, the numerical simulations are in good agreement with the experiments leaded on the tensile testing machine.

Conclusion

In this paper, the characterization of the dynamic behavior of Shape Memory Alloys versus of two parameters: the amplitude of vibration and the static strain offset, has been done by using the Equivalent Complex Young's Modulus approach. In a first part, the use of the implementation of a phenomenological model has been recalled in order to simulate internal loops for many cases of displacement loadings. Those internal loops were necessary to use this method. In the second part, the Equivalent Complex Young's Modulus has been presented and the material parameters identified. Many cases of displacement loadings with different values of the static strain offset and the strain vibration have been simulated. At last, the storage modulus and the loss factor (which defined the Equivalent Complex Young's Modulus) have been calculated from numerical simulations and several cycles done on a testing tensile machine. Thus, this study permits us to highlight the existence of a high damping zone which is localized for static strain offsets between 1.5% and 4%% and small strains vibration (the totally pseudoelastic behavior zone of the SMA). These investigations permit us to improve the nonlinear modeling of SMAs in order to develop and optimize applications for the control and the damping in civil engineering.

  α ξ are built to give kinetics in agreement with the measurements of metallurgists asKoistinen and Marbuger (Koistinen & al. (1959)):

  testing machine with the NiTi wire b. SMA wire response Figure 1. Tensile test for the identification of the constants of the NiTi wire Thus, the used constants are identified and recalled in the

  model with Lagrange element b. Tensile testing machine with the NiTi wire Figure 2. Numerical implementation of the wire in tension

Figure 3 .

 3 Figure 3. Hysteresis cycle of a dissipative material with storage factor and loss modulus undergoing cyclic strain oscillations of amplitude 0 ε .
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  Figure 5. Equivalent Complex Young's Modulus measured components in function of the static strain offset 0 ε and the amplitude of vibrations m ε .
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 78 Figure 7. Equivalent Complex Young's Modulus components in function of the static strain offset 0 ε and the amplitude of vibration m ε .

table 1 . 1 .

 11 Constants used for NiTi alloy

	Designation	Notation Value	Unit
	Mechanical			
	Young's modulus Transformation strain	E γ	52 8.5%	GPa ∅
	Physical			
	External temperature			
	Density			
	Driving force			
	Coefficient of internal interaction			
	Coefficient A1			
	Coefficient A2			

Table 2 .

 2 Used

		values for U 0 and U m								
	U 0 (mm) 0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2
		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
		0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.05
		0.03	0.04	0.03	0.04	0.05	0.06	0.05	0.08	0.09	0.07	0.07	0.07
	U m (mm)	0.04	0.06	0.06	0.08	0.10	0.12	0.07	0.16	0.18	0.10	0.11	0.12
		0.05	0.08	0.09	0.12	0.15	0.18	0.14	0.24	0.27	0.20	0.22	0.24
		…	…	…	…	…	…	…	…	…	…	…	…