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Abstract: We propose an efficient algorithm that solves the monocentric city model with traffic 
congestion, and use it to explore the impact of congestion pricing on urban forms and, hence, 
on transport volume, CO2 emissions and energy consumption. The application focuses on the 
region Ie-de-France. Four pricing policies are considered: no toll, where transport cost is 
equal to the vehicle operating cost, cordon toll where users pay the toll when they drive inside 
cordon region linear toll (optimal under the class of linear tolls) and optimal toll (or first-best 
toll). The linear toll is equivalent to an increase in the vehicle operating cost. It performs well 
with respect to the first-best solution but, since it applies identically to all trips, it is not likely 
to be relevant in practice. By comparison to the no-toll situation, optimal congestion pricing 
reduces the radius of the city and the average travel distance by 34% and 15%, respectively. 
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1 Introduction

While the literature on road pricing has been abundant in the last decades, long
term impacts on housing and business location have not received too much atten-
tion. Recent implementation of an area-based charge in London, and some other
experiences, raised concerns about the overall impacts on congestion, business
activities and environmental conditions in the long run (cf. Santos & Fraser
2006). At the same time, the alarming levels of pollution reached in many
metropolitan areas and the important increase of energy cost contributed to
make the optimization of urban forms and the regulation of transport an im-
portant issue (cf. Mitchell et al. 2005).

This paper explores the impact of transport pricing on the urban form,
and, hence, on transport volume, CO2 emissions and energy consumption. We
consider a monocentric model with traffic congestion where all the economic
activity is located in the central business district (CBD). There are two main
actors: households, whose utility is increasing with housing area, and a govern-
ment that decides how much land is devoted to roads. The government collects
a population tax, which is the same for all households, and a location tax that
depends on where the household lives.1 Transport congestion introduces an
externality that requires public intervention for regulation.

Transport congestion was introduced in the monocentric model by Strotz
(1965) and Mills (1967). In the following decade, there was a growing interest
in second-best allocations of land between housing and roads.2 A synthesis of
this problem may be found in Kanemoto (1980). Recently, Mun et al. (2003)
have shown that second-best pricing schemes are almost as efficient as first-
best pricing. Their conclusion was confirmed by Verhoef (2005). Both models,
however, are rather restrictive forms of the monocentric model. Mun et al.
(2003) do not consider variable housing area, and Verhoef (2005) assumes that
the amount of land allocated to transportation is fixed. The monocentric model
has been mainly used for theoretical and normative discussions, and very little
for empirical applications.3

We adopt the monocentric city framework using the formulation of Fujita
(1989), and contribute to the literature at two stages. First, we propose a
flexible and efficient algorithm to compute the optimal solution. The solution
approach underlying the algorithm replaces the standard optimality conditions
(cf. Fujita 1989) by a set of first-order differential equations that can be solved
efficiently by standard numerical techniques.4 The algorithm is flexible enough
to be used for a number of pricing rules.

1On practical ground, road pricing may contribute to raise funds for the transport sector
(cf. De Palma & Lindsey 2007, De Palma & Quinet 2005).

2Representative papers are Mills & Ferranti (1971), Solow (1972, 1973), Riley (1974),
Robson (1976), Kanemoto (1977), Arnott & MacKinnon (1978), Arnott (1979), and Sullivan
(1983).

3Empirical applications include Baum-Snow (2007), Boarnet (1994), McMillen et al. (1992)
and Rouwendal & van der Straaten (2008).

4The model was solved under particular set of parameter values in Riley (1974), Robson
(1976) and Kanemoto (1977), but no general solution method has been proposed.
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Figure 1: Impacts of congestion pricing.

Second, we undertake an empirical application on the agglomeration of Île-
de-France (IDF). In particular, we feed the model with data from IDF and
find that it succeeds in capturing adequately a number of urban features. On
the basis of the calibrated model, we quantify the impacts of different pricing
rules: cordon, linear and first-best tolls. All policies lead to a smaller city and
a reduced average trip-distance.

Figure 1 illustrates the impacts of congestion pricing on the distribution of
households. Each curve reflects the distribution of households under a given
regime. Road pricing motivates households to move closer to the CBD. The
linear toll depends only on the travel distance, while first-best toll, which is
non-linear, depends on the congestion or external cost created by the trip. A
unit of trip-distance in a congested area is tolled more than the same unit in
an uncongested area. In the monocentric geometry, congestion is higher around
the CBD and it is there where the difference with linear tolls emerges. In Figure
1, the impacts of the (optimal) linear toll and first-best toll are rather similar
in the outer part of the city, but they become quite distinct around the CBD.

Optimal pricing reduces the radius of the city, the average trip-distance
and congestion by 34%, 15% and 13%, respectively. The optimal linear toll,5

which we call linear toll for short, induces a comparable impact and leads to a
relatively dense city. But in practice, the linear toll is equivalent to an important
increase in gasoline price. Such a policy is likely to face road users opposition
and has the inconvenience to depend only on the trip length and not on its
location (origin/destination pair). For example, urban and inter-urban trips
(which induce less congestion) are tolled the same way. So, under a more general

5That is, optimal among linear tolls.
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transport network the linear toll will be less efficient than in the model we
consider here. Efficiency is measured as the unspent part of the households’
revenue, for a given level of utility.

Cordon pricing is less efficient than the linear toll but still reaches an ac-
ceptable efficiency level of 62% with respect to first-best. By contrast to linear
tolls, cordon tolls concern only highly congested areas and turn out to be an
attractive alternative for policy makers. Indeed, similar pricing rules to cordon
toll are already in use in some cities (London and Singapore, in particular),
and other implementation projects are under study. From the simulation we
have conducted, it appears that an optimal urban form requires both a smaller
radius and a higher concentration of households around the CBD (cf. Figure
1). The first-best rules do so by setting the toll equal to the external cost. The
linear toll is more efficient in reducing the radius of the city than in concentrat-
ing households around the CBD. In general, under the linear rule, the optimal
trade-off between the two objectives requires an excessive charge on road users.

A cordon toll close to the CBD does not have a large impact on the radius of
the city. At the same time, a cordon toll away from the CBD has an important
impact on the radius of the city, but does not induce a significant variation in
the concentration of households inside the city. In most cases , and for data
related to le-de-France, we found that it is optimal to set the cordon toll at a
distance about 21km from the city center.

Pricing reduces the size of the city but the average area occupied by house-
holds does not decrease too much. On one hand, part of the land available for
housing and transportation is lost. But, this lost area is not relatively impor-
tant since, as the empirical observation shows, the available land for housing and
transportation gets smaller as we move away from the city center. On the other
hand, with congestion pricing, the surface of land allocated to roads decreases
and larger area is available for housing. Overall, both impacts have comparable
magnitudes and the resulting variation in the housing area remains small, in
general.

On a more general ground, pricing congestion contributes to decrease the
level of pollution, since it leads to smaller and more compact cities. Indeed,
energy consumption per household decreases as the urban density increases (cf.
Newman & Kenworthy 1989). Since CO2 emissions are correlated with trip-
distance, congestion pricing has an appreciable environmental benefit. The set
of simulations we have conducted shows that congestion pricing reduces the level
of emissions by 15%, and has comparable impact on congestion.

The paper is organized as follows. In Section 2 we introduce the notation
and provide the solution procedure for the land-use equilibrium. The calibration
of the model to IDF is undertaken in Section 3. In Section 4 we discuss the
impact of congestion pricing. We finally conclude in Section 5.
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2 A general method to compute a compensated

equilibrium

2.1 The basic framework

The analysis is carried out under the classical monocentric model. We adopt
the formulation of Fujita (1989) and denote the model by HST .6 The number of
households living in the city is fixed and equal to N (closed city). The variable
r denotes the distance from the center of the city. Each household makes daily
trips from its location, at distance r from the center of the city, to the Central
Business District (CBD) that extends to distance rc from the center of the city.
Inside the CBD, we assume that transportation is costless. The radius of the
city is denoted by rf . N(r) is the number of households located further than
distance r from the city center. L(r) is the amount of land available for housing
or transportation at r. LT (r) is the amount of land allocated for transportation
at r. Each household consumes two goods, housing s and a composite good
z, and gets a utility U(z, s) where ∂U(z, s)/∂z > 0 and ∂U(z, s)/∂s > 0. All
households have the same utility function and the same (pretax) revenue Y .
The price of the composite good is normalized to 1 and the unitary price of
land, or land rent, at distance r from the city center is R(r). The opportunity
cost of land, or the agricultural rent, is denoted by RA.

The amount of composite good necessary to achieve utility level u when
housing area is equal to s is Z(s, u), which is the solution of U(z, s) = u in z.
Let I denote the revenue net of taxes. The household bid rent function ψ(I, u)
is given by

ψ(I, u) := max
s≥0

I − Z(s, u)

s
, (1)

where the maximum is reached at the bid-max lot size S(I, u)

S(I, u) := arg max
s≥0

I − Z(s, u)

s
. (2)

The government is responsible for providing transportation infrastructure, LT (r),
and has the possibility to levy two kinds of taxes: a population tax that does
not depend on r and is denoted by g, and a location (or congestion) tax that
depends on r and is denoted by l(r).

The road occupancy at r is defined by the ratio of the number N(r) of
households located further away than r from the city center to the amount
LT (r) of land devoted to transport use at r. At each distance r, the transport
cost depends on the road occupancy at r: c(N(r)/LT (r)), where the function
c is assumed to satisfy c(w) > 0, c′(w) > 0 and c′′(w) > 0 for all w ≥ 0. The
transport cost from distance r to the CBD is

τ(r) =

∫ r

rc

c

(
N(x)

LT (x)

)

dx. (3)

6Fujita (1989) refers to the model as the Herbert-Stevens model with traffic congestion.
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Define the bid rent of the transport sector ψT at each distance r as the
marginal benefit of land for transportation at r:

ψT

(
N(r)

LT (r)

)

= c′
(

N(r)
LT (r)

) (
N(r)
LT (r)

)2

. (4)

The bid rent ψT (N(r)/LT (r)) represents the cumulated gain for the N(r) com-
muters (away from r) from a unit increase of roads at r.

2.2 Solution approach

The household’s problem is to maximize the utility function U(z, s) over r, z
and s subject to the revenue constraint z + R(r)s = Y − g − l(r) − τ(r). If we
replace I in (1) by7 Y − g − l(r) − τ(r), we obtain the household bid rent at
distance r

ψ(Y − g − l(r) − τ(r), u) = max
s

Y − g − l(r) − τ(r) − Z(s, u)

s
, (5)

and the corresponding bid-max lot size S(Y − g − l(r) − τ(r), u). Appendix
A provides an interpretation of the HST model and the role played by the
population tax g.

Since all households are identical, it is convenient to assume that they all
reach the same utility level at an optimal solution.8 The objective of the central
planner is to maximize the total surplus in the city. Let n(r) denote the number
of households in an annulus of unit width at r. The objective function to
be maximized over (nonnegative) quantities n(r), s(r), LT (r) and rf is the
following total surplus S :

S =

∫ rf

rc

{[Y − τ(r) − Z(s(r), u) −RAs(r)]n(r) −RALT (r)}dr. (6)

Any distribution n(r) of households should satisfy the following constraints.
First, the total amount of land devoted to housing and transportation must be
lower or equal than the amount of land available:

n(r)s(r) + LT (r) ≤ L(r) for rc ≤ r ≤ rf . (7)

Second, the distribution of households satisfies:

N(r) =

∫ rf

r

n(r)dr for rc ≤ r ≤ rf . (8)

7Indeed, Y − g − l(r)− τ(r) is the part of the income that remains for the consumption of
housing (s) and the homogeneous good (z).

8Without this assumption, an optimal solution may imply an increasing utility as we move
away from the CBD (cf. Riley 1974, Papageorgiou & Pines 1999). When all households are
assumed identical this may seem inconsistent and the Mirrlees paradigm of the “unequal
treatment of equals” appears (cf. Mirrlees 1972). We avoid this discussion and consider only
solutions with equal utilities among households.
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Finally, all households locate inside the city:

N = N(rc) =

∫ rf

rc

n(r)dr. (9)

Since the bid rent function ψ(I, u) is continuously increasing in I, we can define
φ(R, u) by

φ(R, u) := I ⇔ ψ(I, u) = R. (10)

The quantity φ(R, u) is the aftertax revenue required by a household having
utility level u and willing to pay a land rent R.

The optimality conditions of this problem (maximize (6) subject to con-
straints (7), (8) and (9)) are recalled in their standard form in Appendix A.
They represent conditions for the compensated equilibrium in which the com-
mon utility u is achieved by a competitive land market with common location
tax g and an optimal location tax l(r). The idea of the approach we propose is
to transform standard optimality conditions (Equations (22a)-(22f) in Appendix
A) into a set of first-order differential equations. Brueckner (2005) proposed a
similar approach but under a framework where the proportion of land devoted
to roads is fixed. We have the following result.

Proposition 1. Let u > 0 be a fixed utility level. The solution of the problem
which consists in maximizing (6) subject to constraints (7), (8) and (9) can be
computed in the following way. Solve, for rc ≤ r ≤ rf , the system of backward
differential equations :







R′(r) = −
c′

(
Ψ−1

T

(
R(r)

))
Ψ−1

T (R(r)) + c(Ψ−1
T (R(r)))

∂φ

∂R
(R(r), u)

N ′(r) =

N(r)

Ψ−1
T

(R(r))
− L(r)

S(φ(R(r), u), u)
,

(11)

with terminal conditions R(rf ) = RA and N(rf ) = 0. Then, find rf such
that N(rc) = N . From these, compute LT (r) = N(r)/Ψ−1

T (R(r)), s(r) =
S(φ(R(r), u)) and l(r) =

∫ r

rc
c′(Ψ−1

T (R(r′)))Ψ−1
T (R(r′))dr′ for rc ≤ r ≤ rf .

Proof. See Appendix B.

This procedure assumes that n(r) > 0 and LT (r) > 0 for all rc ≤ r ≤ rf .
While the second condition is guaranteed at any optimal solution,9 it is possible
that households density be equal to zero at some distance r. In Appendix C
we provide details on how to implement this algorithm and show how to handle
the case where n(r) = 0 for r > rc.

9If not, N(r)/LT (r) will be unbounded inducing a very large transportation cost.
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In order to compare the optimal pricing rule with alternative policies, we
relax the analytical form in the first equation of (11) by introducing the more
flexible rule:

H(r) =







c′(Ψ−1
T (R(r)))Ψ−1

T (R(r)) (first-best)

κ (linear toll)

ξd I{rd} (cordon toll),

(12)

where κ and ξd are a positive constants and I{rd} the function that takes value
one at rd and zero elsewhere, and replacing the first equation in (11) by R′(r) =
−(H(r)+ c(Ψ−1

T (R(r))))/(∂φ(R(r), u)/∂R). Then, instead of (11), we solve the
system of differential equations given by







R′(r) = −
H(r) + c(Ψ−1

T (R(r)))

∂φ

∂R
(R(r), u)

N ′(r) =

N(r)

Ψ−1
T

(R(r))
− L(r)

S(φ(R(r), u), u)
.

(13)

The second pricing rule in (12) corresponds to a charge that is proportional to
the length of the trip, where κ is the charge per unit of distance. This may
reflect a charge implemented as a gasoline tax. Notice that the linear toll does
not depend on the origin and destination of the trip. The third pricing rule in
(12) reflects cordon pricing. Each driver pays ξd for crossing the ring of radius
rd. Households living inside this ring do not pay the charge.

3 Calibration on Île-de-France

In this section, we calibrate the model parameters to match selected target vari-
ables related to the IDF (̂Ile-de-France) region. The monocentric model may be
criticized as being based on unrealistic assumptions. Indeed, many metropoli-
tan regions have a polycentric structure, and many authors consider that the
main effort should focus on polycentric models instead (cf. Mieszkowski & Mills
1993, for example). The monocentric framework, however, remains very useful
for three reasons at least. First, for the case of IDF, as we discuss below, there
is a high concentration of (non-industrial) activities in the CBD located inside
Paris. Second, the monocentric model is useful when we consider only a part
of the economic activity and the related transportation. In particular, in IDF,
most economic activities with highly skilled employees are concentrated in the
CBD. This issue is particularly relevant when polycentric models have not been
used successfully, yet. Third, given that the theory underlying the monocen-
tric model is much more coherent and complete (many theoretical insights have
been already gained), the empirical exercise can be evaluated much more accu-
rately than if polycentric models were used. We do not intend to say that the
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monocentric model is superior to polycentric models, but we argue that there
are many lessons we can draw from it if we remain aware of its limitations.

Moreover, empirical observations still confirm the high concentration of eco-
nomic activities in small areas. For the case of IDF, a recent report by Pottier
et al. (2007) states that more than three million households (among a total
of five million) are working in the twenty districts inside Paris. The ratio is
even higher for highly skilled employees, who generally use private cars rela-
tively frequently. Moreover, maps from AIRPARIF show a high concentration
of emissions in the CBD and the region around. On the basis of these observa-
tions, we think that many urban attributes of IDF can be explored within the
monocentric framework.

3.1 A specific model

The related literature has extensively considered the Cobb-Douglas utility func-
tion:10

U(z, s) = zαsβ with α > 0 , β > 0 . (14)

From U(s, z) = u, we have the quantity of composite good

Z(s, u) = u1/α s−β/α, (15a)

and the solution of (2) yields

S(I, u) = (
α + β

α
)

α
β u

1
β I−

α
β . (15b)

Substituting this in (1) yields the bid rent function

ψ(I, u) =
β

α+ β
(

α

α + β
)

α
β u−

1
β I

α+β
β . (15c)

The inverse of (15c) gives

φ(R, u) =
α+ β

α

(
Rα

β

) β
α+β

u
1

α+β . (15d)

For the congestion function, we use the BPR (Bureau of Public Roads) formula
(cf. Branston 1976)

c(γ) =
θ

v0
(1 + k′γλ) , (16)

where k′ is a positive constant, v0 is the maximum travel speed and θ the
households’ valuation of time. This function satisfies the convexity requirement
for k′ > 1 and λ > 1. In (16) the travel cost is the sum of two terms. The
first term does not depend on the road occupancy and reflects the transport
cost without congestion. The second term captures the impact of congestion.

10See Robson (1976), Verhoef (2005) and Kanemoto (1977).
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Indeed, as the road occupancy increases, travel speed decreases and the travel
time increases. Define k = k′ θ/v0. The impact of a marginal increase in the
road’s occupancy is c′(γ) = kλγλ−1. Using (4) and (15) we can obtain all
expressions required in the computation of (13):







ψT (γ) = c′(γ)γ2 = kλγλ+1

ψ−1
T (R) = (

R

kλ
)

1
λ+1

c(ψ−1
T (R)) =

θ

v0
+ k

1
λ+1 (

R

λ
)

λ
λ+1

c′(ψ−1
T (R))ψ−1

T (R) = (kλ)
1

λ+1R
λ

λ+1 ,

(17)

where γ = ψ−1
T (R).

3.2 Base-case parameter values

We fit the above model with data from IDF.

Land available

We assume
L(r) = µ(r) × 2πr , (18)

where µ(r) is the fraction of land devoted to housing and transportation at
r.11 Data from IDF show that the proportion of land used for housing and
transportation, with respect to the total available land, decreases as we move
away from the CBD. Furthermore, collective houses are more concentrated near
the CBD and individual houses spread away from the city center. Collective
houses are generally built on more than four levels, while individual houses are
built on one or two levels. It is important to take into account this fact in order
to match the observed distribution of households. We approximate µ(r) by an
exponential expression, which yields

µ(r) = 3.191 e−8.7×10−5r (R2 = 0.99). (19)

Figure 5 shows both observed values (dots) and their approximation (lines).
As we move away from the CBD the fraction of land available for housing and
transportation decreases substantially.

Travel speed

There are two options at least on how to compute free-flow travel speed: v0.
First, one may consider that it is constant over all the region. In this case it

11Fujita & Thisse (2002) report that only 12% is used in this sense and all the remaining
area is used for agriculture, protected areas, etc.
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Local roads Main roads Highways
Length (km) 14490 2752 1814

Max. speed (km/h) 50 70 110

Table 1: Road network in Île-de-France.

can be computed as the (harmonic) mean of the maximum allowed speeds over
the network of three kinds of roads. The details of the network are shown in
Table 1, and this gives a value of about 55 km/h.

A better approach is to consider that the free-flow travel speed decreases
as we get closer to the CBD. This is because a driver inside Paris uses mainly
(slow) local roads, but can drive on faster roads in outer regions. To take into
account the fact that the free-flow speed increases as we move away from the
CBD, we approximate it as follows. At the city border a traveller mainly uses
highways where the speed limit is 110 km/h. A household will be likely to use
highways less as we get closer to the CBD. We assume12 that to travel from the
city center to the CBD, on average, 80% of the trip is made on highways, and
20% on main roads. A trip that starts closer to the CBD uses less highways but
the same fraction of main roads. Instead, urban area roads (with speed limit
of 50 km/h) substitute for highways. Denoting by wh and wn the respective
fractions of usage of highways and main roads, the average speed is the harmonic
mean (

wh

110
+
wn

70
+

1 − wh − wn

50

)

=
1

v0
,

or v0 = 3 850/(77− 42wh − 22wn). As we have mentioned above wn is fixed at
20%. Assuming a linear form of wh and taking into account that wh = 0.8 at rf
and wh = 0 at rc, we end up with the following relation between the free-flow
travel speed and the distance to the city center:

v0 =
51 931

1 − 5.92 × 10−6r
.

So, the free-flow travel speed decreases from about 90km/h at distance 70km
(entrance of the city) from the city center to 52km/h at distance 10km (where
the maximum speed generally becomes small). This is more realistic and leads
to better calibration than the fixed v0.

Households

We consider a population of drivers going to and from the city center 230 days
a year,13 and estimate costs over one year. Some parameter values are provided
in Table 2. The number of households used is adjusted so that it corresponds to
the number of vehicles used for home-to-work trips. Since we consider a CBD

12Based on the authors judgement from a Google-Earth exploration.
13This is approximately: 5 days x 52 weeks - 30 days (holidays).
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Variable Value Unit
rc 3 500 m
N 2 120 493 household
θ 6 900 eh−1year−1

RA 48 em−2 year−1

Table 2: Base-case parameter values

of radius 3.5 km, and since we consider only households that make trips to the
CBD, we remove half of the population located in the ring that extends from 0
to 7 kilometers. Accordingly, we consider a total population of N = 2 120 493
households.

Utility function

From the Cobb-Douglas utility functions properties, we know that the ratio β/α
is equal to the share of the available revenue spent on housing with respect to
the share spent on the homogeneous good. Robson (1976) assumed a value of
50% and Kanemoto (1977) has reduced the approximation to what seems to
be a more realistic 20%. In the base-case, we consider the second value which
matches recent estimation by INSEE.14 Thus, we have α = 4β, so that

U(z, s) =
(
z4s

)β
. (20)

An alternative value of β is considered for the sake of comparison.

Congestion term

The congestion function depends on the maximum speed inside the city, the
value of time and parameters k′ and λ in (16). Boiteux (2001) reports that the
value of time in IDF in 2001 is 11.6e/h for home-to-work trips.15 To take into
account the increase since 2001, we take the value of 15e/h (which corresponds
to a five year growth rate at 5%). So, during a year with 230 working days and
an average of two trips per day, we have θ = 15 × 230 × 2 (eh−1year−1). Both
parameters are used in the calibration of the model. As a comparative statics
exercise we consider an alternative situation with a higher level of congestion
and compare with the base-case.

Tolling schemes

We consider four policies:

- no toll (NT), where κ in (12) reflects the vehicle operating cost;

14See INSEE (2003).
15For the sake of comparison, the average value of time for work trips reported in Small &

Verhoef (2007), Chapter 3, is $9.14/h for metropolitan areas in the US in 2003.
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- cordon toll (CT), where a driver pays a toll when he enters inside the ring
of a given radius;

- (optimal) linear toll (LT), where κ is set to the value that maximizes the
surplus in (6);

- a first-best toll (FB) that internalizes the external costs.

The “no toll” rule may be interpreted as a small tax or, better, the vehicle
operating cost per kilometer. On the basis of gasoline price of 1.5e per liter,
the gasoline cost per meter for an average vehicle that consumes 6 liters per
100 kilometer is 0.0207 e per meter per year. Assuming that gasoline price
is half the vehicle operating cost we use κ = 0.0414 for the NT policy.16 For
the cordon toll, both the location and the value are chosen to maximize the
surplus S (u) given in (6). For the linear toll (LT), we search for the value of κ
that maximizes S (u). In practice, the optimization process is a tedious but a
straightforward task. Pricing rule NT is the reference policy, since it is close to
the real situation.

Calibration

A dataset related to rings with 7km intervals is used to feed the model with data.
To replicate the urban structure of IDF, we construct a loss function (denoted
“Loss”) that depends on the four parameters u, β, k and λ. The loss function
is equal to the weighted sum of square errors between observed data and the
output of the model. We focus on the radius of the city (rf ), the distribution of
the households (pop), the travel time (tt) and the level of the urban rent (rent).
The expression of the loss function is

Loss(u, β, k, λ) =

∑

r∈7,14,...,70

{wrf

(
Mrf

− rf

rf

)2

+ wrent

(
M r

rent −R(r)

R(r)

)2

+

wtt

(
M r

tt − tt(r)

tt(r)

)2

+ wpop

(
M r

pop − pop(r)

pop(r)

)2

}, (21)

where wx denotes the weight of variable x, M r
x denotes the value of x predicted

by the model at r (r measured in km). The four variables are not measured in
the same way : “rent” is the average rent between r and r − ∆r (we have used
∆r = 7km), “tt” is the average travel time for households between r and r−∆r,
“pop” is the number of households between r and r − ∆r. The weights are set
equal (and normalized to one) by default. They may be changed to focus the
calibration on a given set of variables. The function Loss(u, β, k, λ) reaches a
unique minimum when the output of the model perfectly matches the observed
values.

16Based on authors’ judgement and data values in INSEE (2005).
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Figure 2: Distribution of households:
observed and predicted (R2 = 0.987).
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Figure 3: Travel time: observed and
predicted (R2 = 0.97).

Table 4 contains the values of target variables along ten rings as indicated
in the first column. The second column contains the number of households.
Values in the third column correspond to the number of vehicles used for home-
to-work trips. As we are mainly interested in transport, this variable may be
used instead of the number of households. The fourth column contains the
travel time for the same type of trips. Rent values (based on observations from
“indice notaire-INSEE” in 2007) are reported in the last column.

The model is calibrated with respect to policy LT, i.e. when households pay
a tax that reflects the vehicle operating cost. The output of the model with
parameter values u = 11 976, β = 0.2, λ = 4.02 and k′ = 6.6 × 10−12 fits
particularly well the distribution of households and travel time. Figure 2 shows
the observed distribution of households in IDF and the distribution produced
by the model. The correlation is satisfactory. Figure 3 shows observed and
predicted values for the travel time. The correlation between the two sets is
high, even if the slope of the predicted values seems higher. The variable free-
flow travel speed has been useful to refine the approximation of the travel time.

The only variable that does not seem to be well fitted by the model is the land
rent. This fact may be explained intuitively as follows. Under the monocentric
city framework, the market rent is an exclusive result of transport costs. The
attractiveness of the CBD lies in the fact that we incur lower travel time. But,
in reality the attractiveness of the CBD of Paris is the result of many others
attributes: a richer social life, better access to many facilities, and so on. This
is one of the limitations of the model used here.

4 Results

Simulation outputs are presented in Table 5. Table 3 contains a smaller set of
the output of the base-case scenario. Under each scenario there are four pricing
rules: no toll, cordon toll, linear toll and first-best toll. The base-case uses
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rf s VK RD TT ∆S

City Housing Trip Roads’ Travel ∆surp
radius area length area time
km m2 km 104m2 mins e/y

No toll 73.423 84.236 22.075 7 539 37.7 0
Cordon toll 55.633 84.889 19.632 6 482 33.9 181
Linear toll 46.246 81.385 18.727 6 042 32.7 271
First-best 48.650 83.129 18.711 6 049 32.7 286

Table 3: The structure of the city (base-case). Cordon toll: located at 22km,
value 22.5e/day; Linear: κ = 0.21/m/year

parameter values discussed above and summarized in Table 2.
The first column of Table 5 provides location tax corresponding toH(r) given

in (12). The second column contains the radius of the city rf . Column s corre-
sponds to the average area occupied by a household (s =

∫ rf

rc
s(r) n(r)dr/N ).

The average (one-way) trip-distance VK =
∫ rf

rc
r n(r)dr/N is given in column

VK . Column RD contains the surface of land allocated to roads. TT and TT0

denote the average travel time and the free-flow travel time, respectively. The
social cost per household is decomposed into three items (all expressed for an
average household per year): CL, the opportunity cost of land; CT , the gener-
alized transport cost; and CZ , the cost of the homogeneous good. Column ∆S

corresponds to the impacts of pricing on the surplus of an average household
per year. We now discuss the impact of each pricing rule under the base-case
and then compare with two alternative scenarios.

4.1 The structure of the city

No toll

Without tolling, drivers incur only the vehicle operating cost. The urban region
extends to a radius of 73km which corresponds to the actual radius of IDF.
The average area occupied by a household is 84 m2 and the average length of
a trip is 22km. The average duration of trip is 38 mins. The amount of taxes
collected (769e) is close to annual spending on private transport in IDF. The
density of households is increasing as we move from rf to the CBD. It declines
shortly near the CBD, because households living in the city center do not use
frequently their cars for home-to-work trips.

Vehicle emissions, in particular for CO2, are highly correlated with the trip-
distance, and a policy that reduces the latter is environmentally effective. In-
deed, transportation is the leading sector in terms of CO2 emissions in France
(141 million-tons in 2005, according to ADEME). Assuming an average emission
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of 153 g/km (reported for 2006 by ADEME) this corresponds to a total of 3.3
million-tons of CO2 per year in IDF and corresponding to home-to-work trips
only.17

This situation is not optimal since congestion externality is not taken into
account by road users.18 Congestion pricing has long been advocated as the
convenient tool to remove market distortions and increase welfare. We explore
the impacts of three alternative policies.

Cordon toll

Drivers pay the toll when they enter inside a given ring. The value of the toll as
well as its location are both chosen to maximize the surplus in (6). The optimal
location of the cordon is at 22km from the city center and each household
going inside the toll region pays 22.5e per day. This pricing rule motivates
households to locate inside the ring so they do not pay the toll. Competition
for land inside the cordon rises the land rent near the CBD. The land rent curve
shifts upwards just near the cordon location (cf. Figure 6). A similar jump
appears in the distribution of households as shown in Figure 7.

In quantitative terms, this policy reduces the radius of the city and the av-
erage length of a trip by 27% and 13%, respectively. The average area occupied
by a household slightly increases by 1% because the land allocated to roads is
smaller. Congestion decreases by 11.5%. The gain in surplus results from the
decrease in the opportunity cost of land (CL) and transport cost (CT ). The con-
sumption of the homogeneous good increases, but overall the surplus increases
by 181e per household per year.

Notice that the housing area slightly increases under CT, despite the im-
portant decrease in the radius of the city. Indeed, the decrease in the radius of
the city induces a relatively smaller decrease in the available land: from (18)
and (19), the available land for housing and transportation is relatively small
when r is large. So, the decrease in the radius of the city does not have a large
impact (in relative terms) on the total amount of land available for housing
and transportation. At the same time, the amount of land allocated to roads
decreases at all distances from the city center. Overall, the resulting variation
in the housing area remains almost the same.

The (optimal) linear toll

The linear toll requires that each household pays 210e per kilometer (of daily
trips) per year. We obtain a particularly small city with a radius reduced by
40% by comparison with the no toll situation. The trip-distance decreases by
17%, and this may be seen as decrease in CO2 emissions. The corresponding
city is characterized by a reduction in transport cost and opportunity cost of
land as well as an increase in the consumption of the composite good. The main
weakness of the linear toll is that it reduces the area occupied by households

17Monetary values of pollution are reviewed in Zaouali & de Palma (2007).
18Without transport congestion (externality) the unregulated equilibrium is optimal.
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significantly: the average housing area decreases by 4.4% which is relatively
higher than the variation under cordon and first-best tolls.

The linear toll reaches a good efficiency level by comparison with the optimal
toll. In our simulations, however, we found that it is equivalent to a large
increase in the gasoline price (about 12e/liter). So, the policy is likely to face
a strong opposition from road users.

First-best toll

The optimal toll leads, as expected, to a compact and dense city. The radius
of the city and trip-distance decrease by 34% and 15%, respectively. The con-
sumption of the homogeneous good increases, but the opportunity cost of land
and transport costs are reduced. Travel time decreases by 13%.

The decrease in the radius and trip-distance remain, however, slightly lower
than under the linear toll. Policy FB is particularly effective in concentrating
households around the CBD (cf. Figure 7).19

Optimal congestion pricing increases the welfare by 286e per household per
year. Cordon and linear tolls get 62% and 93% of this gain, respectively. The
amount of the toll collected is relatively higher by comparison with all the other
pricing schemes. With the optimal toll, the government budget is balanced (cf.
condition (23)), in the sense that total taxes are equal to the cost of land used
for transportation. Since the other pricing scheme provide lower revenues, the
government must find alternative funding schemes.

4.2 Higher congestion

When k in the congestion function (16) increases (Scenario 1 in Table 5), con-
gestion costs increase, and an efficient urban form corresponds to a further
concentration around the CBD. The radius of the city increases under NT and
decreases under FB. CT and LT induce a small increase. The higher congestion
is followed by an increase in the land rent around the city center, and this moti-
vates households to locate further away from the CBD. This incentive is higher
than the opposing one induced by the (private) travel cost. Appropriate tolling
makes the second incentive higher. There are more land allocated to roads.

The transport cost and expenses on the homogeneous good increase under
the four regimes, while the land cost decreases only under FB. It is clear that
an increase in congestion has a negative impact on welfare. The intuition for
this is straightforward (notice the decrease in housing area given by s). CO2

emissions, and other pollutants related to fuel consumption, vary in the same
direction as VK: a higher congestion is followed by a higher pollution under all
regimes except FB.

19A set of simulations we do not report here confirms this fact under a larger set of parameter
values.
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4.3 Alternative preferences

As the preference for housing increases (Scenario 2 in Table 5), the city radius
rf increases under the four regimes. The variations with respect to the base-
case are 25%, 28%, 15% and 13%, respectively for NT, CT, LT, and FB. At the
same time, the increase in the average housing area is relatively small for NT
by comparison to LT and FB. This is because when congestion is unpriced, too
much land is devoted to roads, which leaves smaller area for housing.

From the output in Table 5, the larger city leads to higher travel time, higher
consumption of the homogeneous good and higher CO2 emissions. This requires
a higher compensation of the households, and yields lower level of surplus.

Under NT the increase in s is relatively small by comparison with the increase
in rf . Indeed, with unpriced congestion the expansion of the city leads to an
over-investment in roads. CT and FB yield a higher area per household, because
a smaller area is devoted to roads.

5 Conclusion

This paper examined the impacts of congestion pricing on the urban form. Our
analysis reveals the importance of tolling on households’ decision, and conse-
quently on the urban structure of the city. As a solution of the optimality
conditions we derive, among other variables, the households distribution and
the amount of land allocated to transportation over the city. Our analysis con-
cludes that convenient congestion pricing leads to more efficient urban forms.
The increase in welfare results from the reduced travel cost and the better al-
location of land between housing and roads. In monetary terms, first-best toll
yields a welfare increase estimated at 606 Me,20 Accounting for environmental
impact, the welfare gain of congestion pricing will be greater. Using an alterna-
tive empirical approach, Daniel & Bekka (2000) estimate that congestion pricing
leads to a reduction of emissions by 10%. We found that vehicle-kilometer (and
so the related emissions) can be reduced by 16%. The difference is due to the
fact that we integrate the long-term impacts on housing. De Palma & Lindsey
(2006) obtain higher but comparable results. They take into account a more
general set of trips (not only home-to-work) and other sources of externalities
(noise, accidents, etc.).

The linear toll reaches a good efficiency level by comparison to the first-
best scheme, but its implementation is equivalent to an important increase in
the vehicle operating cost. In practice, the cordon toll represents a potential
alternative. Indeed, it induces a satisfactory increase in the housholds’ surplus
and faces lower opposition from road users, as the real experiences have revealed
in the last years.

The model we have considered does not intend to perfectly reproduce housing
and transportation in IDF. The monocentric model has well known limitations

20From the base case in Table 5, we have 286e as impact on the surplus. Aggregating over
the total population yields the value of 606Me.
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and there is a number of issues relevant to the region IDF that we have not
discussed. In particular, there are multiple (smaller) business centers outside
the CBD, and many working trips do not concern the CBD. We have assumed
that all households have the same revenue, the same preferences and make a
daily home-to-work trip only.21 One further limitation in this model is that
the attractiveness of the CBD is limited to savings in transport costs. This
assumption, which is acceptable under simplified contexts, is not reasonable for
agglomerations such as Paris, where other facts such as the richer social life play
an important role.

All these facts are not easy to deal with at the same time, and the theory
of polycentric city is not yet sufficiently coherent and complete to represent a
better alternative. Indeed, polycentric models do not refer to a precise model,
but rather to a class of models. It would be useful to develop an analysis
based on polycentric models that overcomes the weaknesses of the monocentric
model. But this requires an identification of the limitations, both theoretical
and empirical, of the monocentric model.

Some of these limitations are direct extensions of the monocentric city model,
and we plan to address these issues in future research in which we also plan to
add the multi-cordon toll scheme. Indeed, the solution approach adopted here
can be adapted to cordon pricing. At the same time, our conclusions about
the impact of congestion pricing on the urban form and the levels of emissions
should extend to more complicated frameworks.
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A Interpretation of the HST model

The necessary and sufficient conditions for a solution to the HST model, formu-
lated in Section 2 above, are (7)-(9) and the following (22a)-(22f):22

R(r) =

{

max(ψ(Y − g − l(r) − τ(r), u), ψT ( N(r)
LT (r))) rc ≤ r ≤ rf

RA r ≥ rf ,
(22a)

R(r) = ψ(Y − g − l(r) − τ(r), u) if n(r) > 0, (22b)

R(r) = ψT

(
N(r)

LT (r)

)

if LT (r) > 0, (22c)

s(r) = S(Y − g − l(r) − τ(r), u), rc ≤ r ≤ rf , (22d)

n(r) =
L(r) − LT (r)

S(Y − g − l(r) − τ(r), u)
, rc ≤ r ≤ rf , (22e)

l(r) =

∫ r

rc

c′
(
N(x)

LT (x)

)
N(x)

LT (x)
dx, rc ≤ r ≤ rf . (22f)

Equations (22a), (22b) and (22c) state that each piece of land should be allo-
cated to the highest bidder. It follows that if both n(r) and LT (r) are (strictly)
positive, then the households’ bid rent is equal to the bid rent of the transport
sector. Furthermore, at the outside boundary of the city (at rf ) the bid rent
function is equal to the agricultural rent RA. Condition (22d) insures that each
household is choosing its bid-max lot size to maximize its utility (from (1) and
(2)). Equation (22e) implies that constraint (7) is binding at the optimum, i.e.
all the available land within the city is used either for housing or transportation.

The location tax in (22f) reflects external costs induced by each household.
It can be shown that under this congestion pricing the optimal solution yields

∫ rf

rc

R(r)LT (r)dr =

∫ rf

rc

l(r)n(r)dr. (23)

This means that the cost of transforming (agricultural) land to roads is just
equal to the total amount of congestion tolls collected, i.e. the government
budget is balanced in this sense.

Transportation introduces externalities in the monocentric model and effi-
cient solutions can no longer obtain without public intervention.23 In particular,
the location tax given in (22f) is devised so that household internalize the ex-
ternal costs they impose on other road users.24 The efficient allocation can then
be decentralized through a compensated equilibrium (given by (22)), where the

22See Fujita (1989).
23In the absence of transportation externalities the competitive solution without government

intervention is efficient.
24The impact of unpriced congestion is discussed in Arnott (1979) and Arnott & MacKinnon

(1978).
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government chooses g, l(r) and LT (r). The decentralization is a consequence
of the fact that the solution to any compensated equilibrium can be obtained
as a solution to the HST model, and vice versa. The government can reach any
target utility level by imposing adequate population taxes.

The government decides on the taxes to collect and the amount of land to
allocate to roads at each distance. Let HST (u) refer to the Herbert-Stevens
model with traffic congestion when the target utility is equal to u.25 The fol-
lowing result (adapted from Fujita (1989)) states the relation between the HST

model and competitive equilibria.

Proposition 2. (R(r), n(r), s(r), LT (r), rf , g
∗, l(r)) is a solution to the HST (u)

if and only if it is a compensated equilibrium under target utility u.

The total surplus in (6) may be written as

S =

∫ rf

rc

{

(
Y − g − l(r) − Z(s(r), u)

s(r)
−RA

)

s(r)n(r)

− LT (r)RA + gn(r) + l(r)n(r)} dr. (24)

Using (5), (22b) and (23), this becomes

S =

∫ rf

rc

(R(r) −RA)L(r)dr

︸ ︷︷ ︸

TDR

+ g N, (25)

where TDR stands for total differential rent. To illustrate the solution for
varying utility levels, let us write S , TDR and g as a function of u. We have
from (24) and (25):

S (u) = TDR(u) +N g(u). (26)

The function S has the following properties:26 S (u) is continuously in-
creasing in u, and limu→−∞ S (u) = N (Y − τ(rc)) and limu→+∞ S (u) = −∞.
The function g has the following properties: g(u) is continuously decreasing in
u, and limu→−∞ g(u) = Y − τ(rc), and limu→+∞ g(u) = −∞.

Figure 4, which is adapted from Fujita (1989) is useful to understand the
relationship between the solution to the HST and compensated equilibria. The
surplus related to first-best optimum is given by curve S (u). When the tolling
scheme is not optimal, we necessarily obtain a lower level of surplus for any
utility level. So under a non-optimal congestion pricing, curve S (u) moves
downwards as the dashed curve. The total differential rent can either be redis-
tributed to the households or to an absentee land owner. In this latter case,
the households revenue is just Y , and from Proposition 2 it is clear that point
A corresponds to the solution of the competitive equilibrium or to the compen-
sated equilibrium with target utility u∗. This solution is obtained under optimal

25We discuss how the values of u (and/or g) are chosen (and what it reflects).
26These obtain as an extension to the model without transportation externalities (see Fujita

1989, page 74).
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Figure 4: HST model and compensated equilibria.

congestion pricing, so if we set l(r) to a different level, we obtain a lower level of
surplus. To reach the utility level at point B the households must receive a total
subsidy equal to TDR(u)/N . This is the situation where the total differential
rent is redistributed to city citizens. This is also the solution to a competitive
equilibrium with an absentee land owner but where the revenue Y is replaced
by Y + TDR(u)/N . The case where only a part of the rent is redistributed is
an intermediate case between the two extremes.

In this sense, g may be interpreted as a control variable that indicates how
much of the total differential rate is redistributed to city residents. The HST

model can be seen from another perspective. If the utility level is given, the
population tax should be designed so that condition (9) is met. That is, the
population in the city remains equal to N . Indeed, g appears in the solution as
a multiplier for this condition (See Fujita 1989, page 68).

In many papers, (Kanemoto 1977, Robson 1976, Pines & Sadka 1985, in-
ter alios) the problem has been formulated as utility maximization under the
revenue constraint. This may be obtained from the HST model by finding the
highest level of utility given the budget constraint

N Y ≥

∫ rf

rc

{[τ(r) + Z(s(r), u) +RAs(r)]n(r) +RALT (r)}dr

is satisfied, i.e. total revenue is higher than total costs. But, notice that this
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constraint is just S (u) ≥ 0. In Figure 4 this coincides with point B.

B Proof of Proposition 1

Let us denote the road occupancy at r by Γ(r), i.e.

Γ(r) :=
N(r)

LT (r)
(27)

Replacing (8) and (27) by an equality between differentials with appropriate
boundary conditions, we may easily write all equations (7)-(9) as







N ′(r) = −n(r)

LT (r) = N ′(r)s(r) + L(r)

Γ(r) =
N(r)

LT (r)

T ′(r) = c(Γ(r))

s(r) = S(Y − g − l(r) − τ(r), u)

for rc ≤ r ≤ rf , (28)

with boundary conditions







τ(rc) = 0
l(rc) = 0
N(rc) = N
N(rf ) = 0 .

(29)

Now, let us examine equations (22a)- (22c) involving R(r). Recall that we
have assumed n(r) > 0 and LT (r) > 0 for rc ≤ r < rf . Thus, the three
equations (22a)- (22c) are equivalent to







R(r) = RA for r ≥ rf

R(r) = ψT (Γ(r)) for rc ≤ r < rf

ψT (Γ(r)) = ψ(Y − g − l(r) − τ(r), u) for rc ≤ r < rf .

(30)

Notice that, by continuity at rf , the two first equations imply that

ψT (Γ(rf )) = RA .
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Now, let us consider the third equation. Notice that

ψ(Y − g − l(r) − τ(r), u) = R(r)

⇔ Y − g − l(r) − τ(r) = φ(R(r), u) by (10)

⇔ l(r) + τ(r) = Y − g − φ(R(r), u)

⇔







l′(r) + τ ′(r) = −
∂φ

∂R
(R(r), u))R′(r)

ψ(Y − g, u) = R(rc) by (29)

Recollecting all the results above gives the following equivalent formulation of
conditions (22a)-(22e):







R′(r) = −
l′(r) + c(Γ(r))

∂φ

∂R
(R(r), u)

for rc ≤ r < rf

R(rf ) = RA

N ′(r) =

N(r)
Γ(r) − L(r)

S(φ(R(r), u), u)

N(rc) = N

N(rf ) = 0

LT (r) =
N(r)

Γ(r)

g = Y − φ(ψT (Γ(rc)), u)

s(r) = S(φ(R(r), u), u)

R(r) =

{
ψT (Γ(r)) for rc ≤ r ≤ rf

RA for r ≥ rf

(31)

We end up by replacing Γ(r) by ψ−1
T (R(r)) in the two differential equations.

C Numerical implementation

An NSP software has been developed to solve (11).
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• a first function computes an approximate solution Rrf
(r) and Nrf

(r) of
the double backward differential equation (11) over the interval [rc; rf ],
rewritten here:







R′(r) = −
H(ψ−1

T (R(r))) + c(ψ−1
T (R(r)))

∂Rφ(R(r), u)

N ′(r) =
N(r)/ψ−1

T (R(r)) − L(r)

S(φ(R(r), u), u)
with final conditions R(rf ) = RA, N(rf ) = 0

In order to cautiously solve the equations above, the following numerical
procedure has been used :

1. Initialization. Set n = 0, r0 = rf , R0 = RA, N0 = 0

2. while rn > rc do

(a) compute R′(rn) and N ′(rn)

(b) compute δrn = min
[

rn − rc,max
(

δrmin,min(δrmax,
εRA

|R′(rn)| ,
εN

|N ′(rn)|)
)]

;

note that three parameters are used: the maximum and mini-
mum admissible values for δrn, δrmin and δrmax, and a fraction
ε limiting the progress of the numerical integration.

(c) n→ n+ 1

(d) rn+1 := rn − δrn, Rn+1 = Rn − δrnR′(rn), Nn+1 = Nn −
δrnN ′(rn)

3. Conclusion. Since rn = rc, set Rrf
(rc) = Rn and Nrf

(rc) = Nn

• a second function searches and finds rf (using dichotomy) such thatNrf
(rc) =

N . The algorithm is the following:

1. Initialization. Set r1 = rc, r2 = 2rc, r3 = 3rc; compute Nj =
Nrj

(rc) −N , for j ∈ 1, 2, 3.

2. while |N1|

N
> 10−6 and |r3−r1|

rr2 > 10−5, do

(a) if N1N2 < 0 (the solution lies in [r1; r2]) then

i. set r3 = r2, N3 = N2, r2 = (r1 + r2)/2

ii. compute N2 = Nr2(rc) −N

(b) else if N2N3 < 0 (the solution lies in [r2; r3]) then

i. set r1 = r2, N1 = N2, r2 = (r2 + r3)/2

ii. compute N2 = Nr2(rc) −N

(c) else the solution does not lie in [r1; r3]) then

i. set r1 = r2, N1 = N2, r2 = r3, N2 = N3, r3 = 1.1 r3

ii. compute N3 = Nr3(rc) −N
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Ring (km) Households Veh. used for home-to-work trips travel time (hours) Land rent (e/m*m/year)

3.5-7 674 832 140 956 102.39
7-14 1 260 076 580 538 0.37 82.03
14-21 771 020 491 077 0.50 74.07
21-28 438 363 336 195 0.63 70.22
28-35 252 913 225 534 0.74 69.41
35-42 130 083 115 719 0.87 68.64
42-49 109 050 96 744 0.97 71.14
49-56 72 312 59 604 1.10 68.83
56-63 54 568 47 144 1.23 72.31
63-70 32 559 26 983 1.33 69.34

total 2 120 493

Table 4: Data on IDF for ten rings.

There is a further detail that should be taken into account in the iterations.
Since N ′(r) is always negative we have from the second line in (11):

ψ−1
T (R(r)) ≥

N(r)

L(r)
.

So, ψ−1
T (R) in (15) is replaced by

ψ−1
T (R(r)) = max

{
N(r)

L(r)
, (
R(r)

kλ
)

1
1+λ

}

.

This is important when the area just next to the CBD border is exclusively
allocated for transportation.

D Notation

Variable description
r distance to the city center [L]
rc radius of the district center [L]
rf radius of the urban fringe [L]

c(γ) marginal transport cost [eL−1] as function of road occupancy
g population tax per household [e]

l(r) location tax per household at r [e]
N(r) number of households located further away than r from the city center
N total households in the city
Y annual income [e]

n(r) lineic density of households at r [L−1]
R(r) rent at r per unit of area [eL−2]
RA opportunity cost of land [eL−2]
s(r) housing area per agent at r [L2]
L(r) total amount of land available at r [L1]
LT (r) amount of land devoted to transport use at r [L1]
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Figure 5: The fraction of land available for transportation and housing.

tx rf s V K RD TT T T0 CL CT CZ ∆S

Total City Housing Trip Roads’ Travel Free-flow Land Transp. Composite ∆surp
tax radius area length area time T T cost cost good cost

e/y km m2 km 104 m2 mins mins e/y e/y e/y e/y

Base-case. Cordon toll: located at 21.998km, value 22.457e/day; Linear: κ = 0.21/m/year

No toll 769 73.423 84.236 22.075 7 539 37.68 21.00 5 750 3 469 41 671 0
Cordon toll 2 410 55.633 84.889 19.633 6 482 33.90 18.24 5 499 3 081 42 147 181
Linear toll 3 541 46.246 81.385 18.727 6 042 32.70 17.22 5 185 2 960 42 479 271
First-best 7 172 48.650 83.129 18.711 6 049 33.70 17.22 5 360 3 021 42 222 286

Scenario 1. k′ : 6.6 → 10.0 Cordon toll: located at 21.496km, value 26.065e/day; Linear: κ = 0.24/m/year

No toll 778 75.241 81.339 22.280 8 196 40 21 5 760 3 673 42 057 0
Cordon toll 2 534 55.493 82.629 19.579 6 949 36 18 5 539 3 285 42 445 236
Linear toll 3 605 44.935 78.635 18.521 6 394 35 17 5 222 3 157 42 765 347
First-best 8 141 47.788 80.726 18.556 6 430 35 17 5 331 3 163 42 629 368

Scenario 2. α + β = 1 and β : 0.20 → 0.21 Cordon toll: located at 22.200km, value 24.783e/day; Linear: κ = 0.22/m/year

No toll 790 89.677 85.224 22.583 7 571 40 22 5 805 3 667 44 907 0
Cordon toll 2 625 68.474 87.307 20.522 6 722 37 19 5 716 3 369 45 135 173
Linear toll 3 530 52.415 84.401 19.545 6 261 36 18 5 469 3 253 45 385 273
First-best 8 037 55.953 86.104 19.494 6 253 35 18 5 549 3 246 45 293 292

Table 5: Summary statistics under different pricing regimes and parameter val-
ues.
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Figure 6: Land rent (base-case).
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Figure 7: Distribution of households (base-case).
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