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Shallow heteronuclear trimers are predicted for mixtures of two atomic species strongly trapped
in a quasi two-dimensional (2D) atomic wave guide. The binding energies are functions of the 2D-
scattering length and of the mass ratio and can be thus tuned by various ways. These universal
trimers are composed of two identical non interacting particles and of a third particle of the other
species. Depending on the statistics of the two identical particles, the trimers have an odd (fermions)
or even (bosons) internal angular momentum. These results permit one to draw conclusions on the
stability issue for the quasi-2D gaseous phase of heteronuclear dimers.

PACS numbers: 03.75.Ss,03.65.Nk,03.65.Ge,05.30.Jp

I. INTRODUCTION

Actual experiments in ultracold physics open the possi-
bility of trapping and cooling atomic mixtures composed
of different atomic species [1–4] in quasi two-dimensional
(quasi-2D) geometries [5, 6]. This dramatic progress
opens exciting possibilities for exploring experimentally
few- and many-body properties in these systems. For ex-
ample, the Berezinski-Kosterlitz-Thouless transition in
bosonic 2D gases is under active experimental studies
[7–9]. The occurence of confinement induced resonances
[10–12] i.e. for quasi-2D wave guide, resonances in two-
body scattering induced by the transverse confinement, is
another peculiar property in these systems which repre-
sents a way to achieve strongly correlated regimes. There
are also promising possibilities using fermionic quasi-2D
gas to reach exotic phases [13]. More recently, a new
crystalline order has been predicted to occur for two-
species quasi-2D fermionic gases with a sufficiently large
mass ratio [14]. This last reference suggests also the idea
of tuning the mass ratio by imposing an optical lattice
acting on one species only. This opens fascinating possi-
bilities for achieving systems with very high mass ratio.

Motivated by these recent progress, we consider in this
paper mixtures of two atomic species “strongly confined”
along the z-direction by a planar atomic wave guide of
frequency ωz, without any external confinement along the
x and y directions. Here, the expression “strongly con-
fined” means that for large interparticle separations (i.e.
for distances which are very much larger than the trans-
verse harmonic oscillator length denoted az), atoms are
frozen in the ground state of the 1D harmonic oscillator
along z. In this situation, the system can be considered
quasi-2D and long range properties (for interparticle dis-
tances very much larger than az) acquire the peculiar as-
pects typical of a 2D-world. The results of the paper can
be summarized as follows: (i) We extend the formulation

of the 2D zero-range potential (ZRP) approach which is
usually used in the configurational space [15–20] to the
momentum representation which is more natural for a
translation invariant problem. This way the equivalence
between the ZRP model and the diagrammatic [21] or
the t-matrix approaches [22] is much more transparent.
(ii) We predict the existence of “1 + 2-body” universal
shallow bound states composed of two identical atoms
of mass M and of a third atom: an “impurity” of mass
mi. There is no interaction between the two identical
atoms of mass M while each one interacts (in the s-wave
channel only) with the impurity. For each statistics, the
bound states are labeled by a radial quantum number
and an internal angular momentum. This latter one is
even when identical atoms are bosons and odd when they
are fermions. The binding energies are function of the
two-body scattering length, of the oscillator length and
of the mass ratio, thus they can be tuned by various
ways. If the two identical atoms obey the Fermi statis-
tics, we find that for increasing values of the mass ratio
x = M/mi, the first trimer appears at x = x1 ≃ 3.33 for
a p-wave internal angular momentum. (iii) Neglecting
inelastic processes toward deep molecular bound states
with spatial extensions of the order of the range of inter-
atomic forces (which is very much smaller than az), the
low energy two-body collisions between 2D shallow het-
eronuclear dimers composed of fermions are elastic for a
mass ratio x < x2 ≃ 18.3. (iv) In the case where identical
atoms are bosons, at least one trimer exists for all values
of the mass ratio. Moreover, binary collisions for dimers
composed at least of one boson can always populate a
shallow trimer state.

The structure of the paper is as follows. In Sec. II,
we recall the low energy two-body scattering properties
for atoms strongly confined in a 2D plane by a harmonic
trap along the third dimension. We then introduce the
ZRP model in the momentum representation, where the
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contact condition for a vanishing distance between inter-
acting particles is replaced by an integral equation. In
the Sec. III, we explain how this formulation can be ex-
tended to few-body problems. In Sec. IV, we show that
depending on the various parameters (statistics, mass ra-
tio, 2D-scattering length) the three-body wave equation
can support one or more bound-states. We then discuss
about the implications of these findings. In particular we
focus on the stability issue for the quasi-2D heteronuclear
dimer gas.

II. MOMENTUM REPRESENTATION OF THE

ZERO-RANGE POTENTIAL MODEL

In this section, we introduce the ZRP model in the
momentum space. We then consider a system composed
of two interacting particles of respective masses M and
mi (with the reduced mass µ) interacting in the s-wave
channel only. The particles are trapped by a harmonic
potential along the z-axis with the same trap frequency
(ωz) for both species. We then define the harmonic os-
cillator length as:

az =

√

~

ωzµ
. (1)

According to the “strong 2D confinement” hypothesis,
we suppose that for large interparticle separations (very
much larger than az), the wavefunction factorizes in the
product of a wavefunction of the 2D coordinates (2D-
wave function) and of two ground state eigenfunctions of
the 1D-harmonic trap for each atomic z-coordinate. In
what follows, az represents a short range scale (in the 2D-
world, this length is formally equivalent to the range of
the true interatomic forces in three dimensions) and we
consider only the quasi-2D behavior: atomic momenta
and positions are in the 2D xy plane. The two-body
scattering states for an incident plane wave of wave vector
k0 are given in the low energy regime (k0az ≪ 1) by:

〈k|Ψk0
〉 = (2π)2δ(k− k0) +

2πf2D(k0)

k2 − k20 − i0+
, (2)

where f2D(k0) is the 2D scattering amplitude [23]:

f2D(k0) =
1

ln (eγa2Dk0/2)− iπ
2

. (3)

In Eq. (3), γ = 0.577 · · · is the Euler’s constant and a2D
is the so-called 2D-scattering length. For a pairwise in-
teraction in 3D characterized by a scattering length a3D,
a2D is a function of the characteristic length of the trap
az and also of the three dimensional scattering length
a3D [11]:

a2D =
az

√

eγ exp(J)
exp

(

−az
√
π

2a3D

)

(4)

and the constant J in Eq. (4) is [12, 24]:

J =

∫ ∞

0

du

u

(

1√
1− e−u

− 1√
u
− u

1 + u

)

= −1.36 · · ·
(5)

Eqs.(2, 3) can be deduced by using a 2D ZRP model,
which by construction is valid for large interparticle spac-
ing with respect to az [18–20]. Following the spirit of the
Bethe-Peierls approach [25], we recall briefly the formal-
ism in the configurational space for a stationary state |Ψ〉
of energy E in the center of mass frame. The pairwise
interaction in the non-interacting Schrödinger equation
is replaced by a δ(r) source term characterized by an
amplitude denoted in what follows by R:

(

− ~
2

2µ
∆r − E

)

〈r|Ψ〉 = π~2

µ
δ(r)R. (6)

Solutions of Eq. (6) are linear combination of a singular
and of a regular function. For a regular function sat-
isfying the boundary conditions associated with a given
situation (for example an incident plane wave in the case
of a scattering problem), the interacting wavefunction is
obtained by determining the balance between these two
functions i.e. by choosing a specific value for the source
amplitude R. In the present case and analogously to
what happens for point-charge in 2D-electrostatic, the
source term leads to a logarithmic singularity for vanish-
ing interparticle separations r → 0. The correct balance
between the singular and the regular contributions is de-
duced by imposing the following behavior on the wave-
function as r → 0 [15, 20]:

〈r|Ψ〉 = −R ln

(

r

a2D

)

+O(r). (7)

This contact condition allows one to recover the scatter-
ing states in Eq. (2) exactly. It is worth pointing out
that the logarithmic singularity is purely formal because
for r of the order or smaller than az, the 2D zero range
model ceases to be valid and 3D physics becomes impor-
tant. However, this is the key property which permits
to implement the effect of the interaction for interparti-
cle separations very much larger than az. The systems
which are studied in this paper are translationally invari-
ant along the xy plane. Hence, solving the stationnary
Schrödinger equation is a much more simple task in the
k-representation than in the configurational space. Con-
sequently, we formulate below the 2D ZRP model in the
momentum representation. For this purpose, we closely
follow the method already introduced in Ref. [12] for ar-
bitrary resonant l-wave interaction in 3D. First, we in-
troduce a source term with a delta of finite range ǫ:

〈k|δǫ〉 = exp

(

−k2ǫ2

4

)

, (8)

which is such that: limǫ→0〈r|δǫ〉 = δ(r). Keeping the
same notations as in Eq. (6), the stationary states |Ψǫ〉
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at energy E verify:

(

~
2k2

2µ
− E

)

〈k|Ψǫ〉 =
π~2

µ
〈k|δǫ〉R. (9)

and the stationary states in the zero-range limit are:

|Ψ〉 = lim
ǫ→0

|Ψǫ〉. (10)

Let us consider the 2D Green’s function of Eq. (6) (solu-
tion corresponding toR = 1) taken at energy−~

2Λ2/µ <
0 where Λ is any real and positive number. This func-
tion is K0(Λr) and behaves as − ln (Λreγ/2) + O(r) for
r → 0. Using this property, the contact condition in
Eq. (7) can be written in terms of a subtraction between
the eigenstate of the ZRP model and this Green’s func-
tion as r → 0 [24]. In the k-representation the contact
condition can thus be written as

lim
ǫ→0

∫

d2k

(2π)2

(

〈k|Ψǫ〉 −
2π〈k|δǫ〉R
k2 + Λ2

)

=
R

f2D(iΛ)
, (11)

where the scattering amplitude at negative energy is:

f2D(iΛ) =
1

ln (eγa2DΛ/2)
Λ > 0. (12)

We emphasize that the interacting wave function ob-
tained by using Eq. (11) do not depend on the parameter
Λ: this is the so-called Λ-freedom introduced previously
through the Λ-potential in Ref. [18]. As an example, we
illustrate this method in the case of a two-body collision
for an incident plane wave of momentum k0 in the center
of mass frame. For E > 0, using the usual prescription
E → E + i0+ corresponding to an outgoing cylindrical
wave, Eq. (9) can be transformed into:

〈k|Ψǫ〉 = (2π)2δ(k− k0) +
π~2

µ

〈k|δǫ〉R
~2k2

2µ − E − i0+
. (13)

Then, inserting Eq. (13) in the contact condition
Eq. (11), one obtains R = f2D(k0) given by Eq. (3)
∀Λ > 0. Therefore as expected, performing the ǫ → 0
limit in Eq. (13) one recovers the 2D s-wave scattering
states of Eq. (2). The 2D ZRP model supports also the
existence of a two-body bound state characterized by a
binding energy Edim = −E where

Edim =
~
2q2dim
2µ

with qdim =
2

eγa2D
, (14)

and a wavefunction |φB〉 given in the r-representation by

〈r|φB〉 =
qdim√

π
K0(qdimr) (15)

This bound state has a spatial extension of the order of
a2D and can thus be considered as shallow in the limit

a2D ≫ az. (16)

Equation (16) defines the quasi-2D resonant regime
where the extension of the 2D dimer is large with respect
to az and is analogous to the 3D resonant regime where
the 3D scattering length is large in absolute value with
respect to the typical radius of interatomic forces. The
length az gives the order of magnitude of the radius of
the 2D effective interaction [11] so that the quasi-2D reso-
nant regime defines also the regime where the zero-range
approximation is well justified. For instance, the scat-
tering amplitude in Eq. (3) has a maximum modulus for
k = qdim and in the quasi-2D resonant regime, the maxi-
mum occurs for a 2D momentum which is very small with
respect to 1/az i.e. for a collisional energy such that the
2D approximation remains valid. For a fixed value of the
collisional momentum, the maximum can be reached if
one tunes the dimer binding wavenumber qdim (and thus
the 2D scattering length) by modifying the 3D-scattering
length and/or the trap frequency ωz [see Eq. (4)]: this
is the so-called 2D Confinement Induced Resonance first
found in Ref. [10]. As a consequence of Eq. (4), the con-
dition in Eq. (16) corresponds to the regime of negative
3D-scattering lengths where also |a3D| is much smaller
than az . In this paper, we suppose that Eq. (16) is sat-
isfied for heteronuclear atomic pairs.
Note that in the case where an optical lattice in the

xy-plane acts for example on the heavy atoms of mass
M in the small filling limit as proposed in Ref. [14], we
assume that a2D is much larger than the lattice period.
In this limit the mass M can be replaced by the effective
mass in the 2D-Schrödinger equation [26].

III. FORMULATION OF THE 1 + 2-BODY

PROBLEM

In this second part, we show how the ZRP model can
be implemented in few-body systems and in the momen-
tum representation by considering a particular ’1 + 2-
body’ problem. Our system is composed of two identical
atoms of massM each interacting only with a single atom
impurity of mass mi via the ZRP model. Hence in or-
der to fulfill the strong 2D confinement condition’s, we
require implicitly that the collisional energies of the prob-
lem are very much smaller than the characteristic energy
of the transverse trap (~ωz).
Furthermore, we assume that the quasi-2D resonant

regime defined in Eq. (16) is always achieved for het-
eronuclear atomic pairs. We introduce the statistical
parameter η which is equal to −1 if the two identical
atoms are fermions, and to +1 if they are bosons. In the
fermionic case, the two identical atoms do not interact in
the s-wave channel as a consequence of the Pauli princi-
ple. In the bosonic case, we also consider that the identi-
cal atoms do not interact in the sense that their pairwise
interaction is negligible with respect to the interaction
with the other atomic species. This hypothesis is justi-
fied in the case where the 3D scattering length between
the two identical bosons is positive and small in compari-
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son with az which implies that their 2D scattering length
is exponentially small in comparison to az [see Eq. (4)].
Consequently, in both cases we take into account the pair-
wise interaction only between particles of different mass.
In the ZRP model, for each interacting pair (i, j), the in-
teraction is implemented by inserting in the Schrödinger
equation a source term with an amplitude denoted by
Ri⇌j . Consequently, we assume implicitly that configu-
rations where three particles are in a hyper-radius smaller
or of the order of az can be neglected. This hypothesis is
especially justified in the quasi-2D resonant regime where
the characteristic extension of the trimers (and thus of
the hyper-radius) is of the order of a2D which is very
large with respect to az. In the following, we associate
the three momenta {ki} ≡ {k1,k2,k3} with the particle
configuration: (1 : M ; 2 : M ; 3 : mi ), furthermore we
solve the problem in the center of mass frame so that:

k1 + k2 + k3 = 0. (17)

For each pair (i, j) the relative coordinates denoted by
ηl (where i, j, l are in cyclic order) verify:

η1 =
k2 − xk3

1 + x
η2 =

xk3 − k1

1 + x
η3 =

k1 − k2

2
, (18)

where x is the mass ratio x = M/mi. Using these nota-
tions, the Schrödinger equation for an eigenstate |Ψǫ〉 of
energy E reads in the momentum representation:

[

~
2(k21 + k22)

2M
+

~
2k23
2mi

− E

]

〈{ki}|Ψǫ〉 =
π~2

µ

[

R1⇌3〈η2|δǫ〉+R2⇌3〈η1|δǫ〉
]

. (19)

In Eq. (19), Ri⇌j is a function of the total momentum
of the pair (i, j) and of the momentum of the third par-
ticle (l). Using the fact that we solve the problem in
the center of mass frame, Ri⇌j can be considered as a
function of the momentum kl. Moreover, the statistics of
the two identical particles imposes a symmetry between
the two source terms: R1⇌3(k) = ηR2⇌3(k). In order
to simplify the subsequent equations, we will denote the
amplitude R2⇌3(k) by R(k). We also consider in what
follows situations of negative total energy E only, we thus
introduce the momentum q:

E = −~
2q2

2µ
where q > 0. (20)

The equation satisfied by the function R(k) is deduced
from the contact condition applied to an interacting
pair. For example, application of Eq. (11) for the pair
(2 : M ; 3 : mi ) of relative momentum η1 gives:

∫

d2η1

(2π)2

[

〈{ki}|Ψ〉 − 2πR(k1)

η
2
1 + Λ2

]

=
R(k1)

f2D(iΛ)
. (21)

For E < 0, Eq. (21) can be simplified as:

R(k)

f2D(κk)
= η

∫

d2u

(2π)2
2πR(u)

u2 + k2 + 2yk.u+ q2
, (22)

where the variable y is a function of the mass ratio:

y =
M

M +mi

=
x

1 + x
, (23)

and also we have introduced the collisional momentum:

κk = i
√

(1− y2)k2 + q2. (24)

The physical interpretation of Eq. (24) proceeds as fol-
lows. The scattering process between the two interacting
particles (2, 3) occurs in their center of mass frame at a

kinetic energy E
(2,3)
col which verifies:

E = E
(2,3)
col +

~
2(k2 + k3)

2

2(M +mi)
+

~
2

2M
k
2
1. (25)

In Eq. (25) we have used the fact that, as mentioned pre-
viously, the third atom (1 in this case) does not interact
with an atom of the pair (2, 3) during the scattering pro-
cess. Hence, using Eqs.(24,25) the collisional energy of
the pair can be written as:

E
(2,3)
col =

~
2κ2

k1

2µ
< 0, (26)

and κk1
is the relative momentum of the pair (2, 3) of

total momentum (−k1). Eq. (22) is the 2D analog for
the 1 + 2-body problem of the so-called Skorniakov Ter-
Martirosian equation [27]. For three identical bosons in
2D where R1⇌2 = R1⇌3 = R2⇌3, a similar eigenequa-
tion has been already derived in [21, 22, 28] (in that case,
η = 2 and y = 1/2 in Eq. (22)). An analogous integral
equation has been obtained in the context of quasi-2D
heteronuclear trimers in Ref. [29] where the third direc-
tion is also taken into account.

IV. 1+ 2-BODY BOUND STATES

In this last part, we show that Eq. (22) supports the
existence of trimers which can be considered as shallow in
the regime defined by Eq. (16). We denote their binding
energy by Etrim:

E = −Etrim < −Edim. (27)

The kernel in Eq. (22) has the cylindrical symmetry,
hence trimers states can be labeled by a radial quan-
tum number and an orbital quantum number denoted
below by m. We thus expand the source amplitude on
them-partial waves: R(k) =

∑∞
m=0 cos(mθ)Rm(k), with

θ = ∠(êx,k). The angular integration of the kernel can
be performed for each m-partial wave, and one obtains
the following integral equation:

Rm(k)

f2D(κk)
=

η(−1)m

2ky

∫ ∞

0

du

(

t−
√
t2 − 1

)m

√
t2 − 1

Rm(u),(28)

where t = (u2 + k2 + q2)/(2yku) > 1. Eqs.(24,27) imply
that f2D(κk) is positive. Whence, for η = +1 (atoms of
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mass M are bosons) Eq. (28) admits solutions for m even
only, while for η = −1 (identical atoms are fermions) the
orbital quantum number of the trimers is necessarily odd.
We have computed the spectrum for mass ratios x up
to 200 -such high values can be reached experimentally
using an optical lattice [14].
Bosonic spectrum– The bosonic spectrum is plotted

in Fig. (1). For x ≤ 200, we have found trimers with
m ≤ 8 [30] and the deepest trimer is in the m = 0 sector.
Apparition threshold of three first excited trimers in the
m = 0 sector are located at x = 1.77, x = 8.34 and x =
18.27. Trimers of increasing orbital momentum appear
as x increases: as an example, m = 2 trimers appear for
x & 12.68. An important feature of the bosonic spectrum
is that for all possible values of the mass ratio, there
exists at least one trimer state. In the specific case where
mi = M and m = 0, we recover the result of Ref. [21]:
there is only one bound state with a binding energy at
E3/Edim = 2.36 · · ·
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FIG. 1: Trimers’ spectrum for two identical bosons of mass
M interacting with a third atom of mass mi. The bind-
ing energies Etrim are expressed in unit of the heteronuclear
dimer’s energy Edim in Eq. (14), as a function of the mass
ratio x = M/mi. One can notice that away from threshold,
the bound state energy of a m-trimer is quasi-degenerate with
the energy of a trimer with a lower m.

Fermionic spectrum– The fermionic spectrum corre-
sponds to the case where the two identical atoms are
fermions (η = −1) and is plotted in Fig. (2). We find that
the deepest shallow trimer has a p-wave internal angular
momentum (m = 1) and exists only for x > x1 ≃ 3.33.
For increasing values of x > x1, other shallow trimer
states appear in the m = 1 sector and for higher odd
values of m.
Numerical values of mass ratios for the threshold of ap-

parition of 1 + 2-trimers in the m ≤ 8 momentum sectors
are gathered in Tabs. (I,II).
Discussion– One important implication of the exis-

tence of these universal trimers concerns losses resulting
from two-body collisions of heteronuclear shallow dimers.
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FIG. 2: Same as Fig. (1) for two identical fermions of mass
M interacting with a third atom of mass mi.

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

n = 0 - 3.340 12.68 26.89 45.95 69.83 98.84

n = 1 1.770 10.41 23.76 41.98 65.02 92.97 125.8

n = 2 8.341 20.85 38.17 60.36 87.49 119.3 155.9

n = 3 18.27 34.59 55.91 82.08 113.1 149.0 189.7

n = 4 31.62 51.76 77.04 107.0 142.09 181.8

n = 5 48.33 72.28 101.5 135.5 174.2

n = 6 68.38 96.23 129.2 167.0

n = 7 92.01 123.5 160.1

n = 8 119.0 153.8 194.8

n = 9 149.4 188.2

n = 6 182.8

TABLE I: Threshold values of the mass ratio M/mi for the
apparition of 1 + 2-body bound states. The momentum of
the states is labeled by m while n is the hyperradial quantum
number. Computations have been limited to mass ratios less
than 200.

In the case of bosonic identical atoms of mass M [see
Fig. (1)] the binding energies are Etrim ≥ 2Edim for all
values of the mass ratio. Thus, collisions of two shallow
heteronuclear dimers can always lead to the formation
of one (MMmi)-trimer plus a single impurity atom of
mass mi. Therefore, two-body losses prevent the exis-
tence of a stable 2D gas composed of such dimers at equi-
librium whatever the statistics of the impurity (atoms of
mass mi). For fermionic atoms of mass M , the deepest
trimer has a binding energy Etrim ≥ 2Edim for mass ra-
tios x > x2 ≃ 18.3. Thus two-body collisions of heteronu-
clear dimers where both atomic species are fermions, are
elastic for a mass ratio x < x2 [31]. Whence a gas com-
posed of such shallow dimers is expected to be relatively
stable for x < x2: it is the case for 6Li-40K or 6Li-87Rb
mixtures strongly confined in 2D providing Eq. (16) is
satisfied, while for a 6Li-171Yb mixture the critical mass
ratio is exceeded. In order to get some informations
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m = 7 m = 8

n = 0 132.3 171.0

n = 1 163.5

n = 2 197.9

TABLE II: Same as in Tab. (I) for higher momentum.

0 50 100 150 200
 x 

0

0.1

0.2

0.3

0.4

0.5

P(
 k

<
q di

m
 )

FIG. 3: Plot of the probability in Eq. (29) P (k < Q) at
Q = qdim as a function of the mass ratio x for the differ-
ent trimers composed of bosonic atoms of mass M with the
binding energies of Fig. (1). Continuous lines: m = 0 states,
dotted lines: m = 2 states, dashed lines: m = 4 states.

about this inelastic process, we consider for a given nor-
malized trimer state |Ψ〉, the probability:

P (k < Q) =

∫

|k1|,|k2|<Q

d2k1

(2π)2
d2k2

(2π)2
|〈{ki}|Ψ〉|2. (29)

P (k < Q) in Eq. (29) gives the order of magnitude that
the three particles of the trimer are separated each one
from the others by distances greater than or of the or-
der of 1/Q. The results for bosonic atoms of mass M
and Q = qdim is given in Fig. (3) and a similar plot
for fermions is given in Fig. (4). These figures show
clearly that the probability is maximum nearby the for-
mation threshold of a trimer. Moreover, the probability
at threshold decreases rapidly as the value of the inter-
nal angular momentum increases. In Fig. (5) we have
plot P (k < Q) as a function of 1/Q for a m = 1 trimer
near its threshold of apparition (x = 153.9): the proba-
bility drops out dramatically as one considers increasing
values of the interparticle spacing: for Q = qdim/2, it is
still greater than 10% while for Q = qdim/10, it is less
than 1%. Therefore, we can conclude that the spatial
extension of the lowest energy trimers is of the order of
the dimer’s size. Moreover, it has been shown that the
long range effective heteronuclear pairwise interaction is
repulsive for high mass ratio with a barrier located at
∼ 1/qdim [14]. Thus depending on the statistics, these
results show that the dimer-dimer inelatic decays popu-
late predominantly the m = 0 or m = 1 shallow trimers

0 50 100 150 200
 x 

0

0.1

0.2

0.3

0.4

0.5

P(
 k

<
q di

m
 )

FIG. 4: Same as Fig. (3) for fermionic atoms of mass M with
binding energies of Fig. (2). Continuous lines: m = 1 states,
dotted lines: m = 3 states, dashed lines: m = 5 states.

0 1 2 3 4 5
1/Q  in units of  (1/q

dim 
)

0

0.2

0.4

0.6

0.8

1

P(
k<

Q
)

FIG. 5: Plot of the probability in Eq. (29) P (k < Q) as a func-
tion of 1/Q in unit of 1/qdim for a m = 1-trimer at threshold
(x = 153.9 and q − qdim ≪ qdim).

nearby their apparition threshold (and also to less ex-
tents the m = 2 and m = 3 trimers). Furthermore, from
Figs.(3,4) it appears that such low energy 3-body bound
states of size ∼ 1/qdim exist for all high mass ratios.
Hence this motivate future detailed study of such four-
body processes which are the most important source of
2D-losses even for high mass ratios.

V. CONCLUSION

In this paper, we have derived the low energy three-
body wave equation using a ZRP model in the momen-
tum representation for atoms strongly confined in a pla-
nar wave guide. In this representation Green’s functions
are simply rational fractions, as a consequence techni-
cal implementation of the formalism is greatly enhanced
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with respect to the usual configurational space approach.
Generalization to others dimensions and other few-body
problems can be easily performed [24].
Depending on the statistics and on the mass ratio, we

have predicted the existence of quasi-2D heteronuclear
trimers composed of two identical atoms and of one an-
other atom species. For a planar wave guide achieved
by using a harmonic trapping along the tight direction
(harmonic oscillator length az) these trimers can be ef-
fectively considered as quasi-2D in a regime where the
3D heteronuclear scattering length a3D is negative and
|a3D| ≪ az . While for fermions the heteronuclear inter-
action is naturally negligible as a consequence of the Pauli
principle, for identical bosons we have considered situa-
tions where this channel of interaction is also negligible.
Considering the shallow trimers as the most important
source of decay in (heteronuclear-dimer)-(heteronuclear-
dimer) scattering processes, we have shown that a dimer
gas composed of fermionic atoms is stable with respect to
binary collisions for a mass ratio M/mi . 18.3 while for
bosons the gas is never stable. In the fermionic case, for a
fixed value of the areal dimer density n compatible with a
2D strong confinement (i.e. na2z ≪ 1), knowing that the
2D heteronuclear atomic scattering length can be tuned
to an arbitrarily large value for a3D < 0, then the 2D
gas parameter na22D can reach high value. This opens
the possibility of achieving a stable 2D strongly corre-
lated regime where one can expect also that for a mass
ratio M/mi > 3.33 the shallow trimer state(s) affect(s)
the low energy gas properties. Practical achievement of
such a low energy dimer gas in harmonic traps requires

very high aspect ratios such that az ≪ a2D ≪ a‖ where
a‖ is the harmonic oscillator length along the direction
perpendicular to the tight confinement.
Interestingly, similar results concerning shallow het-

eronuclear trimers have been found in 3D [32] where
the zero-range approximation is also performed and the
Shrödinger equation is solved within the hyperspheri-
cal formalism. In 3D, the critical mass ratio for the
first p-wave shallow trimer is found at 8.18 (a larger
mass ratio than in 2D). The universal shallow p-wave
trimers exists also only for positive 3D scattering length
(a3D > 0), while in 2D the analogous universal shallow
trimer states exist for a2D ≫ az and thus a3D < 0. More-
over in Ref. [33], exact results have been found for 1D
universal heteronuclear trimers. A recent Letter [29] has
explored three-body physics in quasi-2D atomic planar
waveguide. In this last reference the effective range of
the 2-body interaction and also the transverse direction
of the wave guide are both taken into account in the
three-body problem. Eq. (22) in our paper appears thus
as a 2D limit of this approach.
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