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SENSITIVITY AND ERROR ANALYSIS OF THE DUAL CRITERIA TRAFFIC
ASSIGNMENT MODEL

FABIEN M. LEURENT

INRETS, 2 avenue Malleret-Joinville, 94114 Arcueil Cedex, France

ABSTRACT

In the dual criteria traffic assignment model, to take into account various trade-offs
between travel time and travel cost, the value of time is assumed to be continuously
distributed across the trip-makers. This paper presents a sensitivity and error analysis
method for the equilibrium solution of a dual criteria model with elastic demand, flow-
dependent travel times and side constraints. The method is based on previous work by
Tobin and Friesz (1988) to bypass the uniqueness requirement in standard sensitivity
analysis frameworks for variational inequalities, and exploits the finite-dimensional
formulation of the model in terms of path flow variables given by Leurent (1996a). The
paper contains three parts. The first demonstrates the usefulness of sensitivity analysis
using a two-link network. The second addresses the general network case. Lastly, the

third presents an application to a realistic traffic study.
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INTRODUCTION

Context. A dual criteria traffic assignment model simulates the way trip-makers select
a route from among the competing paths which are differentiated on the basis of two
cost criteria, eg. time and financial cost. It is assumed that each trip-maker will
minimize the generalized cost of his trip, the generalized cost being the sum of the cost
and the time weighted by the value of time (VoT). In order to represent the different
trade-offs made by trip-makers between price and cost it is assumed that the value of
time is continuously distributed (Quandt, 1968; Marche, 1973; Leurent, 1993a among
others).

As in the case of any quantitative simulation model, the following question naturally
arises: what degree of confidence can one have in the model, in other terms how close

is it to reality? Put yet another way, what is the modelling error? When a dual criteria
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assignment model is used to forecast traffic on a privately funded toll road, this
question has particular economic relevance as an error of a few percent on traffic, and

therefore on revenue, may place the financial equilibrium of the concession at risk.

Objective. Four types of modelling error can be identified (Leurent, 1996b). These are
related to: (i) the design (which discretizations and which behavioural features are
considered in the theoretical representation?), (ii) the mathematical formulation
(representing the behavioural features as a standard mathematical programming
problem), (ii1) the computation (implementation and convergence if an algorithm is
involved), (iv) econometric aspects (the exogenous error which affects the input data as

well as the parameters).

The objective of this paper is to examine econometric error in a dual criteria
assignment model: this model outputs an average value which is obtained on the basis
of the average values of the inputs. In fact, the exogenous uncertainty which applies to
these inputs (including the parameters) is propagated through the model and leads to
uncertainty as regards the output. Our objective involves characterizing uncertainty in
the output on the basis of uncertainty in the inputs, by expressing the output as a
random variable whose probability distribution depends on the probability distribution
of inputs. The paper provides formulae for propagating exogenous uncertainty for any
input through a dual criteria assignment model with continuously distributed value of
time (VoT), elastic demand, with variable travel times and side constraints, such as that
formulated by Leurent (1996a). In particular we shall consider three types of a priori
exogoneous error. These are the distribution of VoT, origin-destination (O-D) volumes

and journey times.

This study of modelling error in the dual criteria model is limited in a number of
respects. Firstly, we shall not deal with design error - in particular we consider neither
queueing effects nor dynamic modifications in journey starting times or mode. We shall
pay most attention to the various trade-offs between the two criteria in the generalized
cost, thus on the continuous distribution of the VoT. We shall not deal with formulation
or computation error here either: we shall assume that the mathematical formulation
used in the model is correct and that it uses an algorithm which gives an accurate result.
Finally, as regards the quantification of the a priori exogenous error, we shall simply

take the numerical values which have been established elsewhere (Leurent 1996b).

Method. In order to analyze the sensitivity of a solution to finite-dimensional
variational inequalities we shall make use of theorems which were developed by Tobin
(1986) and then extended to the problems of equilibrium on a network by Tobin and
Friesz (1988). A finite-dimensional variational formulation does in fact exist for the

dual criteria assignment model which is considered here (Leurent 1993a, 1996a). In
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order to display the effects of the behavioural assumptions which are built into this
model we shall begin with the simple case of a two arc network and progressively
introduce the continuous distribution of VoT, the dependency of travel times on the

level of traffic and finally the dependency of volume of demand on level of service.

It should be noted that two ingredients are necessary in order to carry out the analysis of
sensitivity and error presented here: a finite-dimensional mathematical formulation, and
the path results of assignment. Thus, infinite dimension formulations of the dual criteria
model, e.g. Dafermos (1981), Leurent (1993b), Marcotte and Zhu (1994) and Dial
(1996) cannot be used. The Frank-Wolfe algorithm which is advocated in the last two
references does not identify paths and is unable to output assignment results in the
necessary form, except by recalculating on an a posteriori basis the paths between

which origin-destination (O-D) volumes are distributed at equilibrium.

Structure. The main body of the paper is in three sections. The first deals with the
elementary case of a two arc network and shows how the gradual incorporation of
explanatory mechanisms makes it possible to reduce econometric error in the model
output. The second section deals with the general case of a network of unlimited size.
Finally the third section describes an operational application to an interurban traffic
study and shows the way in which uncertainty which relates to the traffic on one link
depends on the uncertainty which relates to the journey times on all links, to the

demand volumes on all O-D pairs and the distribution of VoT.

1. THE CASE OF THE TWO ARC NETWORK

Let us consider a network with two arcs which are competing routes linking a single
origin to a single destination, which is the simplest possible case of competing routes.
We shall assume that one of these routes, which we shall refer to as F, is free, while a
toll P must be paid on the other, which we shall refer to as T (both routes could actually

be toll routes, in which case P would be the difference in price).

The toll route is only competitive if its journey time, 77, is lower than that of the free
route, 7g. In this situation users with a low value of time select the free route on the
grounds that it is inexpensive even though it is slow, whereas those users with a high

value of time choose the toll route because it is fast even though it is expensive.

More formally, we shall assume that each trip-maker measures the (dis-)utility of a path
k with respect to his own VoT v on the basis of the generalized travel cost expressed as
G, (v)=P;+v. T}, and further that he chooses a path with minimum disutility
(optimizing behaviour assumption). Trips-makers with v such that Ggp(v) =v.Tf is less

than, or equal to, Gp(v) =P+ v.T1 choose the free route, whereas those with v such that
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Gt(v) is less than Gg(v) choose the toll route.

The cut-off VoT which separates the two user groups, v, is that for which the
generalized costs of the two routes are equal: v.7p = P+v.T7, hence

\7 :P/(TF - TT)
If we let H denote the cumulative distribution function of VoT, the proportion of users
using the free route is Pr({v<v})= H(v) whereas the market share of the toll route is

Pr({v>v})=1-H(v). For an O-D volume of ¢, the flow on the free route is
fF = qH(v) while the flow on the toll route is:

JT=q(1-H()).
1.1 Model with fixed travel times and fixed demand

In this section we shall consider the flow on the toll route to be the output of the model.
If we fix the journey times 7y and 77 as well as the demand volume ¢, the output
depends on the exogenous variables 7g, 11, P, ¢ and H (which is a function). A
variation 0X which affects the input X results in a variation oY in the output Y. In the
case of a model Y = F(X), this gives (Tukey, 1957):

SY = Vi F.6X,

which is the basic formula for sensitivity analysis and the propagation of (small) biases.
In particular a variation 60X may represent a sample of the exogenous error £y, in
which case Y is a sample of the propagated exogenous error, £y. By squaring both
sides of (3) and taking expectation over the error distributions, we obtain the basic

formula for the propagation of (co-)variance (assuming there is no exogenous bias, i.e.
E(ex)=0):

2 oF OF
E(e ):Z (—— Covi\eyx, ;€x,, )
Y M\ 0X, 0X,, ( " m)
in which £y is the exogenous error on the component X,, of the vector X.

Sensitivity analysis of the two arc network. Formula (3) gives, for each component
X .

n-

2 (
La(-Ho(z2r)) . 8%,

Oft = %
n

where ® is the vector of the parameters 6; of the function H. We shall consider the
input data vector X =t[TF ;T159;6;]. The following partial derivatives are therefore

computed:
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8fT 8fT aH aV P aH

I _ I __ oM _ 6a, 6

oT. oty ! av(’aTF N V) (62, €b)

afT/8q=1—H(\7)=fT/q, (6¢)
6d

ae () (6d)

The partial, rather than total, derivative of H with respect to the VoT v is considered
because Hg(v) also depends on the parameters 6;.

Numerical illustration. Let P =3 §, ¢ = 3 000 veh/h, 7y = 0.430 h, 77 = 0.216 h, and
take a value of time whose natural logarithm has a normal distribution with mean x =
2.48 and standard deviation o= 0.6. Thus the average VoT is M = 12 $/h as it is given
by M =exp(u+ o /2). The cut-off VoT is v = 14.0 $/h therefore H(v)= 0.71 and
the market share of the toll route is f1 /g = 0.29. The values of the partial derivatives
of H are as follows: dH/dv = 0.0082, dH/du = -0.57 and dH/do = -0.32 (see

Appendix). Thus the output partial derivatives and elasticities are:

&fT /aTF =— JT / BTT =7968 Veh/h2 and EAT =81nfT /ah’l(]i: — TT) =197

dft /dq=0.29 and eg =1
dft / ou =1720 veh/h and ey, =773
dft / 9o =960 veh/h and e =0.662.

The most sensitive factors here are the median VoT, exp(x), and the travel time
difference, AT =Ty — T7: a 10% bias on the travel time difference would induce a bias

of almost 20% on the traffic and revenue!

Error analysis. In order to explain the distribution of output error certain assumptions

need to be made about the distribution of exogenous variables:

1) the exogenous errors €7, and £p. which affect the journey times 7 and 71 have

2 and s?

T iy and are

centred gaussian distributions with respective variances s

independent of each other and other errors.

i) the exogenous error &, affecting the level of demand ¢, has a centred gaussian

distribution with variance sg and is independent of other exogenous errors.

iii) the exogenous errors £y and £, which affect the parameters # and o of the VoT

2

distribution, have centred, gaussian distributions with respective variances sﬂ and sza .

These errors are independent of other exogenous errors, but correlated with each other
with covariance Cov(€,;€5).

F.M. Leurent (1996) 5
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In view of (3) and (4), the propagated exogenous error affecting fr is gaussian and

centred, with variance as follows:

2 O}"T (S )+(0T) (fT) q +(07fT)2 2+20"fT O}CTCov(e

“in =G " u T e du 0o o)-

Numerical illustration. Based on Leurent (1996b), we shall assume that
sp/ It =sgp/ Tp =84/ g =10%, s,/ =s5/ 0= 4% and Cov(€,;€5)/ 1 0=-1%.
We obtain that s 2./ fT = SReyenue/ Revenue =37%. The uncertainty which affects the

output is at least twice that affecting each of the exogenous variables! This result is, of

course, specific to the numerical values which we have used.

Figure 1 shows change in revenue R g, in relation to the toll P. We drew the 95%
confidence interval on the average curve R ,,/(P). For each value of P the interval
bandwidth was divided into three parts corresponding to each of the components in the

exogenous error, proportionally to its contribution to the total propagated variance. At

fT

low values of P, the trip rate error (propagated as 2 £,) plays a major contribution

whereas at high values of P the travel time error (propagated as ﬁ( ETp —€pp)) 18

prevailing over it. In all cases the uncertainty in the VoT parameters (propagated as

%LT ut O;f—Tea) has a limited contribution: this is because first the whole spectrum of

the value of time is considered and second there is a negative correlation between the

two parameters & and o

It is apparent that the average curve R j,010(P) of the model with a single VoT equal to

the mean of H falls outside the 95% confidence interval except at very low values of P:
at low, not too small values it is well above the interval, while at high values it is well

under it! Thus we are enticed to reject the single criterion model.

1.2 Model with variable times and fixed demand

Leurent (1993a) has provided a finite-dimensional formulation for the dual criteria
assignment model with variable times. In the case of a two arc network with a fixed

volume of demand, the equilibrium state of the model is given by the solution of the
following variational inequality defined on K, = {f =(fp; f1) 20 ; fF+ /1 =¢g}:

"find f e K, such that Vge K, 'V(f).(g—f) 20"

where the components of the mapping V are defined by V& (f) =tp(f)—-P/H 1( frF/q)
and Fp(f)=tp(f) and differ from the journey time functions solely by a corrective
term in Vg. If P = 0O then (8) reduces to the well-known variational inequality for
Beckmann's model with no tolls (Smith, 1979).

F.M. Leurent (1996) 6

(7)

(8)



Sensitivity and error analysis of the dual criteria traffic assignment model

To complete the definition of Vg, let 7/ (a)=1/ H_l(a) be a function on [0;1] onto
R, where the function H™! (&) =max{v ; Hv) < a} is the inverse of H. H™! is well
defined and positive on ]0;1[ because H is (weakly) increasing. At points 0 and 1 we
may have to extend the definition of 7. If H™1(0) >0 then 77(0) is well-defined, but if
H1(0)=0 we define 77(0) as +oo; looking back at (8), the condition H™1(0)=0
implies that there are very small values of time in the distribution and therefore that the
free path must be loaded at equilibrium. At point 1, if H™!(1) <40 then 77/(1) is well-

defined, else we define it as 0.

By associating a multiplier A to the constraint fg + fT = ¢, at equilibrium it holds that
if both paths are used then Vg — A4 =V — A or equivalently V& = V7 and furthermore:

H'(fF / q) =P/ (tp(f) - tr(£)),

which corresponds precisely to (1) as H_l( frlq)=v.

The finite dimension formulation has the advantage of eliminating the need to consider
each value of time as a problem variable: only the cut-off VoT, v, is used and it is
taken into account by means of a path flow variable using the transformation
fr/ ¢ =H(V). When there are more than two routes, R routes say, these are arranged

in order of increasing price and a cut-off VoT is considered for each pair of routes with

adjacent prices: all that is required, therefore, is to replicate condition (2) R -1 times
and, in each of the replications, replace the variable fr by the sum of the flows on

routes with prices which are equal to or lower than that of the first route in the pair.

Sensitivity analysis when both paths are loaded, viz. a=fr/q€]0;][. Let
Y ='[ fp:fT1:4] be a vector made up of a solution to (8) and the associated multiplier.

Let J="[Vg—A;Vp—A;fp+fr—ql="Ttp=P (@)~ A; tr=4; f5 +fr—q]. By
anticipating the outcome of section 2, the equilibrium solution Y is a continuously

differentiable function of the input vector X with gradient formulated as:
Vy Y =—(Vyd) L vyd .

Implementation of this formula requires inversion of the jacobian matrix VyJ:

|_8tF PB?]’ atF 1—|
|9 qoa Iy | -1
W LALE T SR
Y = - = =lc - T ard—b—c! ~ a=c
I @;F 0"]er . I 01 o) M ld bea ad—be]

F.M. Leurent (1996) 7
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I A 1
| 1 -1 —Q |
| % |
1 oAt P oy’
= -1 1 . T = _ 11
aAt_aAt _2877’| o')fF q da |’( )
oy It qoaldty Aty Ity It JPon otg PO dty 9ty 9ty |
_ _ - = ) _
T P A TR A PR A T
where At = tg—ty.
We shall again consider random disturbances on the input vector X =t[TF ;T15956;].
We assume that the travel time function tg (or ty) may be decomposed into two parts:
a deterministic part which depends on the flow, and a random, flow-independent error
which is added to the deterministic part. Our notation 97y refers to a variation in the
random part. We obtain:
1o gast v
(03 23 03 0J ] 1 "
VXJ=LF T o £J=|o 1 0 o |, (12)
F T 9% i |LO 0 _1 0 J|
[ofy / 0T | [ 1 | (13a)
| ofy /9Ty | | | -1 | [ 13b |
VXfT = | |: > | _ _ E , | .
oft/0g | OAt JAt P dn’ dAt o —(1 a)qaﬂ /dx 13¢
ofr/06;,| IF d1 qoa —P a7’/ 06; J 13d

This formula could be obtained in a more straightforward way by using a single
problem variable, fr, since in the fixed demand case fr depends on it via
fF =¢q— fr. However our treatment serves the two purposes of illustrating that of
Section 2 and discussing the influence of each input variable. Let us also compare (13)
to (6).

About the travel time disturbances, in both cases the free route time exerts an influence
exactly opposite to that of the toll route. If we consider constant travel time functions in
(13a, b), these conditions reduce to (6a, b) since 97’ /da =—1/{H (v)v?} in which
v EH_I(O(). If the travel time functions are not constant, then we intuitively expect
that J0At/ dfp 20 and JAt/ dft <0. As H increases we have that 97" /da <0,
therefore the denominator in (13a, b) is larger than that in (6a, b): this implies that the
sensitivity of the output to the travel times disturbances is reduced in the variable times

casc.

About the demand volume, g, if constant travel times functions are assumed then (13c)
reduces to (6¢). Otherwise, adding the (expectedly) non negative term dAt/ dff to the

F.M. Leurent (1996) 8
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non negative term —(1— a)gan’/ da makes the absolute value of the numerator in

(13c) larger than that in (6¢). We know from the argument about the travel times that
the denominator is larger. The sensitivity is reduced if and if only the ratio
(OAt/ g )/ (0At/ dfp — At/ dft) is less than f1 /q, which depends on the particular

numerical values taken by the functions.

About a parameter 6; in the cumulative distribution function H, we shall address the
example of a value of time uniformly distributed on [0;A4]. In this case the CDF is
given on [0;+o by H(v)=min(v/ A4 ;1) and its inverse on [0;1] by H_l(a) =Aa:
hence =1/ ad. Letting 6, = A, (13d) applied to constant travel times functions yields
dft / dA=¢q (0’ /dA) / (917 / dx) and therefore doft / dd=qa/ A= fr/ A which is
also derived from (6d). If the travel times vary with respect to the flows, the argument
about the denominator in (13) still implies that the sensitivity is less than that in the

model with fixed travel times.

Numerical application. We used the same example data as in sub-section 1.1, except

for the travel times which were assumed to depend on the link flow on the basis of
0 2 2.1/2 0 .
ti(f) = t A+ + ([ak.(l—]{,—];)] +6:7) " — o1 —Z{]—i)—ﬁk) where t, is a free-

flow travel time, N is a practical capacity, & and y; (> « ) are parameters from
which f; is derived based on B, =y, (a; — i /2)/ (a4 — ¥ ). The parameters were
given numerical values of tg =0.30h, Ng =5000 veh/h, ap =2.5 and yg = 1.5 for

the free path, and of tg =0.18 h, Nt =1 000 veh/h, ooy =4.0 and pp = 0.5 for the toll
path. At point P =3 §, the journey time difference is still equal to 0.214 h.

Figure 2 shows changes in revenues R gy, and Rg;,01¢ in relation to the toll P, based on

the same probabilistic assumptions on the exogenous errors and the same principles of
representation as in figure 1. We observe that the contribution of the VoT error remains
small, as in figure 1. Contrary to figure 1, the relative contributions of the demand
volume error and the travel time error are broadly equivalent at all toll levels. At point
P = 3§ where the two dual criteria models differ from each other solely in the
propagation coefficients, these are reduced in the variable time case, as expected from
the discussion of (13). At last, the difference between the two revenue curves R ;) and
Ringle 1n the variable times case is much smaller than in the fixed times case, because
congestion effects can entail a multi-path assignment even in the case of a single value

of time.

1.3 Model with variable times and elastic demand

Let us now assume that the volume of demand depends on the level of service, S,

F.M. Leurent (1996) 9
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which is defined in an aggregate way as the generalized time averaged over the

distribution of values of time:
S =[minftp ; tp+P/v JdH().
Let D denote the demand function which relates g to S :
g=D(S).
This dependency is approximation : it is only completely valid if, for each VoT v, the
density of demand g, for this VoT complies with g, =D( min{tF ;tp+P/ v}) with a
demand function D which is affine and the same for all values of time.

At last, let us define on the set of all non negative path flows K={f =(fg; fr) 20} a
mapping W by:

et Tep(h) +P(n) - () - (1- @) 17(@))-D7(f + /)]

w(f) = =
D)7t + b - @)+ an (@)D + 1)

where D_l(q) =min{x ; D(x)<q}, a= frg/(ff + fr) and 77is a primitive of 77 .

The components of W are the path travel time functions corrected by terms which

capture the distribution of VoT and the variability of the demand volume.

The equilibrium state of the dual criteria model with variable times and variable

demand solves the following variational inequality:

"find f e K such that Vg e K, "W(f).(g—f)>0".

At equilibrium we check that if o= fr/qe€]0;]] then Wgp=Wp=0 which is

equivalent to:

i) tp(f)—P 7’(@) = tp(f) which amounts to the same thing as (1),

i) D =aWp+D )+ - @)W +D ) =[FtpdE+[] {tp+P p(E)dE which,
after changing the integration variable from & to v on the basis of £ =H(v), yields (14)

because at equilibrium the minimum generalized time is provided to the VoTs less than
H! (@) by the free route and to those above this value by the toll route.

Let Y ='[ fp: fr] be a vector consisting of a solution to (17). It is possible once more
to apply (10), now with J = W. Under the assumption that 0 < ¢ <1 and denoting by
DV the partial derivative of D! with respect to its explicit argument, g, we obtain
that:

F.M. Leurent (1996) 10
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{ai—g(l—a)zg—n—D‘l/ ﬁ+£a(l—a)g—n—D‘l/1|
Vyd = Ir q 05, I 4 ¢ @ ’
|aﬂ+£a(1_a)a_n_])_l/ ﬁ_gaza_n_])_l/ |
E da dr q OJa
[ ot P dn oy _%_Ea(l_a)a_’fﬂg—lﬂ
4 1l 9 ¢ da Ir q dar |
(VYJ) :£|_ﬁ_£a(l_a)a_ﬂ,+l)_l/ %_B(l_a)zﬂ_l)_l/ | (18)
Ir q d Ifr 4 Ja ]
dtp Oty Oty dtp .y [am dAt PB?]’J
where Det =V J[= — -D . — -—
[V e Ir  IF It Ir d1 qx
Pan’( 5 Otp 5 oty Ity dtg ]
————la—+(l-a)—+Al-)(—+—)|,
qgoa\ JF It e It
by again using the expression At = tg— ty.
Sensitivity analysis. We shall consider the input vector X ='[7 ;T1;¢p;6;], in which
qo 1s a parameter in the demand function D (and therefore in the inverse demand
function D! ). We obtain:
] oDl 2 ()]
nd) _on(x) 9n'(@)
10 P = —(1- a2
N Y R al L v A Y ]|(19)
X LaTF Tt dqp BHZ-J |O | _aD_1 P[an(l)_an(a)Jraan’(a)] |
L 9q( 06, 96, 96; J
fop 1 1 A S Y/ !
| oT; | | Ifr 4 do |
|af_T | | _aj.pg(]_a)za_ﬂ/_pD_l/ | (2021\\
| 9T |_L| Ir q Jda [ 20b |
| ofr |_DetI [%_(1_63)2%) oD"! I 20c
: 94 : | 23 q da) dqy | 20d
f ( an(l) dn(a). dAt P a’. o dtp  IAt 1/j
By -P - -—(l-a) + +a -D
N i (e ral i Py R PR )|

The addition of a demand-supply equilibrium mechanism (15) entails a stronger
coupling of the inputs in the propagation formulae. While in (6) and (13) their joint
effects were mainly additive, in (20) there are multiplicative as well as additive effects.

Let us show that (20) reduces to (13) in the fixed demand case by considering a demand
function with constant elasticity to the average generalized travel time, viz.

q=D(S)=qo(S/Sy)®, and letting ey — 0~ to simulate a fixed demand volume. As
D (q)=S)(q/ q¢)"® and DV (¢)=5 /ey, if ¢g— 0 then DV — — which

F.M. Leurent (1996) 11
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makes it prevail over any finite term to which it is added. Thus Det reduces to the term
which contains D_l/, and in a straightforward way (20a), (20b) and (20d) reduce
respectively to (13a), (13b) and (13d). (20c) reduces to (13c) multiplied by ¢ /g

because 9D/ 9qp = —qD_l// qo:as eg —> 0 we have that ¢/ gg =1.

Under the intuitive assumptions that the travel time functions do not decrease with
respect to any flow and that dtg/ dff 2 dty/ dfy and dty/ dft = dtg/ odft, Det is the
sum of three non negative terms which are: the difference of two products of travel time
derivatives, a second term which contains D" and a third which is a product of the
toll by derivatives of travel time functions. Then Det is larger than its own second term.
Therefore, at point g = g, the sensitivity to ¢y of the model with constant elasticity
variable demand is less than that to ¢ in the fixed demand case. Similarly the sensitivity
to the travel time on the toll route decreases: the numerator of (20b) has two non
negative terms that balance the non positive D" and reduce the absolute value, while

the absolute value of the denominator is increased.

Numerical application. We used the same example data as in sub-section 1.2, except
for the demand volume which was assumed to depend on the mean generalized travel
time with a fixed elasticity ey =—0.6 and to take the value g; = 3 000 veh/h at point
Sy = 0.413 h. Therefore at point P = 3 § the application data are the same as in sub-

sections 1.1 and 1.2, except for the propagation coefficients.

Figure 3 shows changes in revenues R g, and Rg,o1e 1n relation to the toll P, based on

the same probabilistic assumptions on the exogenous errors and the same principles of
representation as in figure 1. We observe that the exogenous error on the VoT error has
a slightly more important contribution than in figures 1 and 2. As in figure 2 the
contribution of the travel time error is broadly equivalent to that of the demand volume
disturbance; however their overall effect is less than in the fixed demand case, as was
expected from the discussion of (20). In figures 2 and 3, the single criterion models
underestimate the revenue at all positive toll levels: while of little importance at low

toll values, this is largely unrealistic at medium and high values.

2. THE GENERAL CASE

Section 1 contained a full analytical treatment in order to propagate the exogenous error
through the dual criteria assignment model, in the case of a two arc network. By
progressively adding behavioural features to the model, we have observed that
enriching the behavioural contents of the model provides a means of reducing the
exogenous error propagated in the output. In the general case of an assignment problem

of any given size, it is possible to use the same propagation formulae, but these cannot
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be solved in a closed form as in the case of a two arc network. We shall state these for
the dual criteria assignment model with continuously distributed values of time, elastic

demand, travel times which depend on flow and side constraints.

Sub-sections 2.1 and 2.2 review the assumptions in the dual criteria model and the
mathematical characterization given by Leurent (1996a). In sub-section 2.3, an
alternative characterization is derived in order to avail ourselves of the framework for
sensitivity analysis worked out by Tobin (1986) and Tobin and Friesz (1988). The
assumptions and results which relate to the framework are restated in sub-section 2.4.
Sub-section 2.5 contains the formulae required to conduct the sensitivity analysis of the

dual criteria model in the case of a general network.

2.1 Basic assumptions of the model

We shall use the notation which follows. Let i be an origin-destination (O-D) pair with
trip rate ¢; and demand function D(S;), where S; is a generalized travel time to be
defined later. H; is the cumulative distribution function for the VoT v of the trips on
the O-D pair: thus Pr({v<x}) = H(x) for these trips. Let 7{(a)=1/ Hl,_1 (a) for every
o in [0;1]: at points 0 and 1 the definition of 77, may need extension as in sub-section
1.2. Let 7; be a primitive of 77;.

Let k be a path on the O-D pair 7, with flow f;; , travel time T;; and travel price Py . It
holds that ¢;= 2., _, fi - To a trip with VoT v, the generalized time of travel on path &

is Gy(v)=Ty;+Py/v. Each trip-maker is assumed to choose a path k& with a

minimum generalized travel time with respect to his VoT (the path is said efficient for

this  VoT). Thus the mean minimum generalized travel time 1is
S; = [{min;G;; (v)}dH{v) which is used as the input to the demand function.

The vector f=[ f;; 1;x is called the path flow pattern.

Let a be a network link (= arc) with flow x,. Let a link path incidence indicator 5;{ =1

if link @ is incident to path k or equal to 0 if it is not. Therefore x, =3, &% fiy -

We shall assume that the travel time on link a depends on the path flow pattern f based
on a link travel time function t,(f). We shall also assume that the flow is subject to

conditions zy(f) <0 called side constraints (Larsson and Patriksson, 1994). If such a
side constraint is binding i.e. zy(f)=0, then, linking a multiplier w >0 to this
because of the network conditions, we add a penalty wy,dz;/ df;;, to the travel time for
each path £. For instance, we may define a local capacity constraint x,(f)—C, <0 for
link a; if it is binding then the travel time of a path & will be penalized by
w,0(x,—C,)/of . =w, 5;{ . Thus, the travel time of a path & is given by the following

F.M. Leurent (1996) 13
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formula Ty = @aé'l,‘;c ta)+ (wab dzp/ Bfik).

2.2 Definition and characterization of a dual criteria equilibrium

The continuous distribution of the VoT generates an infinity of distinct behaviors.
However the problem may be redefined with path flow variables, hence with a finite
number of variables, by linking implicitly each VoT to a path that is efficient for it.
This is performed by selecting the efficient paths by means of conditions on the

isoprice classes of paths, which are defined next.

Isoprice Classes of Paths. For every O-D pair i, we divide the paths into the
equivalency classes of the following equivalency relationship R;: kR ; k" iff Py, = P;;-.

We call these isoprice classes of paths.

We index the isoprice classes with respect to increasing prices from 1 to ;. We shall
define M;(k) as the class index of the path (i)k. Let Em be the price on the path(s) of

the m-th class and Tim be the minimum travel time proper across the paths of this class.
Let ¢;,(f)=2, .M, (k)=n Jik be the traffic flow on the paths of the n-th isoprice class,

and g}, =2, <,,9in the traffic flow on the paths whose prices are less than or equal to
those of the m-th class. It also holds that ¢; = g;, = qim; - We define gjo =g/ =0.

Definition of a dual criteria equilibrium. A dual criteria equilibrium is a bi-tuple
(f; w) where f is a vector of path flows f;; >0 and w is a vector of the multipliers wy,

related to the side constraints zy(f) < 0, such that:

(1) Formation of the travel times: Ty (f;w)= @a 51.‘;( ta(f))+ (W aSJlZ:)) with

wp 20, zp(f) <0 and wyzp(£) =0.

(ii) Supply-demand exchange: q{(£)=Y. fi =D{J {ming G z(v)} dH,(v)).

(ii1) Optimizing behaviour of the trip-makers: for each O-D pair i, within each
isoprice class m it holds that Vk em, fj >0= Ty =mingc, Tjx = T;,, and
between the isoprice classes the class flow pattern [g;,, (f)],, satisfies for each
class n that g;, = quEin dH(v), where E;, is the set of the VoTs for which class

n is efficient based on the supply conditions {(Em ;Tim )W

The last condition states that the infinitesimal flow carried by every value of time is
assigned to an isoprice class that supplies it with a minimum class generalized time

(part between), and that within the class it is assigned to a path with least travel time.

The path impedance function of path k is defined as

F.M. Leurent (1996) 14
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mi—1 _ [C]',
Iik(f;W)E T+ Z (Pi,n_ Pi,n+1)77lk qm)
n=M;(k) i
D! P n(1)—P mi_lﬁ 7 i) _ i A dn
—D.(9;) + Pi 7,(1) = Py 1740) + 21( i~ B DO == 5T )
n= i i i

which depends on (f;w) through T, and the gj,. On an O-D pair with a single path,
(21) is reduced to T+P(7(1)— 7(0))—D_1(q) as in Beckmann's model with a single
VoT v=1/(n(1)=n(0)). In the unconstrained case, when there are only two paths,
(21) is reduced to either W or Wr of sub-section 1.3.

Let us now define the mapping V on (’EK+)N onto RN (where N sums up the
dimensions of f and w) by (f;w) > V(f;w) =] t[Iik(f;w)]ik; t[—zb(f)]b] . It is shown
in Leurent (1996a) that (f*;w*) >0 is a dual criteria equilibrium if and only if it solves

the following variational inequality (22):
"find (f*;w*)>0 suchthat V(f;w)>0, 'V(f*;w*) - (f —f*;w —w*)>0".
2.3 Additional assumptions and modified characterization

In order to extend the results of Tobin and Friesz (1988) to the dual criteria model, we

shall modify and add to the assumptions of the problem (22) so that only flow variables
f are present and also in order to consider affine linear constraints d,(f) =0 for values

of 7/ between 1 and Ny, which, in particular, allow us to fix the demand volume for

certain origin-destination pairs. Then, in the definition of a dual criteria equilibrium,
each path travel time Ty is augmented by a term -, 4, dd,/df;; where 4, is the

multiplier associated with the constraint d ,(f) =0. If a such constraint is used to fix an

O-D volume, the travel time differences between the paths of the O-D pair are not
modified.

We shall now assume the following:

1) that the functions z; are convex and differentiable (this applies particularly to
capacity constraints of the type x, — C, < 0),

i1) that there are affine linear constraints d ,(f) =0,
ii1) that the gradients Vz,(f) and Vd,(f) are independent of each other.

Let K={f>0;z,(f)<0Vbel.Ny, and d,;(f)=0 V/el.Ny} and let U be the
mapping defined on K onto RNk where Ny 1s the number of paths, such that
U(f)=[1,,(£;0)];; . The following theorem is proven in Leurent (1997).

Theorem 1. A vector of flow per path f* >0 is involved in a dual criteria equilibrium
under the constraints z,(f) <0 and d,(f)=0 if and only if it resolves the following

F.M. Leurent (1996) 15
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variational inequality (23):

"find f* € K such that Vfe K, TU(f*).(f— f*)>0."

2.4  The results of Tobin and Friesz (1988)

We shall restate for completeness the results of Tobin (1986) which are useful in order

to analyze the sensitivity of a solution to a finite-dimensional variational inequality.

The set of all possible model input combinations is K = Jé& eR"; g(x)=0, d(x) = 0},
where g is a differentiable mapping on R” onto R™ and d is a linear affine mapping
on R” onto R”. We shall assume that any equilibrium state x* of the model solves the
following variational inequality, where F is a continuous mapping on K onto R”:

"find x* € K, such that Vxe K, ‘F(x*).(x—x*)>0."

Let € be a disturbance vector standing for the exogenous error: we shall write F(xle),
g(xls) and d(xls) to take € into account. Let also y='['x; ‘z; 4] where & belongs to
R™ and A belongs to R”. Finally, let J(yle) express the mapping on K x R""*7

onto R 7 the components of which are as follows:
m p
F(xle)- X 7, Ve (xle) - X 2, Vd, (xe),
(=1 (=1

7Ty gg(xle) for values of ¢/ between 1 and m,
d((Xlg) for values of / between 1 and p.

Under some technical assumptions, at a solution point x* in K there exist #* in " and
A* in R? such that J(y*|0) =0 and VyJ is invertible in a local neighbourhood of

y*|0, and that make the partial derivatives of y* with respect to € satisfy:

Vey* = [Vy 301 [V I(y¥0)].

The technical assumptions required to obtain (26) include the local uniqueness of a
solution. However, in an assignment model it is seldom the case that the path flow
equilibrium solution is unique. Tobin and Friesz (1988) also extended Tobin's results to

address the case of non-uniqueness. The guidelines of their contribution are as follows:

1) assume the variational inequality problem involves a monotone mapping, and

therefore has a convex solution set.

i1) select a nondegenerate, extreme point in this convex solution set and, at this point,

develop the derivatives of the solution to a restricted problem for which uniqueness
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applies. In the restricted problem, only those paths which carry positive flow in the

extreme point are considered.

i11) based on a strict complementary slackness condition, the solution to the disturbed,
restricted problem is also a solution of the original disturbed problem (for small

disturbances), and actually does not depend on the extreme point chosen.

2.5 Propagation formulae for the dual criteria model

In order to apply (26) to the dual criteria model, we must define the set K, the mappings
F, g and d and the multipliers T and A. The notations K and d in sub-sections 2.3 and
2.4 are equivalent, therefore the vector f in sub-section 2.3 corresponds to the vector x
in sub-section 2.4. The constraints g(x) =0 in sub-section 2.4 correspond to both the
non negativity conditions f>0 and the inequalities Zf)<0, reformulated as
—7(f)> 0. To make the mapping U of sub-section 2.3 correspond to the mapping F in
sub-section 2.4, we have to meet Tobin and Friesz's requirements: to that end we shall
from now assume that U is monotone. A sufficient condition for this is that the travel
time mapping f [T (f;0)];; be monotone, since the complementary terms I;;,— Tj;
derive from a convex function (Leurent, 1993a). Then the uniqueness of a solution to
(23) holds with respect to each isoprice class flow. In the case of the dual criteria
model, an extreme, nondegenerate solution point may have as many paths with positive

flow as there are links and isoprice classes.

We shall break down the vector & into two sub-vectors, w and f, with the respective
components wy, associated with the constraints —z;, > 0 and f;; which are linked to

the non-negativity constraints f;; =0. Then, for a given disturbance €, the components

of the mapping J are as follows:
- Ny
Utle) T + X, w, Vzu(tle) - 2 4,Vd,(fle),
/=1

—Wp.Z b(fl €) for values of b between 1 and Ny,

J;ik fir for every path (i)k,

dg(fls) for values of ¢/ between 1 and Ny .

To restrict the problem as in Tobin and Friesz (1988), we shall drop the path variables

with zero flow at the equilibrium point. The condition set (27) is also reduced to (28):
Ny
U(tle) + 3, w Vzu(tle) — 3 4, Vd,(fle),
/=1

—Wb-Zb(fl €) for values of b between 1 and N,
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dg(fle) for values of ¢ between 1 and N. (28¢)

Let us now indicate closed-form expressions for the terms in VyJ and V. J. We

denote the components of J in (28a) as Jy;, those in (28b) as Jj, and those in (28c¢) as
Jy. Then: Vy J =

T sy T Tl Tag 1 1 T, [92,] [ 94,1 |
: L&ﬁ Jlk,l’k' Lawb -|ik,b Lo—)ﬂ’f Jik,é | I LTJZ/C ik’ L&ﬁk J ik b l_ aflk -|lk 0 I

[ a7, | [ a7, | [y, | [ o ]
| b —~b Zb | =l —w, 22 -0} 2 |,
| Lr&flk 4’) ik Lr b#b,b' (LO_%J}”’E | |L (b(%qk J” ik [5b’b b]b’b' L’f |(29)
N Ay aJ |1 1ad, |
Ul Lo, 7)) | Lo, O Pl

in which &y, jy =1 if b = b’ or 0 otherwise.

From Leurent (1993a) we can state that:

ﬂ_( at)( az)( azdfj
T Za‘slakaﬂ 2 o) M e o

i P Pint1 nk _ qm nk’ q;n 877;(4" \
v It o - SR )| (30)

in which Fl.”k =dg, /dfy = 1 if the price of path & is less than, or equal to, the price of

the n-th isoprice class or Fl.”k =0 if it is not.

Asregards V. J, for any given component &€, of € we have that:

%Jlk (zu % 9 j [wabaa gf,kj {zf fagzgjékj_aa]f (41)
7 G- a’7l<0)+ z 3, mﬂ)(%(‘gj) %3—2(%)) (31a)
i

Thus the set of formulae required to conduct the sensitivity analysis of the dual criteria

model is complete. To obtain the partial derivatives & of the outputs with respect to
any disturbance €, one can solve the linear system [Vy JJE2=-V . J.
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3. IMPLEMENTATION AND TEST

In order to apply the method worked out in Section 2, a computer program was
implemented and tested on a real-world example consisting of an interurban, motorway

traffic study.

3.1 A report of implementation

A computer program has been implemented to address the case of a side constrained,
elastic demand, dual criteria model with link travel time functions depending only on
the flow on that link. The assignment algorithm consists of an outer loop to handle the
side constraints by means of an augmented Lagrangian scheme (Larsson and Patriksson,
1994); inside the outer loop an unconstrained equilibrium assignment is performed,
using the procedure of equalization by transfer which handles the paths. The procedure
of equalization by transfer is based on the following principle: for a given O-D pair, the
flow is transferred from the loaded path with the longest travel time to the shortest path
in such a way as to equalize journey times or remove flow from the long path. This is
performed first for one pair of paths and then for others, until the travel times on the
paths reach equilibrium thereby ensuring that (identified) unused paths are not quicker.
All O-D pairs are processed in this way and the algorithm iterates until convergence. To
address the dual criteria model, the path travel times must be replaced by the path
impedance functions (Leurent 1995a, b). A medium-size numerical experiment with the

overall assignment procedure is reported in Leurent (1996a).

Based on the results of the assignment, viz. f* and w¥*, the sensitivity and error analysis
is performed in the following steps: (i) computation of VyJ and V.J, (ii)
computation of —[Vy J ]_I.VgJ by means of a partial pivot-point method, (iii) for a
given distribution of the exogenous error € computation of the distribution of the
propagated exogenous error on each positive path flow, (iv) on a pre-specified link a,

aggregation of the error distribution of each path flow that contributes to the flow on

that link. This yields the error distribution of the link flow x,, .

3.2 Example data set

We considered an interurban toll motorway which is part of one of the routes between
Bordeaux and Pau in the south-west of France. These two cities are 220 km apart and
are served by four main routes. For the purposes of the traffic study 180 one-way arcs
and 19 demand zones were coded.

The assignment model was specified as follows. On the demand side, we considered

two classes of vehicles, viz. passenger cars and heavy freight vehicles with an
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equivalency coefficient of 2 passenger car units. The VoT of the trips by car had a log-
normal distribution, with respectively ¢ = 2.48 and o= 0.6 as the mean and standard-
deviation of its natural logarithm. Hence the mean VoT of the trips by car was
exp(ut+02/2)= 12 $/h. As regards the heavy freight vehicles, values of #, = 3.73 and oy,
= 0.6 were considered, ensuring a mean VoT of 50 $/h. For each traffic class and each
O-D pair, the trip-rate was assumed to depend on the mean generalized travel time with
constant elasticity -0.6, i.e. g; = Di(§l-) = ql(.o)(gl- / §i(0) )_0'6.

On the supply side, no side constraints were considered. A BPR travel time function

was assumed for each link, i.e. ta(xa)ztg.(1+0.15(é—a)4) where t;) is a free-flow
a

travel time, C, is a practical capacity and x, is the link flow expressed in passenger
car units. The travel cost on a link included the expense generated by fuel consumption
and the toll if applicable, which is the case on most interurban motorways in France
(with a toll rate of roughly 0.08 $/km for passenger cars). The price of a given path was
computed as the sum of the travel cost of the links that are incident to it. Note that this
path travel time formula may be changed in our formulation of the dual criteria model,
contrary to the formulation in Marcotte and Zhu (1994) and Dial (1996): this may be of

use on modelling an O-D-cordon based toll scheme.

3.3 Exogenous error and its propagation

We selected a particular toll link, a;, which is part of the A64 motorway near of Pau.
We have studied the exogenous error Exag which is propagated for car traffic on aq; by

considering the a priori exogenous errors which relate to the following:

1) the journey times t, on the arcs. The travel time of each arc a has a centred gaussian

error £ with a standard deviation sz such that sy /7,=10%, and which is

independent of other errors.

(0)

i

i has a centred gaussian error £ (o) with a standard deviation s (o) such that
q. q.

1 1

i1) the O-D volumes for car traffic. The reference demand volume ¢~ of any O-D pair

sq(o)/ ng) =20% , and which is independent from other errors.
i
ii1) the parameters x# and o of a log-normal distribution of the value of time shared by

all O-D pairs : g is the mean and o the standard deviation of the logarithm of the value
of time. 1 and o are assumed to be subject to the centred gaussian uncertainties £, and

€5, with standard deviations s, and s, respectively such that s,/u=1% and
s/ 0=3%. £, and £, are assumed independent from other errors but correlated with

each other according to Cov(é,;€5)/ o =-0.1%.
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On the studied road a0, for an average modeled traffic x,y of 1220 cars/day, after

propagation of the a priori exogenous error we obtain an a posteriori error with mean

zero and standard deviation s, . = 123 cars/day, hence s, /x,0=10.1%. This

uncertainty is mainly due to demand volumes (83%, see figure 4) and to a lesser degree
to journey times (14%) and the distribution of values of time (3%). The examples in
Section 1 suggested that the absolute and relative sizes of the exogenous propagated
errors are particular to each case. Here we may conclude that the overall propagated
error is tolerably small, and that any attempt to reduce it should focus on the O-D flows.
About the distribution of the VoT, the exogenous error on its parameters has a small
effect because the whole distribution is considered and furthermore, as the parameters

were estimated simultaneously (Leurent, 1996b), their respective exogenous errors are
related and balance each other (through Cov (g, ;€5)).

CONCLUSION

The sensitivity analysis of the dual criteria model yields the derivatives of the
equilibrium solution with respect to perturbation parameters. These parameters may be
related to either the distribution of the value of time, the trip rates or the travel times.
On the basis of the values of the derivatives and on probabilistic assumptions about the
distribution of the exogenous error related to the parameters, the distribution of the

exogenous error propagated on the model output can be assessed.

In this paper, an analytical method for sensitivity and error analysis was presented: this
allows systematic, comprehensive "what if" analyses without having to solve one
additional equilibrium problem for each disturbance parameter. The contribution of
each parameter in the total output error may be evaluated: in cases where the revenue of
a toll system is studied, it is of much use to the analyst to identify those parameters to

which the revenue is most sensitive.

The method was demonstrated on a realistic example of an interurban motorway traffic
study. Its results indicate that the exogenous error which relates to the trip rates
contributes much more to the error on the toll revenue than that on the distribution of
the value of time. This highlights the usefulness of the dual criteria model in which an
error on the mean VoT is of less importance than in the single criterion model, since

the whole distribution of the VoT is considered.
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APPENDIX: FORMULAE FOR A LOG-NORMAL VOT

The dual criteria model can be applied with a log-normally distributed VoT v; if its
natural logarithm has a mean x and a standard deviation o; then H(v)= ®(t,) where
t,=(In(v)—u)/ o and ® is the CDF of a normal distribution with mean 0 and
standard deviation 1. Let ¢ be the probability density function of this normal
distribution, i.e. @¢(¢) = exp(—t2 /2) /2 7. Then the VoT-related functions of interest

in dual criteria assignment can be evaluated as:

[ov 1 [1/v]
3l 1u |H(v):M| 1|

[oo] 7 ]

H ()= exp(u+ acb_l(a)) and therefore 77 (a)=1/H () =exp(-u - c® (@) ]

x o _
)= Iy (@da=exp(Z-—p o ()=o)

(07 /9] & /g7 ()]
|877’/8,u|=—77’(01)| 1 I,
on’ /oo i o () |
20 - 1

{ ()J Lan(x) exp(i—ﬂm(cb‘l(x) a)J
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Figures

Fig. 1. Model with fixed travel times and fixed demand
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Fig. 2. Model with variable travel times and fixed demand
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Sensitivity and error analysis of the dual criteria traffic assignment model

Fig. 3. Model with variable travel times and variable demand
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Fig. 4. The accumulation of exogenous uncertainties.
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