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Curbing the computational difficulty of the logit equilibrium 

assignment model 

FABIEN M. LEURENT 

INRETS, 2 avenue Malleret-Joinville, 94114 Arcueil Cedex, France 

ABSTRACT 

In the past, research in traffic assignment modeling has been directed 

primarily towards improving the deterministic model. Alternative, more 

behavioral principles were thought to be too demanding computationally. 

This paper presents two mathematical contributions that enable one to 

solve a logit assignment model with flow-dependent travel times at a 

reduced cost. First, a convergence test for Fisk's minimization program is 

introduced, based on a duality gap principle. Second, a new definition of 

Dial's STOCH fixed-time logit assignment procedure is given, in which the 

set of available paths is defined only once and the computations are re-

interpreted. 

A numerical experiment indicates that these tools make the logit 

assignment model very competitive compared to the procedures 

conventionally used for solving the deterministic model. 

KEYWORD 

Road Transportation; Traffic Assignment Model; Logit; Optimization 



Curbing the computational difficulty of the logit equilibrium assignment model 

F.M. Leurent p. 2 Submitted to Tn Res B 

INTRODUCTION 

Traffic assignment is the fourth and final step in the conventional travel 

demand forecasting scheme; by partitioning the origin-destination trip rates 

between several paths, the assignment program attempts to duplicate the 

vehicular flows on the network. 

Most assignment models assume that trip-makers behave rationally. The 

most well-known assignment principle is that of Wardrop (1952): that every 

trip-maker attempts to maximize the utility derived from his transportation 

choices, in other words to minimize his generalized travel time. Thus, a 

user-optimal equilibrium is achieved when no traveller may decrease his 

travel time by unilaterally switching paths. 

To account for errors in trip-makers' perception of travel time, Daganzo and 

Sheffi (1977) defined the stochastic user principle, according to which every 

trip-maker strives to minimize his/her stochastic generalized travel time. 

This rule allows for partitioning origin-destination trip-rates between 

several alternative paths, even if their true travel times differ from each 

other. 

Two stochastic models are of particular interest: the logit model (Dial, 1971) 

and the probit model (Abraham, 1961; Burrell, 1968; Daganzo and Sheffi, 

1977). The latter, though behaviorally more appealing, is hardly practical 

because only Monte-Carlo procedures are available, unless all paths can be 

identified. The logit model however, is endowed with both an extremely 

efficient fixed time assignment procedure (Dial's STOCH2), as well as a 

convex minimization formulation with a closed-form objective function 

(Fisk, 1980). 

Nevertheless, computational difficulties have prevented the logit model 

from enjoying more widespread use. Among other drawbacks, Fisk's 
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objective function was thought difficult to evaluate. Only recently have 

some solution methods been developed: Chen and Alfa (1991) proposed two 

heuristic algorithms that can be shown to fail on some examples; Damberg 

et al. (1993) and Bell et al. (1993) proposed algorithms that look efficient 

but cannot guarantee a stable set of efficient paths when application data 

are slightly modified. 

In this article, we present two developments which make computation of a 

logit user equilibrium competitive with its deterministic counterpart. First, 

we design a theoretically-sound convergence test for an equilibrium 

algorithm such as the Method of Successive Averages. Second,  we modify 

the definition of the set of available paths in Dial's STOCH2: this procedure 

is problematic if crudely implemented within an equilibration scheme, as 

the path set is likely to change from one iteration to the next. We put 

forward some changes that remedy this flaw. 

The organization of the paper is the following: Section 2 states the problem 

in a formal way. Section 3 introduces the convergence test for Fisk's model. 

In Section 4, we derive a definition of efficient paths that does not depend 

on congestion phenomena, inspired by Dial's STOCH2. Furthermore, a 

related path loading procedure is provided, wherein it is easy to compute all 

the terms in Fisk's objective function. In Section 5, a numerical experiment 

is carried out to demonstrate that the Method of Successive Averages, 

combined with the proposed tools, is indeed a very efficient algorithm when 

applied to the logit model. Section 6 concludes and suggests some further 

developments. 
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2. PROBLEM FORMULATION AND MODELING NEEDS 

2.1 Logit equilibrium model 

Let r-s be an origin-destination pair with traffic flow   qrs , θ a non-negative 

parameter, k a path from r to s with deterministic travel time 
  
Trs

k
 and flow 

  
frs

k
. In the logit assignment model (Dial, 1971), it is assumed that the path 

flow 
  
frs

k
 is proportional to a negative exponential function of the travel time 

  
Trs

k
: 

 ���
�

= ���
����−θ ���

� �

����−θ���
�
���
. (1) 

Then it is automatically ensured that 

 
  
qrs = frs

k
k� . (2) 

The travel time of path k is related to the travel times   Ta  of the links a that 

belong to it via 

 
  
Trs

k
= Taa∈k� = δrs

ak
Taa� . (3) 

where 
    
δrs

ak
= 1  if   a ∈k , or 0 if not. 

Let   xa  be the traffic flow on link a: 

 
  
xa = δrs

ak
frs

k
rsk� . (4) 

Let finally   ta  be the travel time function of link a (assumed to be 

continuous and non-decreasing): 

     Ta = ta (xa ) . (5) 

Then eqns. (1)-(5) define a logit-based equilibrium. Figure 1 illustrates a 

logit split between two paths. The larger the value of θ, the higher the 

proportion of trips assigned to the shortest path. 
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Fig. 1. Proportion of travellers that choose path 1 

as a function of θ and the time difference T2-T1 (binary case). 

2.2 Fisk's minimization program 

Fisk (1980) characterized the logit equilibrium with variable travel times as 

the unique solution to the following convex minimization program (6): 

 
      
min f JL (f ) = ta (x) dx

0

xa�a� + 1
θ

frs
k

log(
f
rs
k

qrs

)rsk�  (6) 

subject to (2) and (4) and to 
    
frs

k
≥ 0 . 

In (6) we replaced Fisk's 
    

frs
k

log( frs
k

)rsk�  with 
    

frs
k

log( frs
k

/ qrs)rsk�  to 

facilitate the understanding of the relationship between (6) and the 

computations in the STOCH algorithm. This does not alter the existence 

and uniqueness results obtained by Fisk. 

However, Fisk did not address a crucial question: how should the available 

paths be defined? In Beckmann's deterministic model (1956), all existing 

acyclic paths may be considered; but in a logit model a specific definition is 

required, since the conventional shortest path routines do not automatically 

find suboptimal paths. In Dial's paper (1971), two alternative definitions of 

efficient paths are provided, namely STOCH and STOCH2. But these 

definitions are consistent only with respect to fixed travel times (ie. with 

constant functions   ta  in eqn. (6)), and cannot be used when time is a 

function of arc flow. A definition of available paths that is consistent with 

variable travel times will be provided in Section 4. First, we address 

equilibration issues. 

2.3 The Method of Successive Averages 

An equilibration algorithm is needed to compute the equilibrium state of a 

transportation network in which the link travel times depend on traffic 

flows. One such algorithm, which has been widely used, is the Method of 
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Successive Averages (MSA). Powell and Sheffi (1982) proved its convergence 

in applications to minimization programs as Fisk's (provided that the 

definition of available paths does not vary). 

Let us define a Flow-Independent Assignment (FIA) as a path loading 

procedure that partitions the O-D flow according to the logit rule, based on 

a given set of available paths. An FIA yields a solution to (6) with constant 

travel times and a given set of utilized paths. 

The MSA equilibration algorithm is comprised of four steps. 

Step 0: Initialization. 

o Set iteration counter     n:= 0 . 

o Choose a sequence     α
(k)

 of real numbers such that (    0 ≤ α
(k)

≤ 1), 

(    Σα
(k)

= +∞ ) and (    Σ (α
(k)

)
2

< +∞ ). 

o Find an initial feasible flow pattern 
      
xa

(0)
= xa (f

(0)
) , which may be 

obtained through an FIA based on free flow link times. 

Step 1: Link Travel Time Update. 

o Set 
    
ta
(n)

: = ta ( xa
(n)

) . 

Step 2: Direction Finding. 

o Perform an FIA of traffic of all O-D pairs, based on link travel times 

    
ta
(n)

: this yields a path flow solution       g
(n)

 and an auxiliary arc flow 

pattern 
      
ya

(n)
= xa (g

(n)
) . 

Step 3: Link Flow Update. 

o Set 
      
xa

(n+1)
= xa (f

(n+1)
): = xa

(n)
+ α

(n)
( ya

(n)
− xa

(n)
) . 

Step 4: Convergence Test. 

o Apply a convergence test: either a maximum number of iterations, or 

a test on the maximum value (over the arcs a of the network) of the 

change in 
    

α
(k)

xa
(k)

k=1
n� / α

(k)
k=1
n�  from the previous iteration n-1 to 
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the current one n. 

If test is satisfied, then terminate; else increment the iteration counter 

    n:= n + 1  and go to step 1. 

The MSA has been widely applied to solve Fisk's program. However, the 

definition of efficient paths has not been adequately addressed. Thomas 

(1991) wrote that "it seems likely that methods which incorporate 

definitions of acceptable paths similar to those of Dial and Gunnarsson are 

intrinsically non-convergent, though in practice users often claim them to 

be satisfactory in that respect". In the following section, we introduce a 

theoretically sound convergence test for the equilibration algorithm. Then, 

in section 4, we provide a formal definition of the efficient paths. 

3. A CONVERGENCE TEST FOR THE LOGIT MODEL 

We first consider the issue of designing a theoretically sound convergence 

test for an application of the MSA to Fisk's program. It is based on a duality 

gap principle inspired from the deterministic model. 

3.1 The duality gap principle in the deterministic model 

In the deterministic equilibrium assignment model, the objective function 

reduces to 
      
JD (f ) = ta ( x) dx

0

xa (f )
�a� . The usual convergence test is to 

evaluate a duality gap between the objective function       JD (f
(n+1)

)  and a 

lower bound estimate: 

       JD (f
(n)

) + ∇JD (f
(n)

). (g
(n)

− f
(n)

) , 

where       g
(n)

 is obtained in the Step 2 of the MSA (or equivalently of the 

Frank-Wolfe's method). Thus, the duality gap is given by: 

      
DGD

(n)
= ta

(n)
(xa (f

(n+1)
) − xa (g

(n)
))a� = frs

k(n+1)
(Trs

k(n)
− mink Trs

k(n)
)rsk� . 

The duality gap 
    
DGD

(n)
 is always positive, except at equilibrium, at which 
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point it is zero. Hence, a convergence test involves checking whether DG is 

close to zero. 

3.2 A convergence test for Fisk's model 

We suggest applying the duality gap principle to the logit model. Let us 

denote the entropic part     JE  as the difference between the complete logit 

objective function     JL  and the purely deterministic part     JD : 

 
      
JE (f ) = JL (f ) − JD (f ) = 1

θ
frs

k
log(

f
rs
k

qrs

)rsk� . (7) 

From Fisk's results (1980) applied to (for the moment) constant travel time 

functions 
    
ta(x): = ta(xa

(n)
) , the flow vector       g

(n)
 considered in Step 2 of the 

MSA is the unique solution to the following auxiliary program: 

 
      
ming J

f (n ) (g) = JD (f
(n)

) + ∇JD (f
(n)

).(g − f
(n)

) + JE (g) . (8) 

Thus, we have, for all   h ≥ 0 : 

      JD (f
(n)

) + ∇JD (f
(n)

).(h − f
(n)

) + JE (h) ≥ JD (f
(n)

) + ∇JD (f
(n)

).(g
(n)

− f
(n)

) + JE (g
(n)

) . 

Since     JD  is convex, it also holds that: 

      JD (h) ≥ JD (f
(n)

) + ∇JD (f
(n)

).(h − f
(n)

) . 

Rearranging terms, we obtain: 

      JD (h) + JE (h) ≥ JD (f
(n)

) + JE (g
(n)

) + ∇JD (f
(n)

). (f
(n)

− g
(n)

) . 

Hence       LBE
(n)

:= JD (f
(n)

) + JE (g
(n)

) + ∇JD (f
(n)

). (f
(n)

− g
(n)

)  is a lower 

bound on the optimal value of J. 

Then a duality gap associated with the logit objective function is given by 

      
DGL

(n)
= JL (f

(n+1)
) − LBE

(n)
. 

When applying the MSA algorithm to the logit model, it is in general not 

possible to compute       JE (f
(n+ 1)

) , unless all paths are identified. However, for 

some models, like the one that will be described in Section 4, it is easy to 
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compute       JE (g
(n)

) . The trick is to evaluate the duality gap with respect to 

      g
(n)

 and not with respect to       f
(n+1)

. We also suggest the following 

convergence test, based on functions related to       g
(n)

 rather than to       f
(n+1)

: 

If 
      
JL (g

(n)
) − LBE

(n)
≤ ε ( JL (g

(n)
) + LBE

(n)
) , then terminate and let 

      g
(n)

 be the solution to the minimization program (6), else return to Step 

1. 

If true, the test gives a vector that solves the minimization program, by 

definition of a minimum. Conversely, if the path flow vector f* solves the 

program, then auxiliary vector g* that corresponds to f* is in fact equal to it 

and thus the convergence test is satisfied: 

from the definition of f*:       (∇JD (f *) + ∇ JE (f *)).(g* −f *) ≥ 0 , 

from the definition of g*:        (∇JD (f *) + ∇ JE (g*)). (f * −g*) ≥ 0 , 

adding up yields that:       (∇JD (f *) − ∇ JE (g*)). (g * − f*) ≥ 0 . 

which gives that     g* = f *, provided that     JE  is strictly convex: this is 

guaranted for all O-D pairs on which there are two paths or more ; if there 

is only one path, the assignment is trivial… 

Note that if only a relative measure     JL − LBE of the duality gap is needed, 

then it is not necessary to compute     JE : the test reduces to a check whether 

      JL (g
(n)

) − LBE
(n)

≤ ε , in other words whether  

      JD (g
(n)

) − JD (f
(n)

) − ∇JD (f
(n)

).(g
(n)

− f
(n)

) ≤ ε . 

4. DEVELOPMENT OF THE STOCH3 PROCEDURE 

The results obtained so far apply to any set of utilized paths under the sole 

constraint that no path may include more than once a given node. We now 

define a set of efficient paths that enables one to benefit from the efficiency 

of Dial's STOCH2. 
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Most previous logit assignment models have used Dial's second definition of 

efficient paths, according to which "a path is efficient (reasonable) if every 

link in it has its initial node closer to the origin than is its final node". The 

word "closer" refers to the travel time measured from the origin with 

respect to a current travel time vector that may change from one iteration 

to the next. Therefore there was no use trying to compute an objective 

function for the logit assignment model! 

Three problems had to be tackled: 

- to restrict Dial's set of efficient paths so as to limit its size and for 

each reasonable path not to be much longer than the shortest one. 

- to stabilize the definition of efficient paths so that it depends neither 

on congestion nor on the iteration number; and 

- to find a way to compute the entropic part of the objective function, so 

as to measure the convergence rate. 

Subsection 4.1 deals with the first two questions, based on previous work by 

Tobin (1977) as regards the first question. Subsection 4.2 introduces the 

STOCH3 procedure, which offers a practical way to perform a fixed-time 

logit assignment using the efficient paths defined in subsection 4.1. 

Subsection 4.3 describes a way to evaluate       JE (g)  in the STOCH3 model. 

4.1 Definition of a stable set of efficient, not-too-long paths 

A path is called "STOCH3-efficient" (or reasonable, or available) if it does 

not include the same node more than once, if every link has its initial node 

closer to the origin than its final node, and if every link is "reasonable 

enough" compared to a reference shortest path. 

More precisely, let: 

- 
    
Ta

0
 be a reference generalized travel cost for link a; it can stand for 

the distance, or for the free-flow travel time. 
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- 
    
Cr

0
(n)  be a reference shortest generalized travel cost from origin r to 

node n, based on the link costs 
    
Ta

0
. 

- 
  
hr

a
 be a maximum "elongation ratio" for link a with respect to the 

origin r; from previous surveys, it may be set to 
    
hr

a
: = 1.6  in 

interurban studies (USAP, 1992) or 
    
hr

a
∈[1. 3; 1.5]  in urban 

studies (Tagliacozzo and Pirzio, 1973). 

-   Ba ,   Ea  be respectively the beginning and end nodes of link a. 

Definition 1: a path k from origin r to destination s is STOCH3-efficient iff 

(i) it does not comprise more than once a given node; 

(ii) 
    
Cr

0
( Ea ) > Cr

0
( Ba )     ∀a ∈k ; 

(iii) 
    
(1+ hr

a
)(Cr

0
(Ea ) − Cr

0
( Ba )) ≥ Ta

0
, with 

    
hr

a
≥ 0 ,   ∀a ∈k . 

A link a that satisfies the last two conditions is called STOCH3-reasonable 

with respect to origin r. 

The last condition in Def. 1 limits the number of efficient paths by limiting 

their total reference generalized travel cost: defining 
    
Hr = max

a
hr

a
, 

summing over all links a that are incident to an efficient path k yields that: 

    
Length(k) = Σ

a∈k
Ta

0
≤ (1+ Hr )(Cr

0
(s) − Cr

0
(r)) = (1+ Hr )min

k'
Length(k' )  

Conversely, if k satisfies 
    
Length(k) ≤ (1+ Hr ) min

k'
Length(k ' ) , it may not be 

efficient since the two first conditions must hold as well. 

Part (ii) of Def. 1 is inspired from Dial's specification STOCH2 (Dial, 1971), 

and part (iii) from Tobin (1977). Our own contribution is to impose fixed 

reference travel costs, 
    
Ta

0
, thus ensuring a stable definition of the efficient 

paths whatever the congestion phenomena and the current travel costs,   Ta . 

4.2 The STOCH3 procedure 

In the STOCH3 procedure it is necessary to consider, on the one hand, the 
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reference generalized travel costs to (implicitly) enumerate the available 

paths, and, on the other hand, the "actual" travel times according to which 

the O-D flows are partitioned between the paths. 

Program variables 

n node with reference travel cost 
    
Cr

0
(n)  from origin r . 

    Or (i)  the i-th node in the order of increasing access cost 
    
Cr

0
(n)  from r. 

  
Ωr

a
 indicator variable = 1 if link a is reasonable from r and 0 otherwise. 

  Ta  current travel cost on link a. 

A(a) impedance of link a. 

    WA(a)  link weight that accounts for the importance of a in contributing to 

a reasonable path. 

    WN (n)  node weight. 

    X A (a)  flow on link a from the current origin r. 

�	 �
�  flow passing through node n from the current origin r. 

F(a) total current flow on link a (over all origins). 

    Qr (s)  the O-D trip rate from origin node r to destination node s. 

Index r can be omitted on the variables A, WA, WN, XA and XN, as they need 

not be stored after dealing with origin r. 

Algorithm STOCH3 

Step 0. Overall preliminaries: calculation of reasonable paths. 

o From every origin node r, compute the shortest paths to all nodes n, 

based on the reference link travel costs 
    
Ta

0
, yielding the reference 

access costs 
    
Cr

0
(n)  and a labeling     Or (i)  of the nodes n in the order of 

increasing access cost from r. For each link a, set 
    
Ωr

a
: = 1 if 
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(1+ hr

a
)(Cr

0
(Ea ) − Cr

0
( Ba )) ≥ Ta

0
> 0 , 

    
Ωr

a
: = 0  otherwise. 

Storing the 
    
Cr

0
(n)  and     Or (i)  variables enables us to store the reasonable 

paths at a reduced cost since only node-based variables are involved. 

Step 1. Preliminaries for a standard iteration. 

o Initialize the total link flow variables F(a) to 0. 

o Set the link impedances     A (a):= exp(−θTa ) . 

Steps 2, 3 and 4 are to be run for each origin node r. 

Step 2. Forward pass. 

o Set all     WA(a)  and     WN (n)  to 0. Set     WN (r): = 1. 

o For each node n taken in the order of increasing reference cost 
    
Cr

0
(n)  

(the i-th node to be considered is indicated by     Or (i)), for each link a 

with beginning node   Ba = n , if 
    
Ωr

a
= 1 then compute 

    WA(a): = A(a)WN (n)  and add     WA(a)  to     WN (Ea ) , else do nothing. 

Step 3. Backward pass. 

o For each node n, set   if n is a destination node, 0 

otherwise. 

o For each node n taken in the order of decreasing reference cost 

    
Cr

0
(n)  (use the labeling     Or (i)  in decreasing order), for each link a with 

end node   Ea = n, if 
    
Ωr

a
= 1 then compute 

    X A (a): = X N (n)WA (a) / WN ( Ea )  and add     X A (a)  to , else 

set     X A (a): = 0 . 
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Step 4.  Contribution to total link-flows. 

o   ∀a ,     F(a): = F (a) + X A (a)  

At the end of the procedure, the vector F gives the flow-independent logit 

assignment based on link travel times   Ta . 

A detailed interpretation of the computations in STOCH3 is included in the 

Appendix. 

4.3 Computation of the entropic part of the objective function in the 

STOCH3 model 

It is shown in the Appendix (Lemma 3, Eqn. (17)) that at the end of the 

forward pass from origin r, it holds that: 
    
WN(s) = exp(−θ Trs

k
)k� . Hence the 

composite travel cost from r to s defined by Williams (1977) as 

      
Srs T( ) = − 1

θ
log( exp(−θTrs

k
)k� )  can be evaluated as  

 
      
Srs T( ) = − 1

θ
log(WN(s)) . (9) 

Eqn. (9) is very useful since it enables one to evaluate the level-of-service, 

hence the entropic part of the objective function, without enumerating 

paths. 

As 
    
grs

k
= qrs exp(−θ Trs

k
) / exp(−θ Trs

k
)k� , we get: 

      

1
θ

grs
k

log (
g

rs
k

qrs

)k� = − grs
k

(Trs
k

− Srs T( ))k�  

    
= − grs

k
Trs

k
k�( )+ qrsSrs T( ) 

and by summing over all origin-destination pairs r-s, 

 
      
JE (g) = 1

θ
grs

k
log(

g
rs
k

qrs

)rsk� = − xa (g) Taa�( )+ qrsSrs T( )rs� . (10) 

Then we can evaluate the entropic part of the objective function and apply 

to the STOCH3 model the convergence test designed in Section 3. 
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5. COMPUTATIONAL EVIDENCE 

In this section, we carry out a numerical example to compare the 

performance of the STOCH3 logit model using the MSA, with that of the 

deterministic model using both the Frank-Wolfe algorithm and the MSA. 

5.1 The case study 

The application is related to the western part of the Paris metropolitan area 

during the evening peak period, with a typical trip travel time of one hour. 

The test network is composed of 2,000 directed links. There are 141 origin 

and destination zones. 

The dispersion parameter θ is set to 0.233 mn-1, so that when two routes 

compete with each other, the first one with a travel time five minutes 

shorter than the second one, approximately three out of four drivers choose 

the first road. The elongation ratios 
  
hr

a
 are set to +•, so as to ensure a 

comparability with previous applications of Dial's logit model. 

5.2 Results 

Three assignments were performed: 

- a logit assignment using the MSA with step size     α
(n)

 = 
    

1
4+ n /10

; it is 

further referred to as MSA-L. The step-size was chosen so as to yield large, 

though limited, moves as, somehow, in solving a fixed-point problem by the 

substitution method. 

- a deterministic assignment (see sub-section 3.1) using the Frank-Wolfe 

algorithm, further referred to as FW. 

- a deterministic assignment using the MSA with step size     α
(n)

 = 
    

1
1+ n

, 

further referred to as MSA-D. In the deterministic case, this step-sizing 

rule was found more efficient than the one used in the logit case. 
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The performance of each of these procedures was evaluated by measuring a 

convergence indicator as 
    
log X (n)

J*
− 1 , where: 

- J* is the optimal value of the objective function of the model (evaluated 

after convergence of the algorithm), 

-     X
(n)

 is the value of the objective function at the n-th iteration. In the case 

of the logit model,     X
(n)

 =       JL (g
(n)

) . In the case of the deterministic model, 

    X
(n)

 =       JD (f
(n+1)

) . Although not representative of a practical application 

where J* would not be known a priori, this convergence measure ensures 

that the testbed is fair to all competing algorithms. 

Fig. 2. Convergence rates of the three algorithms. 

Figure 2 shows that the convergence rate is much better in the case of the 

logit model, notably because the descent direction includes information 

about all of the available paths, not only about the shortest path in each 

iteration. 

6. COMMENTS AND CONCLUSIONS 

6.1 Model extensions 

In other papers (Leurent 1993a, 1994), I addressed the case of elastic 

demand and capacity constraints. A dual characterization is available for 

the capacitated logit equilibrium; it can be formulated as an unconstrained 

concave maximisation program. The dual program can be solved using 

Polyak's sub-gradient algorithm (Polyak, 1967; Fukushima, 1984). But, 

since of the remarkable efficiency of the MSA-L, applying an augmented 

Lagrangian scheme to the capacitated, primal program is a better option. 

The computational efficiency of the MSA applied to the logit assignment 

model facilitates the following possible extensions of the model: 
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- diagonalization schemes, for example with travel time functions that 

depend on flows of several links. It is easy to derive a variational 

inequality formulation. 

- simultaneous models that capture more than one step in the 

conventional transportation planning process. 

- multiple user classes modeling. In an IVHS context, the logit model 

may be of particular interest for assessing the level of information 

provided to motorists by a route guidance system (Van Vliet et al. 

1990). One way to evaluate the effects of such a system is to model two 

classes of motorists, the first equipped with a route guidance device 

and characterized by a large dispersion parameter θ, and the other 

class of non-equipped drivers characterized by a small θ. 

6.2 About path identification 

It is computationally useful to identify paths. The STOCH procedure is a 

way to consider all available paths at a reduced cost. We believe that our 

numerical experiment demonstrates, above all, that path-based 

equilibration algorithms can be much more efficient than link-based 

algorithms, with respect to the number of iterations in the equilibration 

process. This conclusion is also supported by recent work by Schittenhelm 

(1990) and Larsson and Patriksson (1992), among others. 

Algorithms that identify paths lead to better behavioral models. In the 

STOCH path loading procedure, the origin-destination flow is partitioned 

between the paths according to a behavioral rule. Other available 

behavioral rules are the probit model (Abraham, 1961; Burrell, 1968; see 

Daganzo and Sheffi, 1977, and Powell and Sheffi, 1982, for a mathematical 

foundation), and the dual criteria, cost-versus-time model (Marche, 1973; 

see Leurent, 1993b, for a mathematical foundation). All of these behavioural 

rules can be efficiently addressed by using algorithms that identify the 
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paths, either implicitly (Maher and Hughes, 1995, for the probit model) or 

not (Leurent, 1995, for the dual criteria model). It is thus remarkable that, 

by the identification of paths, while improving the  behavioral aspects of the 

model, the computational process is greatly facilitated. 
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APPENDIX A. AN INTERPRETATION OF STOCH3'S 

COMPUTATIONS 

We hereafter present some lemmas to demonstrate that STOCH3 computes 

an elastic demand, logit-based path flow pattern based on the current link 

travel time vector, as well as to show the purpose of the computations. 

We denote as     Lr (n1,n2 )  the set of "reasonable paths from node     n1 to node 

    n2  with respect to origin r", which are the paths from     n1 to     n2  that are only 

comprised of links a such that 
    
Ωr

a
= 1. Of course     Lr (r, s)   is the set of the 

STOCH3-efficient paths from r to s. 

We note  
    
Lr (n1,n2,a) = k ∈ Lr (n1,n2) ; a ∈k{ }. 

We assume that the parameters   θrs  are the same whatever the destination 

s, from a given origin r. In addition, when dealing with that origin, we can 

drop the subscript r and only refer to θ. 

Let us introduce two shorthand notations,   ΓN  and   ΓA, where: 

 
    
ΓN (n1,n2 ) = Σ

k∈Lr (n1,n2 )
exp(−θTn1n2

k
)  (11) 

 
    
ΓA (n1,n2,a) = Σ

k∈Lr (n1,n2)
δn1n2

ak
exp(−θTn1n2

k
)  (12) 

Lemma 1. If     Lr (n1,n2,a)  is non-empty, then there is a 1-1 correspondence 

between it and the Cartesian product     Lr (n1,Ba ) × Lr ( Ea ,n2 ) . Whatever the 

case, it holds that: 

     ΓA (n1,n2,a) = ΓN (n1, Ba ) ΓA (Ba ,n2 ,a)  (13) 

     = ΓA (n1, Ea ,a) ΓN (Ea ,n2 )  (14) 

Proof of Lemma 1. 

A reasonable path 
    
P = a1,a2 ,…am{ }∈Lr (n1,n2 ,a)  is such that 

    ∃i ∈ 1,2,…m{ }   ai = a , and that     ∀j ∈ 1,2,…m{ }, 
    
Ωr

a j
= 1: it can thus be 
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decomposed into three subpaths  
    
P1 = a1,…ai−1{ }, 

    
P2 = ai{ }, 

    
P3 = ai+1,… am{ } such that      P1 ∈Lr (n1, Ba )  and     P3 ∈ Lr ( Ea ,n2 ) .     P1 and     P3  

are uniquely determined since a cannot be comprised more than once in P. 

Conversely, if     Lr (n1,n2,a) ≠ ∅ , then 
    
Ωr

a
= 1: therefore, for every subpath 

pair     (P1, P3) ∈ Lr (n1,Ba ) × Lr (Ea ,n2 ) , path     P = P1 + a{ }+ P3 ∈ Lr (n1,n2,a) . 

To prove (13) and (14), let us first deal with the case
    
Ωr

a
= 0 : in that case  

    ΓA (n1,n2,a) = 0 = ΓA( Ba ,n2 ,a) = ΓA (n1, Ea ,a) . 

In the case where 
    
Ωr

a
= 1, it holds that: 

    
δn1n2

ak
exp(−θTn1n2

k
)  

    
= δn1n2

ak
exp(−θTn1Ba

k1 ) exp(−θTa )exp(−θTEan2

k3 ) , in which, if 
    
δn1n2

ak
= 1, 

pathk = pathk1 + {a} + pathk3 = pathk1 + pathk2 = pathk4 + pathk3 

    
= exp(−θTn1Ba

k1 )δBan2

ak2 exp(−θTBa n2

k2 )  leading to (13) by summing over indices 

    k1,     k2  on the right hand side and k on the left hand side, from 

the 1-1 correspondence between     Lr (n1,n2,a)  and 

    Lr (n1,Ba ) × Lr (Ba ,n2 ,a) , for     Lr (Ba ,n2 ,a)  is isomorphic 

to    Lr (Ea ,n2 )  if 
    
Ωr

a
= 1; 

    
= exp(−θTn1Ea

k4 )δn1Ea

ak4 exp(−θTEan2

k3 )  leading to (14) by summing over indices 

    k4 ,     k3  on the right hand side and k on the left hand side, from 

the 1-1 correspondence between     Lr (n1,n2,a)  and 

    Lr (n1, Ea ,a) × Lr (Ea ,n2 ) , for     Lr (n1, Ea ,a)  is isomorphic to 

    Lr (n1,Ba )  if 
    
Ωr

a
= 1. 

Lemma 2. 

 
    
WA(a) = ΓA(r, Ea ,a) = Σ

k∈Lr (r,Ea )
δrEa

ak
exp(−θTrEa

k
)  (15) 

 
    
WN (n) = ΓN (r,n) = Σ

k∈Lr (r,n)
exp(−θTrn

k
)   if    n ≠ r  (16) 
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Proof of Lemma 2. 

(16) results straightforwardly from (15) and the computation of     WN (n)  in 

the forward pass: a reasonable path passing through n•r passes through a 

unique link a with end node n. 

We prove (15) recursively, considering the links a in the order of increasing 

    
Cr

0
( Ba ) . First we deal with links a such that 

    
Ωr

a
= 0 : in that case the 

forward pass yields     WA(a) = 0   hence (15) holds. 

For links a such that 
    
Ωr

a
= 1: 

o either their initial node is   Ba = r  and the forward pass yields 

    WA(a) = A(a) = exp(−θTa ) , hence (15) holds. 

o or we can assume that (15) holds for all links a' such that 

    
Cr

0
( Ba' ) < Cr

0
( Ba ) . By recursion, since (15) holds for those links a' that 

precede a, (11) holds for   n = Ba  and the forward pass computes     WA(a)  as 

    WA(a) = exp(−θTa )ΓN (r, Ba ) = ΓA(r, Ea ,a) , owing to (13) applied to     n1 = r  

and     n2 = Ea , since     ΓA (Ba ,Ea ,a) = exp(−θTa )   if  
    
Ωr

a
= 1. 

Lemma 3. 

 
    

Σ
k∈Lr (r,s)

exp(−θTrs
k

) = WN (s)  (17) 

 

    

1

θ
Σ
k

frs
k

log (
f
rs
k

qrs

) = − Σ
k∈Lr (r,s)

frs
k
Trs

k� 
� 
� 

� 
� 
� 

−
qrs

θ
log ( Σ

k∈Lr (r,s)
exp(−θTrs

k
))  (18) 

Proof of Lemma 3. 

Eqn. (17) is a mere application of (16), useful in computing the logit level-of-

service (Williams 1977) 
      
Srs T( ) = − 1

θ
log( exp(−θTrs

k
)k� ) : it holds that 

      
Srs T( ) = − 1

θ
log(WN(s)) . In the variable demand case,   Srs  must be 

evaluated so as to supply the demand function   Drs  with its argument and 

compute the trip rate from r to s as     Qr (s) = Drs (Srs) . Equation (18) stems 
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from (2) and from 
    
log (frs

k
/ qrs) = −θTrs

k
− log( Σ

k'∈Lr (r,s)
exp(−θTrs

k'
)) . 

Combined with (17), (18) provides an easy way to compute the entropic part 

of the primal objective function of the STOCH3 model: summing over the O-

D pairs, we get that: 

      
1
θ

frs
k

log (frs
k

/ qrs)rsk� = − frs
k

(Trs
k

− Srs(T ))rsk�  

      
= − TaF(a)a� + qrsSrs(T)rs�  

since 
    
Σ
a

TaF (a) = Σ
rs

Σ
k∈Lr (r,s)

frs
k

{Σ
a

δrs
ak

Ta } = Σ
rs

Σ
k∈Lr (r,s)

frs
k
Trs

k
. 

Lemma 4. 

 
    
X A (a) = Σ

s
Σ

k∈Lr (r,s)
δrs

ak
frs

k
   where  

    

frs
k

= qrs

exp(−θT
rs
k )

Σ
k'∈Lr (r,s)

exp(−θT
rs
k')

 (19) 

Proof of Lemma 4. 

As the variables 
  
X A  and 

  
X N  depend linearly on the variables     Qr (s)  (recall 

the definition of the backward pass), it is sufficient to show that (19) holds 

when there is only one destination node s. Let (19s) be the same condition 

with one destination s. 

We will give a recursive proof of (19s) considering the links a in the order of 

decreasing costs 
    
Cr

0
( Ea ) . 

(19s) holds for all links a such that 
    
Cr

0
( Ea ) ≥ Cr

0
(s) , since in that case there 

is no reasonable path from r to s that is comprised of a, and the backward 

pass yields      X A (a) = 0 , as does (19s). 

Secondly we check (19) for the links a with final node   Ea = s: from (16) and 

(17), 

    X A (a) = qrsWA (a) / WN (s)

    

= Σ
k∈Lr (r,s)

δrs
ak

qrs

exp(−θT
rs
k )

Σ
k'∈Lr (r,s)

exp(−θT
rs
k' )

. 
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Finally, assuming that (19s) holds     ∀a'  such that 
    
Cr

0
( Ea' ) > Cr

0
(Ea ) , we 

demonstrate (19s) for link a. We notice that (19s) holds for every link a' 

with initial node     Ba' = Ea , because either 
    
Cr

0
( Ea' ) > Cr

0
(Ba' ) , or 

    
Cr

0
( Ea' ) ≤ Cr

0
(Ba' )  and 

    
Ωr

a'
= 0 , hence the backward pass yields 

    WA(a ' ) = 0 = X A (a' )  as in (19s) since in that case no reasonable path can 

include a'. Thus, the backward pass yields: 

    

X A (a) = Σ
a';Ba' = Ea

Σ
k∈Lr (r,s)

δrs
a'k

qrs

exp(−θT
rs
k )

ΓN (r, s)

� 
� 
� 

� 
� 
� 

ΓA (r,Ea ,a)

ΓN (r, Ea )
 

    
=

qrs

ΓN (r, s)
Σ

a';Ba' = Ea

ΓA (r, s,a ' )
ΓA (r, Ea ,a)

ΓN (r, Ea )
. 

From (13) we know that     ΓA (r, s,a' ) = ΓN (r,Ea ) ΓA (Ea , s,a' ) ,  

and from its definition, 
    
ΓN (Ea , s) = Σ

a';Ba' =Ea

ΓA (Ea , s,a' ) , hence: 

    
X A (a) =

qrs

ΓN (r, s)
ΓN ( Ea , s)ΓA (r, Ea , s)  

    
=

qrs

ΓN (r, s)
ΓN ( Ea , s)ΓA (r, s,a)   from (14). 

This last expression is identical to (19s), because 

    
frs

k
= qrs exp(−θTrs

k
) / ΓN (r, s) . 

Summing over indices s the equation (19s) gives (19). 
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Fig. 1. Proportion of travellers that choose path 1 

as a function of θ and the time difference T2-T1 (binary case). 
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Fig. 2. Convergence rates of the three algorithms. 
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