Alexandre Berzati
email: alexandre.berzati@cea.fr

Cécile Canovas
email: cecile.canovas@cea.fr

Jean-Guillaume Dumas
email: jean-guillaume.dumas@imag.fr

Louis Goubin
email: louis.goubin@prism.uvsq.fr

Fault Attacks on RSA Public Keys: Left-To-Right Implementations are also Vulnerable

Keywords: RSA, fault attacks, "Left-To-Right" exponentiation, number theory

After attacking the RSA by injecting fault and corresponding countermeasures, works appear now about the need for protecting RSA public elements against fault attacks. We provide here an extension of a recent attack [BCG08] based on the public modulus corruption. The difficulty to decompose the "Left-To-Right" exponentiation into partial multiplications is overcome by modifying the public modulus to a number with known factorization. This fault model is justified here by a complete study of faulty prime numbers with a fixed size. The good success rate of this attack combined with its practicability raises the question of using faults for changing algebraic properties of finite field based cryptosystems.

Introduction

Injecting faults during the execution of cryptographic algorithms is a powerful way to recover secret information. Such a principle was first published by Bellcore researchers [START_REF] Boneh | On the Importance of Checking Cryptographic Protocols for Faults[END_REF][START_REF] Boneh | On the Importance of Eliminating Errors in Cryptographic Computations[END_REF] against multiple public key cryptosystems. Indeed, these papers provide successful applications including RSA in both standard and CRT modes. This work was completed, and named Differential Fault Analysis (DFA), by E. Biham and A. Shamir with applications to secret key cryptosystems [START_REF] Biham | Differential Fault Analysis of Secret Key Cryptosystems[END_REF]. The growing popularity of this kind of attack, in the last decade, was based on the ease for modifying the behavior of an execution [BECN + 04] and the difficulty for elaborating efficient countermeasures [START_REF] Blömer | A New CRT-RSA Algorithm Secure Against Bellcore Attack[END_REF][START_REF] Wagner | Cryptanalysis of a provably secure CRT-RSA algorithm[END_REF][START_REF] Giraud | Fault-Resistant RSA Implementation[END_REF].

Many applications against the RSA cryptosystem, based on fault injection, have been published. The first ones dealt with the perturbation of the private key or temporary values during the computation [BDL97, BDJ + 98, BDL01]. The perturbation of public elements was considered as a real threat when J-P. Seifert published an attack on the RSA signature check mechanism [START_REF] Seifert | On Authenticated Computing and RSA-Based Authentication[END_REF][START_REF] Muir | Seifert's RSA Fault Attack : Simplified Analysis and Generalizations[END_REF]. This paper first mentions the possibility of modifying the public modulus N such that the faulty one is prime or easy to factor. Then, E. Brier et al. extended this work to the full recovery of the private exponent d for various RSA implementations [START_REF] Brier | Why One Should Also Secure RSA Public Key Elements[END_REF]. Both works are based on the assumption that the fault occurs before performing the RSA modular exponentiation. A. Berzati et al. first address the issue of modifying the modulus during the exponentiation [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF].Still this work was limited to an application against "Right-To-Left" type exponentiation algorithms.

In this paper we aim to generalize the previous attack to "Left-To-Right" type exponentiations. Under the fault assumption that the modulus can become a number with a known factorization, we prove that it is possible to recover the whole private exponent. We provide a detailed study of this fault model, based on number theory, to show its consistency and its practicability for various kinds of perturbation. Finally, we propose an algorithm to recover the whole private exponent that is efficient either in terms of fault number or in computational time.

Background

Notations

Let N , the public modulus, be the product of two large prime numbers p and q. The length of N is denoted by n. Let e be the public exponent, coprime to ϕ(N) = (p -1) • (q -1), where ϕ(•) denotes Euler's totient function. The public key exponent e is linked to the private exponent d by the equation e • d ≡ 1 mod ϕ(N). The private exponent d is used to perform the following operations. RSA Signature: The signature of a message m is given by S ≡ ṁd mod N where ṁ = µ(m) for some hash and/or deterministic padding function µ.

RSA

The signature S is validated by checking that S e ≡ ṁ mod N . 2 : for i from (n -1) downto 0 3 : for i from 0 upto (n -1) 3 :

Modular exponentiation algorithms

A := A 2 mod N ; 4 : if (d i == 1) 4 : if (d i == 1) 5 : A := (A • B) mod N ; 5 : A := (A • m)
= n-1 i=0 2 i • d i .
Their polynomial complexity with respect to the input length make them very interesting to perform modular exponentiation.

The Algorithm 1 describes a way to compute modular exponentiations by scanning bits of d from least significant bits (LSB) to most significant bits (MSB). That is why it is usually referred to as the "Right-To-Left" modular exponentiation algorithm. This is that specific implementation that is attacked in [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF] by corrupting the public modulus of RSA.

The dual algorithm that implements the binary modular exponentiation is the "Left-To-Right" exponentiation described in Algorithm 2. This algorithm scans bits of the exponent from MSB to LSB and is lighter than "Right-To-Left" one in terms of memory consumption.

3 Modification of the modulus and extension attempt 3.1 Previous work J-P. Seifert first addressed the issue of corrupting RSA public key elements [START_REF] Seifert | On Authenticated Computing and RSA-Based Authentication[END_REF][START_REF] Muir | Seifert's RSA Fault Attack : Simplified Analysis and Generalizations[END_REF]. This fault attack aims to make a signature verification mechanism accept false signatures by modifying the value of the public modulus N .

No information about the private exponent d is revealed with this fault attack. Its efficiency is linked to the attacker's ability to reproduce the fault model chosen for the modification of the modulus. Seifert's work inspired the authors of [START_REF] Brier | Why One Should Also Secure RSA Public Key Elements[END_REF] who first used the public modulus perturbation to recover the whole private key d. The attacker has to perform a perturbation campaign to gather a large enough number of (message, faulty signature) pairs. As in Seifert's attack, the fault on the modulus is induced before executing the exponentiation. Three methods based on the use of Chinese Remainder Theorem and the resolution of quite small discrete logarithms are proposed in [START_REF] Brier | Why One Should Also Secure RSA Public Key Elements[END_REF] and [START_REF] Clavier | De la sécurité physique des crypto-systèmes embarqués[END_REF] to recover the private exponent from the set of gathered pairs. A new fault attack against "Right-To-Left" exponentiation has been presented lately [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF]. This work completes the state-of-the-art by allowing the attacker to use other fault models for recovering the private exponent. The details of this work are presented below. The value of the faulty modulus N is not known by the attacker. However, the time location of the fault is a parameter known by the attacker and used to perform the cryptanalysis. This fault model has been chosen for its simplicity and practicability in smart card context [START_REF] Giraud | DFA on AES[END_REF][START_REF] Blömer | Wagner's Attack on a secure CRT-RSA Algorithm Reconsidered[END_REF]. Furthermore, it can be easily adapted to 16-bit or 32-bit architectures.

Public

Faulty computation.

Let d = n-1 i=0 2 i • d i be the binary representation of d. The output of a RSA signature can be written as:

S ≡ ṁ n-1 i=0 2 i •di mod N (1)
We consider that a fault has occurred j steps before the end of the exponentiation, during the computation of a square. According to the fault model described, all subsequent operations are performed with a faulty modulus N . We denote by A ≡ ṁ

(n-j-1) i=0

2 i •di mod N the internal register value and by B the result of the faulty square:

B ≡ ṁ2 (n-j-1) mod N 2 mod N (2)
Hence, the faulty signature Ŝ can be written as:

Ŝ ≡ A • B n-1 i=(n-j) 2 [i-(n-j)] •di mod N (3) ≡ [(ṁ (n-j-1) i=0 2 i •di mod N) (4) •(ṁ2 (n-j-1) mod N) n-1 i=(n-j) 2 [i-(n-j)+1] •di] mod N
From the previous expression of Ŝ, one can first notice that the fault injection splits the computation into a correct (computed with N) and a faulty part (computed with N). A part of d is used during the faulty computation. This is exactly the secret exponent part that will be recovered in the following analysis.

Attack principle.

From both correct signature S and faulty one Ŝ (obtained from the same message m), the attacker can recover the isolated part of the private key

d (1) = n-1 i=n-j 2 i • d i .
Indeed, he tries to find simultaneously candidate values for the faulty modulus N ′ (according to the random byte fault assumption) and for the part of the exponent d ′

(1) that satisfies:

Ŝ ≡ S • ṁ-d ′ (1) mod N • ṁ2 (n-j-1) mod N
According to [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF], the pair (d ′ (1) , N ′) that satisfies (5) is the right one with a probability very close to 1. Then, the subsequent secret bits will be found by repeating this attack using the knowledge of the already found most significant bits of d and a signature faulted earlier in the process. In terms of fault number, the whole private key recovery requires an average of (n/l) faulty signatures, where l is the average number of bits recovered each time. As a consequence, this few number of required faults makes the attack both efficient and practicable.

Application to the "Left-To-Right" modular exponentiation

In this section, we try to apply the previously explained fault attack to the "Left-To-Right" implementation of RSA. Under the same fault model, we wanted to know what does prevent an attacker from reproducing the attack against the dual implementation. We denote by A the internal register value just before the modification of the modulus N :

A ≡ ṁ n-1 i=j 2 i-j •di mod N (6)
Hence, knowing that the first perturbed operation is a square, the faulty signature Ŝ can be written as:

Ŝ ≡ A 2 • ṁdj-1 2 • ṁdj-2 2 . . . 2 • ṁd0 mod N (7) ≡ A 2 j • ṁ j-1 i=0 2 i •di mod N
By observing (7), one can notice that the perturbation has two consequences on the faulty signature Ŝ. First, it splits the computation into a correct part (i.e: the internal register value A) and a faulty one, like for the perturbation of the"Right-To-Left" exponentiation [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF]. The other one is the addition of j cascaded squares of the local variable A, computed modulo N . This added operation defeats the previous attack on the "Right-To-Left" exponentiation [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF] because of the difficulty to compute square roots in RSA rings.

Our idea for generalizing the previous attack to "Left-To-Right" exponentiation is to take advantage of the modulus modification to change the algebraic properties of the RSA ring. In other words, if N is a prime number, then it is possible to compute square roots in polynomial time. Moreover, it is actually sufficient that N is B-smooth with B small enough to enable an easy factorization of N , then the Chinese Remainder Theorem enables also to compute square roots in polynomial time. We show next anyway that the number of primes N is sufficient to provide a realistic fault model.

Fault model

According to the previous section, the square root problem can be overcome by perturbing the modulus N such that N is prime. In this section we will study the consistency and the practicability of such a fault model. Even though this model has already been adopted in Seifert's attack [START_REF] Muir | Seifert's RSA Fault Attack : Simplified Analysis and Generalizations[END_REF][START_REF] Seifert | On Authenticated Computing and RSA-Based Authentication[END_REF], we propose next further experimental evidences of the practicability of this model.

Theoretical estimations

Let us first estimate the number of primes with a fixed number of bits. From [Dus98, Theorem 1.10], we have the following bounds for the number of primes π below a certain integer x:

π(x) ≥ x ln(x) 1 + 1 ln(x) + 1.8 ln 2 (x)
, for x ≥ 32299. (8)

π(x) ≤ x ln(x) 1 + 1 ln(x) + 2.51 ln 2 (x)
, for x ≥ 355991.

Then, for numbers of exactly t bits such that t ≥ 19 bits, the number of primes is π t = π(2 t)π(2 t-1). By using the previous bounds (8), the probability that a t-bit number is prime, pr t = π t 2 t-1 , satisfies:

pr t > Inf (t) > 1.442t 5 -3.690t 4 + 0.080t 3 -22.828t 2 + 28.267t -10.810 t 3 (t -1) 3 (9)
pr t < Sup(t) < 1.443t 5 -3.689t 4 + 6.476t 3 -35.619t 2 + 41.060t -15.073 t 3 (t -1) 3

For instance, if t = 1024 bits:

Inf (1024) ≈ 1 709.477
and Sup(1024) ≈ 1 709.474 Therefore around one 1024-bit number out of 709 is prime; and among the 2048bit numbers, more than one out of 1419 is prime.

For example, we construct the following sets N i according to a random byte fault model. In other words, if ⊕ is the bit by bit exclusive OR, then1 : 8 . Would the set N be composed of randomly selected values, then the proportion of primes in each N i would follow (9). In order to estimate the number of faulty primes, we suppose this is the case for N 0 and that this proportion is doubled in N i for i ≥ 1, since all the fault numbers in these sets are odd. For n = 1024, according to (9), we can estimate pr 1024 and thus the average number of faulty primes is (2 • 128 -1)256/709.47 ≈ 92.011. For n = 2048, the average number of primes becomes (2 • 256 -1)256/1419.25 ≈ 92.172. Now for n = 1024 but with errors of length f bits, the number of faulty primes should be around (2 • 1024 f -1)2 f /709.47. This gives approximately 11731 faulty primes with 16 bits errors and more than 381 millions with 32 bits.

N i = {N ⊕ R 8 • 2 8i , R 8 = 0 .. 255} Let N = n 8 -1 i=0 N i .
Moreover, consider the subset of N comprising only odd numbers of size n. If the fault is on f bits, then the latter is of size k = 2 f -1 (2 n f -1). Let Pk be the random variable expressing the expected number of primes in this set. This variable follows a binomial law B(k, 2pr t). Then we can give the following confidence interval of primes (with a and b integer bounds):

Pr[a ≤ Pk ≤ b] = b i=a k i (2pr t) i (1 -2pr t) k-i (10)
Equation (10) combined with the estimation of pr 1024 shows for instance that the number of faulty primes of 1024 bits with errors of size 8 is comprised between [50, 140] in more than 99.999% of the cases.

Obviously N is not a set of randomly chosen elements; howbeit, empirical evidence shows that such sets behave quite like random sets of elements, as shown below.

Experimental results

We have computed such sets for randomly selected RSA moduli and counted the number of primes in those sets. The repartition seems to follow a binomial rule (as expected) and we have the following experimental data to support our belief (see Figure 1).

As shown in Table 1 it was anyway never the case that no prime was found in a set N (more than that we always found more than 18 primes in such a set). This experimental lower-bound equals to the one obtained by considering a random set. The same observation can be done for the upper-bound. Hence, our obtained results confirm our theoretical analysis. The presented results can be extended to other fault models. The Table 1 presents also theoretical expected results when 16-bit or 32-bit architectures are targeted. For instance, with n = 1024 and a 16-bit architecture, the theoretical average number of primes is 11731.3 and equation (10) shows that the number of primes should be between [11200,12300] in more than 99.999% of the cases.

Arch

Consequences

This study strengthen J-P. Seifert's assumption [START_REF] Seifert | On Authenticated Computing and RSA-Based Authentication[END_REF][START_REF] Muir | Seifert's RSA Fault Attack : Simplified Analysis and Generalizations[END_REF] of considering only prime modification of the modulus. We have showed that our fault model can be considered as a random modification of the public modulus. Then, an average of 356 faults on N will be required to obtain a prime N in the case of a 1024-bit RSA.

Additional remark. By carefully studying the experimental results, one can notice that, for a given modulus N , the byte location of the fault influences the number of prime found in the subset. Thus, if the attacker has the ability of setting the byte location of the fault, he can increase his chances to get a prime faulty modulus and therefore, dramatically reduce the number of faulty signatures required to perform the attack.

The Algorithm of Tonelli and Shanks

The algorithm of Tonelli and Shanks [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF] is a probabilistic and quite efficient algorithm used to compute square roots modulo P , where P is a prime number. The principle of the algorithm is based on the isomorphism between * and the additive group Z/ (P -1) Z. Suppose P -1 is written as:

P -1 = 2 e • r, with r odd. (11
)
Then, the cyclic group G of order 2 e is a subgroup of Z/ (P -1) Z. Let z be a generator of G, if a is a quadratic residue modulo N , then:

a (P -1)/2 ≡ (a r) 2 e-1 ≡ 1 mod P (12)
Noticing that a r mod P is a square in G, then it exists an integer k ∈ [[0 :

2 e -1]] such that a r • z k = 1 in G (13)
And so, a r+1 • z k = a in G. Hence, the square root of a, is given by

a 1/2 ≡ a (r+1)/2 • z k/2 mod P (14)
Both main operations of this algorithm are:

• Finding the generator z of the subgroup G,

• Computing the exponent k.

The whole complexity of this algorithm is that of finding k, O ln 4 P binary operations or O (ln P) exponentiations. The details of the above algorithm are described in [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF]. In practice, on a Pentium IV 3.2GHz, the GIVARO2 implementation of this algorithm takes on average 7/1000 of a second to find a square root for a 1024-bit prime modulus.

Smooth modulus

As in [START_REF] Muir | Seifert's RSA Fault Attack : Simplified Analysis and Generalizations[END_REF], what we really need for the faulty modulus is only to be easily factorable. This is the case e.g. if the faulty N has one large prime factor and a smooth cofactor. For instance, just testing for divisibility by the 25 first primes (below 100), of 1024-bits faulty moduli on a 8-bit architecture, already roughly multiplies by 3 the number of easily usable faulty moduli. Then, one can also compute square roots modulo a non prime modulus as long as the factorization is known. The idea is first to find square roots modulo each prime factors of N ; then to lift them independently to get square roots modulo each prime power; and finally to combine them using the Chinese Remainder Theorem (see e.g. [Sho05, §13.3.3] for more details). The number of square roots increases but since they are computed on comparatively smaller primes, the overall complexity thus remains O ln 4 N binary operations. For the sake of simplicity, in the following we consider only prime faulty moduli.

Final modular check.

The purpose of the two first steps is to cancel the effects on the faulty signature due to the perturbation. Now, from the j k -th square root of R (d ′ (k) , Ni) the attacker will simulate an error-free end of execution by computing:

S ′ ≡ R (d ′ (k) , Ni) 1/2 j k mod Ni 2 j k • ṁd ′ (k) mod N (17)
Finally, he checks if the following equation is satisfied:

S ′ ≡ S mod N (18)
As in the "Right-To-Left" attack [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF], when this latter condition is satisfied, it means that the candidate pair is very probably the searched one (see Sect. 6.3). Moreover, the knowledge of the already found least significant bits of d is used to reproduce the attack on the subsequent secret bits. As a consequence, the attacker has to collect a set of faulty signatures Ŝk by injecting the fault at different steps j k before the end of the exponentiation. Moreover, multiple faulty signature Ŝk,f have to be gathered for a given step j k to take into account the probability for having a faulty signature Ŝk computed under a prime N , that is to say exploitable by the cryptanalysis. This set (Ŝk,f , j k) k,f is sorted in descending fault location. If faults are injected regularly, each sorted pair is used to recover a l-bit part of the exponent such that for the k-th pair (Ŝk,f , j k), the recovered part of d is

d (k) = j k -1 i=0 2 i • d i = k•l-1 i=0 2 i • d i .
These results can be applied for faults that are not injected regularly (i.e: j kj k-1 = l k < l max). The attack algorithm is given in more details next.

Performance

Fault number

Our fault model is based on modifications of the modulus N , with a fault of size l bits, such that its corresponding faulty value is prime. In Section 4.1, we have shown that the probability for a t-bit number to be prime, pr t , can be bounded. Now, let the number of fault to make N prime be the random variable F t . We have seen that the average number of faults to make N prime per faulted part is:

2 l (2 • 2 l -1)Sup(t) < µ (F t) < 2 l (2 • 2 l -1)Inf (t) (19)
For large values of t (i.e: at least 1024 or 2048-bit RSA), we can use the pinching (or sandwich) theorem to approximate this value asymptotically :

µ (F t) ∼ t 1.4427 • (2 -1 2 l) (20)
From a given faulty signature, the attacker can recover a l-bit part of d. There are at most n/l such parts for an RSA of size n. This shows that the average number of faults required for a whole private key satisfies:

Number of faults = O n 2 2.8854 • l tries (21)
This number can be dramatically reduced if the attacker has the ability to chose the byte location of the fault (see Sect. 4.1) or if the fault model is larger (i.e: smooth modulus, different architectures targeted . . .).

Computational complexity

We now give the overall complexity of the attck. The size of the dictionary, D length , is let as an attack parameter since the attacker can fix a limit if the chosen fault model requires more resources than he can get. According to our previous analysis (see Sect. 4.1), D length = 46 for a random byte fault assumption.

Theorem 1. Algorithm 3 is correct and its average complexity for a random byte fault perturbation of the modulus satisfies:

C attack = O 2 8+l • n 3 • (n + l) 16 • l exponentiations Proof.
Correctness as been shown in section 5. Now for the complexity, the attacker has to test all possible candidate pairs (d ′ (k) , Ni). The number of pairs depends on the size of the dictionary of prime modulus denoted by D length and the window recovery length l:

|(d ′ (k) , Ni)| = 2 l • D length (22)
For each pair the attacker first computes R (d ′ (k) , Ni) (see (15)) by executing a modular exponentiation of the message and a multiplication. Then, he performs a series of at most j k quadratic residuosity tests and, for each success, a square root is computed. By noticing that the probability to fail in the test follows a geometric probability law, the average number of performed tests4 is 1 Pr[Test fails] = 2. As a consequence, the average complexity of this step is:

C Square roots (k) = O (2 • C T est + C T onelli & Shanks) (23) = O (j k • n) exponentiations
The last step of the attack is the final check (see (17)). It requires to compute j k modular squares and a modular exponentiation of the message followed by a multiplication. The latter computation is also bounded by O(j k • n) exponentiations. Now in the case of a fixed size dictionary the average number of primes of this dictionary for a byte modification of the modulus is N f aults per blocs = 2 8 n/8 D length . Then, the attack has to test all of the gathered faulty signatures in order to recover the whole exponent. Hence, as j k is bounded by k • l, the overall computational complexity is bounded by:

C attack = n/l k=0 N f aults per blocs • C Square roots (k) • 2 l • D length (24) = O 2 8+l • n 3 • (n + l) 16 • l
The presented attack is thus longer than the "Right-To-Left" one [BCG08], the principal reason being the extra number of faulty pairs to analyze in order to get a prime modulus.

False-acceptance probability

As defined in [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF], the false-acceptance probability is the probability for a wrong pair (d ′ (k) , Ni) to satisfy (18). In our case, the computation of the final check is done in Z/N Z and requires extra squares. As a consequence the false-acceptance probability given in [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF] Moreover, because of the quadratic residuosity tests (see Sect. 5.2), false candidates can be rejected before computing the final check. Hence, the final check will not always be done. The probability that a wrong pair pass all the j k tests is given by: Pr R (d ′ (k) , Ni) is a j k -times quadratic residue (26)

= j k -1 i=0 Pr R (d ′ (k) , Ni)
1/2 i is a quadratic residue = 1 2 j k This probability indicates that, for recovering the k-th part of d, only one out of 2 j k wrong pairs will pass all the quadratic residuosity tests. Eventually, the false-acceptance probability can be upper-bounded:

Pr[F.A] < min 1 2 j k , (N -1)•2 l •D length N •(2 l •D length -1) , 2 l •D length N (27)
This expression first shows that because of the last term

2 l •D length N
, the falseacceptance probability is highly negligible for commonly used RSA length. Furthermore, one can advantageously notice that the final check can be avoided when the number of consecutive quadratic residuosity tests to pass is large enough (i.e: 2 j k > D length • 2 l).

Conclusion

In this paper, we generalize the fault attack presented in [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF] to "Left-To-Right" implementation of RSA by assuming that the faulty modulus can be prime. Although this model has been already used [START_REF] Seifert | On Authenticated Computing and RSA-Based Authentication[END_REF], this paper provides a detailed theoretical analysis in fault attack context. Furthermore this analysis proves that such a fault model is not only practicable but extendible to different architectures. This emphases the need for protecting RSA public elements during the execution.

More generally the use of a faulty prime modulus to compute square roots in polynomial time raises the question of using faults for changing algebraic properties of the underlying finite domain. This paper provides an element of answer that may be completed by future fault exploitations.

 Decryption: Decrypting a ciphertext C boils down to compute m ≡ C d mod N ≡ C n-1 i=0 2 i •di mod N where d i stands for the i-th bit of d. If no error occurs during computation, transmission or decryption of C, then m equals m.

Algorithm 1 :

 1 "Right-To-Left" modular exponentiation Algorithm 2: "Left-To-Right" modular exponentiation INPUT: m, d, N INPUT: m, d, N OUTPUT: A ≡ m d mod N OUTPUT: A ≡ m d mod N 1 : A:=1; 1 : A:=1; 2 : B:=m;

 Then the cardinality of N and N i are |N i | = 256 and |N | = 256 • n

Figure 1 :

 1 Figure 1: Experimental distribution of primes among faulty RSA moduli

 has to be adapted by replacing the search space for N by the dictionary length D length :0 < Pr[F.A] < min (N -1)•2 l •D length N •(2 l •D length -1) , 2 l •D length N(25)

 Binary exponentiation algorithms are often used for computing the RSA modular exponentiation ṁd mod N where the exponent d is expressed in a binary form as d

				mod N ;
	6 :	end if	6 :	end if
	7 :	B := B 2 mod N ;	7 : end for
	8 : end for	8 : return A;
	9 : return A;		

Table 1 :

 1 Experimental counts of primes in N .

	.	bits |N | Exp. # Prop.	# of	# of primes
		of primes		draws	Min.	Avg. Max.
	8-bit 1024 2 15 8-bit 2048 2 16 16-bit 1024 2 22 11731.3 92.01 92.17 32-bit 1024 2 37 3.8 • 10 8	1 356 1 711 1 357 1 360	77067 44499 34153 11268 11732.0 12250 52 90.6658 138 54 90.7924 132

[1-(n-j)] •d ′ (1) mod N ′(5)

For the sake of clarity we assume that a byte fault can take

8 values. In fact, it can take only 2 8 -1. Indeed, the error can not be null otherwise the value of N is unchanged and the fault can not be exploited.

GIVARO is an open source C++ library over the GNU Multi-Precision Library. It is available on http://packages.debian.org/fr/sid/libgivaro-dev

This computation is possible only when d ′ k is invertible in Z/Z Ni ; in our case all the considered N i are primes and Euclid's algorithm always computes the inverse.

The test fails when tested value is not a quadratic residue. But all the Ni are prime. Let be z i a generator in Z/ Ni Z, all the elements of the group can be expressed as a power of z i . Hence one element out of 2 is a power of z i 2 and a quadratic residue.

Acknowledgment

We would like to thank Sonia Belaid and Louis Schimchowitsch for finding an error in the faulty primes search program, in an earlier version of this report.

Cryptanalysis

The purpose of our fault attack against the "Left-To-Right" exponentiation is similar to the attack against the "Right-To-Left" one [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF]. The modulus N is transiently modified to a prime value during a squaring, j k steps before the end of the exponentiation. Then, from a correct/faulty signature pair (S, Ŝk), the attack aims to recover the part of private exponent d (k) = j k -1 i=0 2 i • d i isolated by the fault. By referring to [START_REF] Berzati | Perturbating RSA Public Keys: an Improved Attack[END_REF], the following analysis can be easily adapted for faults that first occurs during a multiplication.

Dictionary of prime modulus.

The first step consists in computing a dictionary of prime faulty modulus candidates (Ni). The attacker tests all possible values obtained by modifying N according to a chosen fault model. Then, values for N are tested using the probabilistic Miller-Rabin algorithm [START_REF] Michael | Probabilistic algorithm for testing primality[END_REF]. According to our study (see Sect. 4.1), for a random byte fault assumption, the faulty modulus dictionary will contain 46 entries in average either for a 1024-bit or a 2048-bit RSA. The size of the dictionary depends on the fault model (see Table 1).

Computation of square roots.

For each entry Ni of the modulus dictionary, the attacker chooses a candidate value for the searched part of the private exponent d ′ (k) . Now he can compute 3 :

For the right pair (d (k) , N), R (d (k) , N) is expected to be a multiple quadratic residue (i.e: a j k -th quadratic residue, see Sect. 3.3). As a result, if

is not a quadratic residue, the attacker can directly deduce that the candidate pair (d ′ (k) , Ni) is a wrong one. The quadratic residuosity test can be done in our case because all precomputed candidate values for the faulty modulus are prime numbers. The test is based on Fermat's theorem: for d (k) from 0 upto 2 l -1 9: