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Abstract

After attacking the RSA by injecting fault and corresponding coun-
termeasures, works appear now about the need for protecting RSA public
elements against fault attacks. We provide here an extension of a recent
attack [BCG08] based on the public modulus corruption. The difficulty
to decompose the ”Left-To-Right” exponentiation into partial multipli-
cations is overcome by modifying the public modulus to a number with
known factorization. This fault model is justified here by a complete study
of faulty prime numbers with a fixed size. The good success rate of this
attack combined with its practicability raises the question of using faults
for changing algebraic properties of finite field based cryptosystems.

Keywords: RSA, fault attacks, ”Left-To-Right” exponentiation, number
theory.

1 Introduction

Injecting faults during the execution of cryptographic algorithms is a power-
ful way to recover secret information. Such a principle was first published by
Bellcore researchers [BDL97, BDL01] against multiple public key cryptosys-
tems. Indeed, these papers provide successful applications including RSA in
both standard and CRT modes. This work was completed, and named Differ-
ential Fault Analysis (DFA), by E. Biham and A. Shamir with applications to
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secret key cryptosystems [BS97]. The growing popularity of this kind of at-
tack, in the last decade, was based on the ease for modifying the behavior of
an execution [BECN+04] and the difficulty for elaborating efficient countermea-
sures [BOS03, Wag04, Gir05b].

Many applications against the cryptosystem RSA based on fault injection
have been published. First ones deal with the perturbation of the private key or
temporary values during the computation [BDL97, BDJ+98, BDL01]. The per-
turbation of public elements was considered as a real threat when J-P. Seifert
published an attack on the RSA signature check mechanism [Sei05, Mui06].
This paper first mentions the possibility of modifying the public modulus N
such that the faulty one is prime, or when it is easy to factor. Then, E. Brier et
al. extended this work to the full recovery of the private exponent d for various
RSA implementations [BCMCC06]. Both works are based on the assumption
that the fault occurs before performing the RSA modular exponentiation. A.
Berzati et al. first address the issue of modifying the modulus during the ex-
ponentiation [BCG08]. But this work was limited to an application against
”Right-To-Left” type exponentiation algorithms.

In this paper we aim to generalize the previous attack to ”Left-To-Right”
type exponentiations. Under the fault assumption that the modulus can become
a number with a known factorization, we prove that it is possible to recover the
whole private exponent. We provide a detailed study of this fault model, based
on number theory, to show its consistency and its practicability for various kinds
of modification. Finally, we propose an algorithm to recover the whole private
exponent that is efficient either in terms of fault number or in computational
time.

2 Background

2.1 Notations

Let N , the public modulus, be the product of two large prime numbers p and
q. The length of N is denoted by n. Let e be the public exponent, coprime
to ϕ(N) = (p − 1) · (q − 1), where ϕ(·) denotes Euler’s totient function. The
public key exponent e is linked to the private exponent d by the equation e ·
d ≡ 1 mod ϕ(N). The private exponent d is used to perform the following
operations:

RSA Decryption: Decrypting a ciphertext C boils down to compute m̃ ≡

Cd mod N ≡ C
Pn−1

i=0 2i
·di mod N where di stands for the i-th bit of d. If

no error occurs during computation, transmission or decryption of C, then
m̃ equals m.

RSA Signature: The signature of a message m is given by S ≡ ṁd mod N
where ṁ = µ(m) for some hash and/or deterministic padding function µ.
The signature S is validated by checking that Se ≡ ṁ mod N .
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2.2 Modular exponentiation algorithms

Algorithm 1: ”Right-To-Left” mod-
ular exponentiation

Algorithm 2: ”Left-To-Right” mod-
ular exponentiation

INPUT: m, d, N INPUT: m, d, N

OUTPUT: A ≡ md mod N OUTPUT: A ≡ md mod N

1 : A:=1; 1 : A:=1;
2 : B:=m; 2 : for i from (n − 1) downto 0
3 : for i from 0 upto (n − 1) 3 : A := A2 mod N ;
4 : if (di == 1) 4 : if (di == 1)
5 : A := (A · B) mod N ; 5 : A := (A · m) mod N ;
6 : end if 6 : end if

7 : B := B2 mod N ; 7 : end for

8 : end for 8 : return A;
9 : return A;

Binary exponentiation algorithms are often used for computing the RSA
modular exponentiation ṁd mod N where the exponent d is expressed in binary
form as d =

∑n−1
i=0 2i ·di. Their polynomial complexity with respect to the input

length make them very interesting to perform modular exponentiation.
The Algorithm 1 describes a way to compute modular exponentiations by

scanning bits of d from least significant bits (LSB) to most significant bits
(MSB). That is why it is usually referred as the ”Right-To-Left” modular expo-
nentiation algorithm. This is that specific implementation that is attacked in
[BCG08] by corrupting the public modulus of RSA.

The dual algorithm that implements the binary modular exponentiation is
the ”Left-To-Right” exponentiation described in Algorithm 2. This algorithm
scans bits of the exponent from MSB to LSB and is lighter than ”Right-To-Left”
one in terms of memory consumption.

3 Modification of the modulus and extension at-

tempt

3.1 Previous work

J-P. Seifert first addresses the issue of corrupting RSA public key elements
[Sei05, Mui06]. This fault attack aims to make a signature verification mecha-
nism accept false signatures by modifying the value of the public modulus N .
No information about the private exponent d is revealed with this fault attack.
Its efficiency is linked to the attacker’s ability to reproduce the fault model cho-
sen for the modification of the modulus.

Seifert’s work inspired the authors of [BCMCC06] that first used the public
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modulus perturbation to recover the whole private key d. The attacker has to
perform a perturbation campaign to gather a large enough number of (message,
faulty signature) pairs. As in Seifert’s attack, the fault on the modulus is in-
duced before executing the exponentiation. Three methods based on the use
of Chinese Remainder Theorem and the resolution of quite small discrete loga-
rithms are proposed in [BCMCC06] and [Cla07] to recover the private exponent
from the set of gathered pairs.

A new fault attack against ”Right-To-Left” exponentiation has been pre-
sented lately [BCG08]. This work completes the state-of-the-art by allowing
the attacker to use other fault models for recovering the private exponent. The
details of this work are presented below.

3.2 Public key perturbation during RSA execution: case

of the ”Right-To-Left” algorithm

3.2.1 Fault model.

In J.P Seifert and E. Brier et al.’s proposals [Sei05, BCMCC06] the fault is
provoked before the exponentiation so that the whole execution is executed
with the faulty modulus, N̂ .
The attack presented by A. Berzati et al. [BCG08] enlarges the fault model
by allowing the attacker to inject the fault during the execution of the ”Right-
To-Left” exponentiation. The modification of N is supposed to be a transient
random byte fault modification. It means that only one byte of N is set to
a random value. The value of the faulty modulus N̂ is not known by the
attacker. However, the time location of the fault is a parameter known by
the attacker and used to perform the cryptanalysis. This fault model has been
chosen because of its simplicity and practicability in smart card context [Gir05a,
BO06]. Furthermore, it can be easily adapted to 16-bit or 32-bit architectures.

3.2.2 Faulty computation.

Let d =
∑n−1

i=0 2i · di be the binary representation of d. The output of a RSA
signature can be written as:

S ≡ ṁ
Pn−1

i=0 2i·di mod N (1)

We consider that a fault has occurred j steps before the end of the exponen-
tiation, during the computation of a square. According to the fault model
described, all subsequent operations are performed with a faulty modulus N̂ .

We denote by A ≡ ṁ
P(n−j−1)

i=0 2i·di mod N the internal register value and by B̂
the result of the faulty square:

B̂ ≡
(

ṁ2(n−j−1)

mod N
)2

mod N̂ (2)
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Hence, the faulty signature Ŝ can be written as:

Ŝ ≡ A · B̂
Pn−1

i=(n−j)
2[i−(n−j)]·di mod N̂ (3)

≡ [(ṁ
P(n−j−1)

i=0 2i·di mod N) (4)

·(ṁ2(n−j−1)

mod N)
Pn−1

i=(n−j)
2[i−(n−j)+1]·di ] mod N̂

From the previous expression of Ŝ, one can first notice that the fault injection
splits the computation into a correct (computed with N) and a faulty part
(computed with N̂). A part of d is used during the faulty computation. This is
exactly the secret exponent part that will be recovered in the following analysis.

3.2.3 Attack principle.

From both correct signature S and faulty one Ŝ (obtained from the same mes-
sage m), the attacker can recover the isolated part of the private key d(1) =
∑n−1

i=n−j 2i · di. Indeed, he tries to find simultaneously candidate values for the

faulty modulus N̂ ′ (according to the random byte fault assumption) and for the
part of the exponent d′(1) that satisfies:

Ŝ ≡
(

S · ṁ−d′

(1) mod N
)

·
(

ṁ2(n−j−1)

mod N
)2[1−(n−j)]·d′

(1)

mod N̂ ′ (5)

According to [BCG08], the couple (d′(1), N̂
′) that satisfies (5) is the good one

with a probability very close to 1. Then, the subsequent secret bits will be
found by repeating this attack using the knowledge of the already found most
significant bits of d and a signature faulted earlier in the process. In terms
of fault number, the whole private key recovery requires an average of (n/l)
faulty signatures, where l is the number of bits recovered each time. As a
consequence, this few number of required faults makes the attack both efficient
and practicable.

3.3 Application to the ”Left-To-Right” modular expo-

nentiation

In this section, we try to apply the previously explained fault attack to the ”Left-
To-Right” implementation of RSA. Under the same fault model, we wanted to
know what does prevent an attacker from reproducing the attack against the
dual implementation.

We denote by A the internal register value just before the modification of
the modulus N :

A ≡ ṁ
Pn−1

i=j
2i−j ·di mod N (6)

5



Hence, knowing that the first perturbed operation is a square, the faulty signa-
ture Ŝ can be written as:

Ŝ ≡

(

(

(

A2 · ṁdj−1
)2

· ṁdj−2

)2

. . .

)2

· ṁd0 mod N̂ (7)

≡ A2j

· ṁ
Pj−1

i=0 2i·di mod N̂

By observing (7), one can notice that the perturbation has two consequences
on the faulty signature Ŝ. First, it splits the computation into a correct part
(i.e: the internal register value A) and a faulty one, like for the perturbation of
the”Right-To-Left” exponentiation [BCG08]. The other one is the addition of j
cascaded squares of the local variable A, computed modulo N̂ . This added op-
eration defeats previous attack on the ”Right-To-Left” exponentiation [BCG08]
because of the difficulty to compute square roots in RSA finite fields.

Our idea for generalizing the previous attack to ”Left-To-Right” exponenti-
ation is to take advantages of the modulus modification to change the algebraic
properties of the RSA finite field. In other words, if N̂ is a prime number, then
it is possible to compute square roots in polynomial time. Moreover, if N̂ is
B-smooth with B small enough to enable an easy factorization of N̂ , then the
Chinese Remainder Theorem enables also to compute square roots in polyno-
mial time. We show next anyway that the number of prime N̂ only is sufficient
to provide a realistic fault model.

4 Fault model

According to the previous section, the square root problem can be overcome by
perturbing the modulus N such that N̂ is prime. In this section we will study
the consistency and the practicability of such a fault model. Although this
model has already been adopted in Seifert’s attack [Mui06, Sei05], we wanted
to manage a further experimental analysis.

4.1 Theoretical estimations

Let us first estimate the number of primes with a fixed number of bits. From
[Dus98, Theorem 1.10], we have the following bounds for the number of primes
π below a certain integer x:

π(x) ≥
x

ln(x)

(

1 +
1

ln(x)
+

1.8

ln2(x)

)

, for x ≥ 32299. (8)

π(x) ≤
x

ln(x)

(

1 +
1

ln(x)
+

2.51

ln2(x)

)

, for x ≥ 355991.

Then, for numbers of exactly t bits such that t ≥ 19 bits, the number of primes
is πt = π(2t)− π(2t−1). By using the previous bounds (8), the probability that
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a t-bit number is prime pr =
πt

2t−1
satisfies:

pr > Inf(t) =
0.480t5 − 1.229t4 + 0.0265t3 − 7.602t2 + 9.414t− 3.600

t3(t − 1)3 ln3(2)
(9)

pr < Sup(t) =
0.480t5 − 1.229t4 + 2.157t3 − 11.862t2 + 13.674t− 5.02

t3(t − 1)3 ln3(2)

For instance, if t = 1024 bits:

Inf(1024) =
1

709.477
and Sup(1024) =

1

709.474

So around one 1024-bit number out of 709 is prime; among the 2048-bit numbers,
more than one out of 1419 is prime.

Consider now a set of k randomly selected numbers of exactly t bits and
let PN be the random variable expressing the expected number of primes in
this set. This variable follows a binomial law B(k, pr). Then we can give the
following confidence interval of primes (with a and b integer bounds):

Pr[a ≤ PN ≤ b] =

b
∑

i=a

(

k

i

)

pri(1 − pr)k−i (10)

For example, we construct the following set N according to a random byte
fault model. In other words, if ⊕ is the bit by bit exclusive OR, then1:

N = {N ⊕ R8 · 2
8i, R8 = 0 .. 255, i = 0 .. (

n

8
− 1)}

Then the cardinality of N is

|N | = 256 ·
n

8
= 32 · n

Would the set N be composed of randomly selected values, then the pro-
portion of primes in N would follow (9). Hence, we can set k = |N | and
compute the corresponding average and bounds with an approximation of pr.
For n = 1024, according to (9), we can estimate pr and the average number of
faulty primes that is 32 ·1024/709.47 ≈ 46.186. Equation (10) combined with pr
estimation shows also that the number of primes in a set is comprised between
[18, 80] in 99.999% of the cases. For n = 2048, the average number of primes is
46.176 is between 18 and 80 in 99.999% of the cases. Obviously N is not a set
of randomly chosen elements; howbeit, empirical evidence shows that such sets
behave quite like random sets of elements.

1For the sake of clarity we assume that a byte fault can take 28 values. In fact, it can take
only 28 − 1. Indeed if the error can not be null otherwise the value of N is unchanged and
the fault can not be exploited.
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4.2 Experimental results

We have computed such sets for randomly selected RSA moduli by counting
the number of primes in those sets. The repartition seems to follow a binomial
rule (as expected) and we have the following experimental data to support our
belief (see Figure 1).
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Figure 1: Experimental distribution of primes among faulty RSA moduli

As shown in Table 1 it was anyway never the case that no prime was found
in a set N (more than that we always found more than 18 primes in such a
set). This experimental lower-bound equals to the one obtained by considering
a random set. The same observation can be done for the upper-bound. Hence,
our obtained results confirm our theoretical analysis.

Table 1: Experimental counts of primes in N .

Architecture n bits |N | |N | · pr # of exp. # of primes
Min. Avg. Max.

8-bit 1024 215 46.186 114890 18 46.26 79
8-bit 2048 216 46.176 57170 22 46.19 80

16-bit 1024 222 5911.83 17725 5621 5919.08 6212
32-bit 1024 237 ≈ 1, 94 · 108

The presented results can be extend to other fault models. The Table 1
presents also theoretical expected results when 16-bit or 32-bit architectures are
targeted. For t = 1024 with 16-bit architecture the average number of primes
is 5911.83 and is between [5520, 6320] in 99.999% of the cases.
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4.3 Consequences

This study emphases J-P. Seifert’s assumption [Sei05, Mui06] of considering only
prime modification of the modulus. We have showed that our fault model can
be seen as a random modification of the public modulus in terms of probability
for N̂ to be a prime number. So, an average of 709 faults on N will be required
to obtain a prime N̂ in the case of a 1024-bit RSA.

4.3.1 Additional remark.

By carefully studying the experimental results, one can notice that, for a given
modulus N , the byte location of the fault influences the number of prime found
in the subset. So, if the attacker has the ability of setting the byte location of
the fault, he can increase the probability to obtain a prime faulty modulus and
so, dramatically reduce the number of faulty signatures required to perform the
attack.

4.4 The Algorithm of Tonelli and Shanks

The algorithm of Tonelli and Shanks [Coh93] is a probabilistic but quite efficient
algorithm used to compute square roots modulo P , where P is a prime number.
The principle of the algorithm is based on the isomorphism between the multi-
plicative group (Z/PZ)

∗
and the additive group Z/ (P − 1) Z. Moreover, P − 1

can be written as:
P − 1 = 2e · r, with r odd. (11)

Then, the cyclic group G of order 2e is a subgroup of Z/ (P − 1) Z. Let z be a
generator of G, if a is a quadratic residue modulo N :

a(P−1)/2 ≡ (ar)
2e−1

≡ 1 mod P (12)

Noticing that ar mod P is a square in G, then it exists an integer k ∈ [[0 : 2e−1]]
such that

ar · zk = 1 in G (13)

And so, ar+1 · zk = a in G. Hence, the square root of a, is given by

a1/2 ≡ a(r+1)/2 · zk/2 mod P (14)

Both main operations of this algorithm are:

• Finding the generator z of the subgroup G,

• Computing the exponent k.

Because of the difficulty for finding k, the whole complexity of this algorithm is
O

(

ln4 P
)

binary operations and so O (lnP ) exponentiations. The details of the
above algorithm are described in [Coh93]. In practice, on a Pentium IV 3.2GHz,
the GIVARO2 implementation of this algorithm takes 5/100 of a second to find
a square root for a 2048-bit prime modulus.

2GIVARO is an open source C++ library over the GNU Multi-Precision Library. It is
available on http://packages.debian.org/fr/sid/libgivaro-dev
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4.5 Smooth modulus

As in [Mui06], what we really need for the faulty modulus is only to be easily
factorable. Indeed, one can compute square roots modulo non prime modulus
as long as the factorization is known. The idea is first to find square roots
modulo each prime factors of N̂ . Then to lift them independently to get square
roots modulo each prime power. And finally to combine them using the Chinese
Remainder Theorem (see e.g. [Sho05, §13.3.3] for more details). The number
of square roots increases but since they are computed on comparatively smaller

primes, the overall complexity thus remains O
(

ln4 N̂
)

.

5 Cryptanalysis

The purpose of our fault attack against the ”Left-To-Right” exponentiation is
similar to the attack against the ”Right-To-Left” one [BCG08]. The modulus
N is transiently modified to a prime value during a square, jk steps before the
end of the exponentiation. Then, from a correct/faulty signature pair (S, Ŝk),

the attack aims to recover the part of private exponent d(k) =
∑jk−1

i=0 2i · di

isolated by the fault. By referring to [BCG08], the following analysis can be
easily adapted for faults that first occurs during a multiplication.

5.0.1 Dictionary of prime modulus.

The first step consists in computing a dictionary of prime faulty modulus can-
didates (N̂i). The attacker tests all possible values obtained by modifying N
according to a chosen fault model. Then, candidate values for N̂ are tested using
the probabilistic Miller-Rabin algorithm [Rab80]. According to our study (see
Sect. 4.1), for a random byte fault assumption, the faulty modulus dictionary
will contain 46 entries in average either for a 1024-bit or a 2048-bit RSA. The
size of the dictionary depends on the fault model (see Table 1).

5.0.2 Computation of square roots.

For each entry N̂i of the modulus dictionary, the attacker chooses a candidate
value for the searched part of the private exponent d′(k). Now he can compute3:

R(d′

(k)
,N̂i)

≡ Ŝk · ṁ−d′

(k) mod N̂i (15)

For the search pair (d(k), N̂), R(d(k),N̂) is expected to be a multiple quadratic

residue. As a result, if R(d′

(k)
,N̂i)

is not a quadratic residue, the attacker can

directly deduce that the candidate pair (d′(k), N̂i) is a wrong one. The quadratic
residuosity test can be done in our case because all precomputed candidate

3One can notice that this computation is possible to perform only if d′
k

can be invert in

Z/ZN̂i and so if gcd(d′
k
, N̂i) = 1. In our case all (Ni)i are primes so this computation can

always be done
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values for the faulty modulus are prime numbers. The test is based on Fermat’s
theorem:

If
(

R(d′

(k)
,N̂i)

)(N̂i−1)/2

≡ 1 mod N̂i (16)

then R(d′

(k)
,N̂i)

is a quadratic residue modulo N̂i

If the test is satisfied then the attacker can use the Tonelli and Shanks algorithm
(see Sect. 4.4) to compute the square roots of R(d′

(k)
,N̂i)

. This step is expected

to be repeated jk times.

5.0.3 Final modular check.

The purpose of the two first steps is to cancel the effects on the faulty signature
due to the perturbation. Now, from the jk-th square root of R(d′

(k)
,N̂i)

the

attacker will simulate an error-free end of execution by computing:

S′ ≡

(

(

R(d′

(k)
,N̂i)

)1/2jk

mod N̂i

)2jk

· ṁd′

(k) mod N (17)

Finally, he checks if the following equation is satisfied:

S′ ≡ S mod N (18)

As in the ”Right-To-Left” attack [BCG08], when the previous condition is sat-
isfied, it means that the candidate pair is very probably the searched one (see
Sect. 6.3). Moreover, the knowledge of the already found least significant bits
of d is used to reproduce the attack on the subsequent secret bits. As a con-
sequence, the attacker has to collect a set of faulty signatures Ŝk by injecting
the fault at different steps jk before the end of the exponentiation. Moreover,
multiple faulty signature Ŝk,f have to be gathered for a given step jk to take

into account the probability for having a faulty signature Ŝk computed under a
prime N̂ and so, exploitable by the cryptanalysis. This set (Ŝk,f , jk)k,f is sorted
in descending fault location. If faults are injected regularly, each sorted pair is
used to recover a l-bit part of the exponent such that for the k-th pair (Ŝk,f , jk),

the part of d recovered is d(k) =
∑jk−1

i=0 2i · di =
∑k·l−1

i=0 2i · di. These results can
be applied for faults that are not injected regularly (i.e: jk − jk−1 = lk < lmax).
The attack algorithm is detailed in Appendix B.

6 Performance

6.1 Fault number

Our fault model is based on the modification of the modulus N such that its
corresponding faulty value is prime. In Section 4.1, we have shown that the
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probability for a t-bit number to be prime pr can be bounded. Now, let the
number of fault to make N̂ prime be the random variable F . This random
variable follows a geometric probability law. Hence the average number of faults
to make N̂ prime is:

1

Sup(t)
< µ (F ) =

1

pr
<

1

Inf(t)
(19)

For large values of t (i.e: for 1024 or 2048-bit RSA), we can use the pinching
(or sandwich) theorem to approximate this value asymptotically :

µ (F) ≈
t · ln3(2)

0.480
≈

t

1.441
(20)

From a given faulty signature, the attacker can recover a l-bit part of d. So the
average number of faults required for a whole private key is:

Number of faults ∼ O

(

n2

1.441 · l

)

(21)

This number can be dramatically reduce if the attacker has the ability to chose
the byte location of the fault (see Sect. 4.1) or if the fault model is larger (i.e:
smooth modulus, different architectures targeted . . . ).

6.2 Computational complexity

For the sake of clarity, we have chosen to directly express the computational
complexity of the analysis for a whole private key recovery. Further details are
provided in Appendix A.

Cattack ∼ O

(

n3 · 2l · Dlength

1.441 · l

)

exponentiations (22)

The size of the dictionary has been let as an attack parameter because the
attacker can fix a limit if the chosen fault model requires more resources than
he can get. According to our previous analysis (see Sect. 4.1), Dlength = 46 for
a random byte fault assumption. As a comparison, Bellcore’s attack [BDL97,
BDL01] against a standard RSA requires O(n3 · 2l · log2(n)/l2) which is more
complex. But, because of the number of faulty pairs to analyze, the presented
attack is longer than the ”Right-To-Left” one [BCG08].

6.3 False-acceptance probability

As defined in [BCG08], the false-acceptance probability is the probability for
a wrong pair (d′(k), N̂i) to satisfy (18). In our case, the computation of the

final check is done in Z/NZ and require extra squares. As a consequence the

12



false-acceptance probability given in [BCG08] has to be adapted by replacing
the search space for N̂ by the dictionary length Dlength:

0 < Pr[F.A] < min

(

(N−1)·2l ·Dlength

N ·(2l ·Dlength − 1)
,
2l ·Dlength

N

)

(23)

Moreover, because of the quadratic residuosity tests (see Sect. 5.0.2), false
candidates can be rejected before computing the final check. Hence, the final
check will not always be done. The probability that a wrong pair pass all the
jk tests is given by:

Pr
[

R(d′

(k)
,N̂i)

is a jk-times quadratic residue
]

(24)

=

jk−1
∏

i=0

Pr

[

(

R(d′

(k)
,N̂i)

)1/2i

is a quadratic residue

]

=
1

2jk

This probability indicates that, for recovering the k-th part of d, only one out
of 2jk wrong pairs will pass all the quadratic residuosity tests. Eventually, the
false-acceptance probability can be upper-bounded:

Pr[F.A] < min

(

1

2jk
,

(N−1)·2l ·Dlength

N ·(2l ·Dlength − 1)
,
2l ·Dlength

N

)

(25)

This expression first shows that because of the last term
2l·Dlength

N , the false-
acceptance probability is highly negligible for commonly used RSA length. Fur-
thermore, one can advantageously notice that the final check can be avoided
when the number of consecutive quadratic residuosity tests to pass is large
enough (i.e: 2jk > Dlength · 2l).

7 Conclusion

In this paper, we generalize the fault attack presented in [BCG08] to ”Left-To-
Right” implementation of RSA by assuming that the faulty modulus can be
prime. Although this model has been already used [Sei05], this paper provides
a detailed theoretical analysis in fault attack context. Furthermore this analysis
proves that such a fault model is not only practicable but expandable to differ-
ent architectures. This emphases the need for protecting RSA public elements
during the execution.

More generally the use of a faulty prime modulus to compute square roots
in polynomial time raises the question of using faults for changing algebraic
properties of finite fields. This paper provides an element of answer that may
be completed by future fault exploitations.
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A Details of the computational complexity

In the presented analysis (see Sect. 5), the attacker has to test all possible
candidate pairs (d′(k), N̂i). The number of pairs depends on the size of the
dictionary of prime modulus denoted by Dlength and the window recovery length
l:

|(d′(k), N̂i)| = 2l · Dlength (26)

For each pair the attacker first computes R(d′

(k)
,N̂i)

(see (15)) by executing a

modular exponentiation of the message and a multiplication.
Then, he performs a series of quadratic residuosity tests and, for each success,
a square root is computed. By noticing that the probability to fail in the test
follows a geometric probability law, the average number of tests4 done equals

4The test fails if the tested value is not a quadratic residue. But all the N̂i are prime. So,
let be zi a generator in Z/N̂iZ, all the elements of the group can be expressed as a power of
zi. Hence one element out of 2 is a power of zi

2 and so a quadratic residue.
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to 1

Pr[Test fails]
= 2. So, in terms of exponentiations, the overall complexity of

this step is in mean:

CSquare roots ∼ O (2 · CTest + CTonelli & Shanks) (27)

∼ O (n) exponentiations

The last step of the attack is the final check (see (17)). It requires to compute
jk modular squares and a modular exponentiation of the message followed by
a multiplication. Hence, knowing that our attack has to test all of the gath-
ered faulty signatures for recovering the whole exponent, the computational
complexity is:

Cattack ∼ O

(

n3 · 2l · Dlength

1.441 · l

)

exponentiations (28)

B Attack algorithm
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Algorithm 3: DFA against ”Left-To-Right” modular exponentiation

INPUT: N , ṁ, the correct signature S, the size of the dictionary Dlength,

the set of pairs (Ŝk,f , jk)0≤k<n/l, 1≤f≤µ(F )

OUTPUT: the private exponent d

1: //Computation of the dictionary of prime faulty modulus candidates
2: Dict = Build Prime Dict(N , Dlength);
3: //Initialization
4: d := 0;
5: //All the faulty signatures are tested
6: for k from 0 upto ⌊n/l⌋
7: for f from 1 upto µ (F )

8: for d(k) from 0 upto 2l − 1

9: d′ := d(k) · 2
jk + d;

10: for i from 1 upto Dlength

11: R := Ŝk,f · ṁ−d′

mod Dict[i];
12: //The function computes jk square roots and returns 0 when a test fails
13: R := Test And Tonelli(R, jk, Dict[i]);
14: //If a test fails, then we have to test another candidate pair
15: if (R == 0)
16: break;
17: else

18: S′ := R2jk · ṁd′

mod N
19: //Final check
20: if (S′ == S mod N)
21: //The attack continues for the subsequent l-bit part of d
22: d := d′;
23: goto line 6;
24: end if ;
25: end if ;
26: end for;
27: end for;
28: end for;
29: end for;
30: return d;
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