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Optimal Network Estimation of Origin-Destination Flow from Link Data

Fabien Leurent, Frédéric Meunier (Université Paris-Est, Lvmt)

Abstract

A systematic method is provided to estimate an origin destination flow at the network
level on the basis of link traffic counts with OD structure. The estimator has minimal
variance among the unbiased linear combinations of link estimators. The problem to
find the optimal estimator is stated as a linear system in node potentials; it is endowed
with nice properties of existence and uniqueness, which enjoy a structural, graph-based
interpretation. Assuming independent local estimators, an equivalent, dual problem is
that of minimizing the imprecision energy carried by a network flow.

The estimation method does not require assumptions on route choice proportions.
Throughout the paper, a realistic case is addressed both to discuss the practical issues
and to demonstrate the solution method.

Keywords

Graph cut. Graph Laplacian. Feasible differential problem. Imprecision flow. Unbiased
estimator. Variance minimization.
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Manuscript Text

1. INTRODUCTION

As a transportation network is purported to carry trips from origin points to destination
points, the pattern of flow by origin-destination (OD) pair is a major issue both at the
local level of the network link in order to reveal its spatial function as a transport
element, and at the global level of the whole network in order to indicate which links
and routes do accommodate specific OD flows. Knowing the network pattern of OD
flows enables a planner to design route signalling and other network operation plans, as
well as to evaluate the adequacy of network schemes to the needs of the transport users.
Specifically, the matrix of OD flows (by time period and user class) is a basic input in
network assignment models which are used to simulate transport schemes and to
evaluate their costs and benefits (/, 2, 3).

This has motivated the development of specific surveys to obtain OD information (4):
from household- or firm-based interview surveys that describe the trips made by the
interviewee over a given period, to en route surveys in which the trip-maker is asked
about his origin and destination points, passing by “cordon” surveys in which a given
trip-maker is identified at a couple of transit points. All of the network-based surveys
yield local information, which implies that a system of local surveys is required to
describe the pattern of OD flows at the network level.

The objective of this paper is to bring about an optimal statistical estimator of the trip
flow of an OD pair at the network level, on the basis of link-based OD flow estimators
which by assumption are unbiased, of given accuracy and independent. The network
estimator is unbiased and has minimal variance among the unbiased estimators that are
linear combinations of the local estimators. Owing to a graph-theoretic analysis, the
optimal linear combination is characterized as the solution of a quadratic minimization
program subject to linear constraints. This is solved in an efficient way, yielding easy
graph-theoretic formulae for the mean and variance values of the optimal estimator of
the OD flow at the network level. A basic requirement for existence is that any path
from origin to destination must traverse along at least one of the links with local
information. As the solution method is easy to implement on a computer, our
methodology would be useful in any planning study in which an OD matrix has to be
recovered from “relatively abundant” local information — meaning more than sufficient:
this case arises notably in interurban roadway traffic studies.

The remainder of the paper is organized in four parts. Section 2 provides a statistical
analysis of link-based surveys and their combination to estimate an OD flow at the
network level, in a bottom-up approach. The by-hand computation is shown to be
involved, which demonstrates the scope for a systematic, computer-based procedure. In
Section 3, the problem of optimal estimation is worked out and endowed with some
graph-theoretic properties of characterization, existence and uniqueness. It is shown to
be equivalent to a network electrical problem with link resistance equal to the link
accuracy (of the local estimator of the link OD flow). The solution method, studied in
Section 4, is a straightforward approach to solve the characteristic property of Section 3
by computing specific node potentials: it is appropriate and efficient when all links are
informative, and also when some links are uninformative (no data hence infinite
variance) on the basis of graph contraction. Lastly, Section 5 provides concluding
comments, together with some research topics.
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2. ESTIMATION OF OD FLOW FROM LINK INFORMATION

In this Section, a bottom-up approach is taken to conduct the statistical analysis from
the local level of a link to the global level of the network. At the link level, the main
issue is to obtain a statistical estimator of the link OD flow: the usual method is to
combine an estimator of link flow (Subsection 2.1) to an estimator of the proportion of
OD pair within link flow (Subsection 2.2), in a multiplicative way (Subsection 2.3). At
the network level, the link estimators must be combined in parallel along an
“informative graph cut” between the origin and destination nodes (Subsection 2.4).
Furthermore, when several informative cuts are available for a given OD pair, it is more
efficient to make use of all the informative links: this is accomplished through Bayesian
mix (Subsection 2.5).

Our bottom-up approach will be illustrated using a French instance of interurban road
traffic: in the Poitou-Charentes region located in the midway of Paris and Bordeaux,
link OD surveys were performed on a set of main roads by a consultancy firm, the Cété
Sud-Ouest: see Figure 1. Taking the cities of Angouléme as origin and Rochefort as
destination, there are five informative links denoted by A to E and depicted in Figure 2.
The graph cut {A, B} is an informative cut for the OD pair; so is the {B, C, D, E} cut.
Tables 1 and 2 provide the associated data, to be explained in the course of the section.
The material in Section 2 is taken from (35).

Rochefort

Atlantic
Ocean

FIGURE 1 Main road network and location of link surveys (black triangles)
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Rochefort

Saintes

Angouléme

FIGURE 2. Informative links for OD pair Angouléme-Ro

TABLE 1 Link Count Data

5/23

Sample size, # | Sample mean | Sample corrected | Standard
Arc a | daysofcount, | ofdaily count | standard deviation error
N, 9a S*[(Qan)n] SE[4,]
A 15 10,029 3,824 987.4
B 5 3,739 1,260 563.5
C 10 7,107 2,720 860.1
D 20 9,735 3,645 815.0
E 12 5,736 3,400 981.5
TABLE 2 Link OD Survey Data
Sample size  # cases Sample Standard Link OD flow
of OD i mean error
Arca | #cases, n, Nig Pia SE[ pi4 | ia SE[ ;4]
A 1,332 11 0.83% 0.25% 82.8 26.3
B 676 13 1.92% 0.53% 71.9 22.7
C 1,243 0 0.00% 0.00% 0.0 0,0
D 1,388 14 1.01% 0.27% 98.2 27.5
E 1,554 14 0.90% 0.24% 51.4 16.5
2.1 The estimation of link flow

Let us denote by a an arc, which is an oriented link to be used by a trip only in the
direction from its tail node to its head node. Let 4 be the set of network arcs. Denote
by I the set of OD pairs: in fact an OD pair i is a couple of two zones that
accommodate the origin [resp. destination] endpoints of trips.

The issue is to estimate a link and OD (LOD) flow ¢;,, which stands for the mean flow
over a set of homogeneous time periods, for instance the days in a year. A classical
estimator ¢,, of g,, is defined as the product of two terms, first an estimator g, of the

link flow ¢, and second an estimator p,, of the OD proportion p,, along that link. An
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estimator g, is usually derived by taking the (unweighted) mean of N, sampled period
flows [Qy, 1,=1,.n, it holds that

A
9a :N_azn:a]Qan .

Assuming that the sampling scheme is unbiased, the link flow estimator is unbiased, and
over the population of samples:

Ema]=NLZiE1E[Qm]=E[Qm]=qa.

a

The sample is also useful to estimate the variance of the link flow over the distribution
of periods, by means of the following formula of corrected sample variance

2 _ 1
fo N, -1

a

N A 92
> “Gan-9,1" -

Assuming unbiased, independent sampling it holds that the sample mean has a standard

deviation of
G;, =, /var[q,] =0, /\N, .

This is approximated without bias by the sample standard error, namely

SE[(ja]zJS;: /1IN, =0, .

Instance. In Table 1 the mean flow on link A is estimated as 10,029 veh/day, with
standard error of 987.4 veh/day.

2.2 The estimation of OD proportion within link flow

The next task is to estimate the proportion p,;, of OD pair i within link flow ¢q,. A
classical estimator p,, of p,, is derived from an en route OD survey, in which a

sample of trips is taken so as to reveal their origin and destination points. Under the no
bias assumption, out of n, sampled trips there are n;, trips which belong to OD pair 7,

yielding the following estimator of empirical frequency:

Nig

Pia = :
n

a

This is because the binary variable “Whether or Not to belong to OD pair i”,
Yia € {1,0} for the trips through link a, has mean p;, and sample mean of p;, =n,,/n,

since n;, = Y%, Viun - Then, over the population of samples,

E[ﬁia] = Pia
Moreover the binary variable has distribution variance p;,(1-p;,). Over the
population of samples the random variable p,, has variance var[n;,]/ nﬁ :G.%ia Ing,,

hence a standard deviation of &, / \Jn, - Under the independence assumption, the
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uncorrected sample variance S i—a =0 Vian — Dia 1)/ n, reduces to p;, (1-p;,); the
standard error on p;, is
f?ia (1 — f?ia )

SE[ pyy]= | D" Pia) o5,
n, —1

Instance. In Table 1 the proportion of the OD pair Angouléme-Rochefort in the traffic
of link A is estimated as p;, = 0.83% with standard error of 0.25%.

2.3 Derivation of Link OD estimator

The last task at the local level is to multiply the estimator of link flow g, by that of OD
proportion p;, to yield the estimator g;, of the link and origin-destination (LOD) flow

Qiqg =Y4Piq » Namely
éia = éaﬁ ia

Assuming that both basic estimators are unbiased and that they are independent of each
other, their product is an unbiased estimator of g, , since:

E[(}ia 1= E[éa]E[ﬁia 1= 94Pia = 4ia -
Furthermore, as for any two independent random variables X and Y their product has
variance var[XY]= var[ X |var[Y]+E[X]* var[Y]+E[Y]* var[X] ("), it holds that

var[§,, 1= var[q, 1var| p;, 1+ E[4,1* var[ p;, 1+ E[ p; 1* var[g,]
Hence SE*[§;,1~SE*[4,]1SE*[ P 1+ d2 SE*[ i)+ P SE*[4,]-

Instance. The flow of OD pair Angouléme-Rochefort through link A is estimated by
d;/a = 82.8 veh/day, with SE[g;,5 1= 26.3 veh/day.

The material in Subsection 2.1 and 2.2 is standard statistical background, see e.g. (6).
However the product of random variables is a less well-known topic apart from the
mean formula when X and Y are independent, E[XY]=E[X]E[Y]. The variance

formula was applied to an LOD flow in (7).

2.4 On parallel combination and graph cut

Let us now turn our attention to a network OD flow: as any trip is made along a network
route, the OD flow is taken as the total route flow over all the routes that take from the
origin to the destination. Moreover, since link OD flows rather than route flows are
available, let us search for a subset of links that intercept all the OD routes in a precise
way, each one with an interception coefficient of +1: then the total link flow over that
subset makes an estimator of the OD flow. In graph theory, such a subset is called a
graph cut j =[S: N \S] separating the destination node from the origin node: it is made

up of the “parallel” arcs that separate a node subset S which includes o from the

" var[XY]=E[X?Y?]-E[XY]? =E[X?]E[Y?]-E[XPE[Y]* =E[X?|(E[Y?]-E[Y]?)
+ E[Y]A(E[X?]—E[X]?) to be averaged with the symmetrical statement of var[Y.X]
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complementary node subset N\S§ which includes d : every o—d route r traverses j
at least once, and the number of oriented traversals of j by » amounts to +1, thus
satisfying the requirement on the interception coefficient.

Anarc a isin j either with positive orientation denoted by e;(a):=+1 ifits tail is in §
and its head in N\S or with negative orientation denoted by e;(a):=—1 if its tail is in
N\S and its head in S. Let also e;(a):=0 for a¢ j. Along cut j, the network OD
flow is estimated as

in/j :zaejej(a)@ia :
Assuming unbiased OD flow estimators, this is an unbiased estimator since
E[in/j] = Zaejej(a)E[éia]:Zaejej (@)qiq =q;-
Assuming further that the information sources are independent, then

Var[éi/_j] = Zaej var[q,,], hence

SE[‘}[/]‘] = Zaej SEz[qA[a] .

Instance. Let us come back to our example. The subset {A, B} makes a first cut from
Angouléme to Rochefort, with g;,4 g = 154.7 veh/day and SE[g;,, g]= 34.7 veh/day.

A second cut {B,C,D,E} provides an estimation of ;g cpg = 251.5 veh/day and
SEZ[@i/B,C,D,E] = 39.3 veh/day.

Out of the alternative informative cuts, which one should be preferred for our purpose
of estimation? The intuitive answer is to select the cut of minimal variance hence of
maximal accuracy. In our example, the first cut is better than the second one since

SE[g;/a8] < SE[4;B.c.0.E]-

2.5 Bayesian mixture of redundant information sources

The availability of alternative informative cuts leads us to the main objective in this
paper: how could we combine various local, link-based OD flow estimators in an
efficient way, and eventually in an optimal way?

Considering again our example, the estimator of link A is redundant with the parallel
combination of links C, D, E: such a redundancy should not induce us to reject the less
informative source, but rather to combine both sources so as to maximize the resulting
accuracy.

The relevant statistical tool is called the Bayesian mixture of information sources:
Bayesian analysis is purported to combine actual observation with prior information in
order to yield posterior information. For any two real independent random variables X
and Y that describe a unique phenomenon, the Bayesian mix X ®Y is a random
variable with variance such that

1 1 1
= +
var[ X ®Y] var[X] var[Y]

Put another way, the accuracy of the mix is the sum of those of the basic variables.
Furthermore,
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var[ X ® Y] E[X]+ var[ X ® Y]
X] var[Y]

which means that the mix mean is a convex combination of the basic means weighted
by their relative share in the mix accuracy. More elaborate formulae exist for

multidimensional variables (denoting by C, the matrix of variance-covariance of

E[X®Y]= E[Y],

random vector X, the mixture Z=X®Y satisfies Cgl = C)_(l +Cy I and
-1 —
E; =C4[CY'Ex +Cy Ey]).

An instance of application pertains to sampling schemes with respect to sample size for
a variable X. Mixing a sample of size N with another sample of size M yields a sample
of size N + M . The variances of sample means satisfy

Var[)A(N] =var[X]/N,
Var[)A(M] =var[X]/ M,
Var[)A(N+M]=Var[X]/(N+M) ,

which corresponds to the formula of the mix variance, since X NeM = X N ®X v - The
means of the samples also comply with the formula of the mix mean, since

E[X v, ] =E[X]

E[)A(N]"‘%E[XM]

__N

T N+M
For our purpose of OD flow estimation, let o and B denote two link subsets that bring
redundant information ¢,,gg: then

SE™[§o ®4p]=SE ™[44 ]+SE[gp]

_SE’[, ®gp]

SEZ[%%]E
SE?[§q]

E[
SE*[Gp]

é(x®‘?ﬁ] E[‘}oc]+ [qAﬁ]

Instance. Coming back to our example, by parallel combination the pooling of links C,
D, E yields (partial) OD flow of mean value 149.6 veh/day and standard error of 32.0
veh/day. Mixing that with the OD flow on link A yields partial OD flow of mean value
109.7 veh/day and standard error of 20.3 veh/day. The parallel combination of the pool
with link B yields an overall OD flow of mean value 181.6 veh/day and standard error
of 30.5 veh/day. This makes a significant improvement over the standard error of any
informative cut, and provides an intermediary estimate of the mean OD flow, which is

valuable because of the large discrepancy between the alternative cut estimates.

2.6 Comments

Two assumptions of independence play a crucial role in the analysis. First, at the link
level we require the link count and the OD survey to be independent: indeed this is a
strong assumption, especially so in interurban road traffic where there is considerable
day-to-day variation, whereas for economical stakes the OD survey is focused on one or
a few days. Then the sample of OD pairs does represent the traffic of the surveyed
period(s), rather than the whole population of trips across the set of periods. This is an
issue of ill-representation or of indirect dependency, rather than of statistical
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dependency since the statistical protocols for link counts on one hand, link OD survey
on the other hand, may perfectly well be independent; however the time restriction of
the OD survey induces an indirect dependency through the specific structure of traffic in
the surveyed period, as compared to the overall structure of traffic across the set of
periods.

Second, in the framework of Bayesian mixture the basic variables are required to be
independent: thus in the example we were driven to take B apart and identify that A is
redundant with {C, D, E}, instead of pooling {A, B} with {C, D, E, B} in a
straightforward way. In practice, a straightforward pooling of the informative cuts
would of course yield improvement over the selection of only one informative cut, be it
that of least variance. Taking the mean of the two cuts would yield a mean OD flow of
203.1 veh/day — also an intermediary value — and an approximate (yet flawed) standard
error of 26.2 veh/day.

Therefore the main issue is to design a systematic procedure to combine the local
information sources into a network estimator of OD flow. Admittedly, although our
example was designed as a classroom case, its by-hand treatment was somewhat
involved and tedious. The next Sections provide a systematic procedure, of which the
computer implementation is easy.

3.  OPTIMAL ESTIMATOR WITH GRAPHICAL PROPERTIES

Let us now state the problem of optimal estimation and provide a mathematical analysis
and characterization. In Subsection 3.1 some notation is given and some graph-theoretic
properties are recalled. Then, in Subsection 3.2 the problem of optimal estimation is
stated on the set of linear combinations of link OD flows, as an unbiased combination of
minimal variance: two lemmas are helpful, first to characterize an unbiased linear
combination and second to relate it to a network field of node potentials. Next,
Subsection 3.3 is devoted to the derivation of optimality conditions, which amount to a
linear system in the node potentials. In Subsection 3.4, the issues of existence and
uniqueness of an optimal estimator are addressed. Subsection 3.5 provides an
alternative, equivalent form as an electrical network problem of energy minimization,
where energy pertains to statistical imprecision. Lastly, the framework is adapted to
relax the assumption of independence between the local estimators.

3.1 Notation and assumptions

We consider a network graph G =[N, 4] where N is the set of nodes n and A the set

of arcs a with tail node n] and head node n,. Two particular nodes are given: o, the

origin, and d, the destination. A network route r is a sequence of distinct arcs
a,as,...,a, such that for any i the head of a; 1s the tail of q,,;.

Let us recall the definition of the node-arc incidence functions:

- positive incidence function: e (n,a) =1 if a leaves n or 0 otherwise,
- negative incidence function: e (n,a) =1 if a enters n or 0 otherwise,

- (net) incidence function: e(n,a)=e* (n,a)—e” (n,a).

Optimal Network Estimation of OD Flow from Link Data ~ November 2008, Submittal to 88th TRB meeting’09
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The incidence matrix E is the NxX A matrix whose entries are the e(n,a). If the graph
G =[N, A] has weights w, on its arcs, the weighted incidence matrix E,, is the Nx A4

matrix whose entries are the e(n,a)w, .

The Laplacian matrix L,, of a multigraph G =[N,A] with arc weights w, is a
symmetric, N X N matrix defined by

dw, if n=n'

a:e(n,a)#0
L,(nn)= 0 if n # n' and n and n' are non - adjacent

> —w, if(n,n’)or(n’,n)isanarca
a:e(n,a)e(n’,a)#0

The last line means that if n and »' are adjacent, the value of the corresponding entry in
the Laplacian matrix is the sum of the weights of all arcs having n and »' as endpoints.
In particular, if G is a simple graph, this sum has at most one term: w(, ,»y Or W, )

(whether (n,n") or (n,n) exists).
The following property will be useful to us:
EE, =L ..

The OD pair i =(0,d) is serviced by o-d routes r € R, such that any arc a cannot be
traversed more than once by r: then the arc-route incidence function e, (a) is defined by
e.(a)=11ifaer ore.(a)=0 if a¢ r. The OD flow g; is made up of the route flows
q; :ZreRi qr :zreiqr :

Our objective is to recover the mean OD flow g; of the underlying random variable ¢,,
which induces random flows ¢, of mean value g,. The information sources are link
OD flow estimators §;,, which we assume to have no bias and variance o2.
Furthermore, the OD flow estimators of distinct links are assumed to be independent
hence cov[q;,,4;,]=0 if a#b.

3.2 Problem statement and solution
Let us now state the problem of optimal estimator in a precise way as follows:
“Given a set of unbiased, independent link OD flow estimators q,, of variance 52’ find

a network estimator q; =) .. 4A.q;, as a linear combination of the link estimators

with real coefficients A, such that it has no bias i.e. E[q;]=q; and minimal variance
var[g;]= ZaeActzl kza among the set of unbiased linear combinations”.

Our mathematical analysis is aimed to demonstrate the theorem that follows.

Theorem 1, Optimal linear unbiased estimator for network OD flow. The linear
estimator q; =Y _ 4A.q;, of minimal variance is such that A, =7(n,)—"n(n}) for
every arc a=(n,,n,)e A, where the potential field Te R solves the following
System
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(Lcﬂc)(n) =0 forne {o,d}
(o) =0 (1)
n(d) =1

The system above has |N | linear constraints and |N | unknowns. Hence, it is easy to

compute the linear, unbiased estimator of optimal variance (for instance on the basis of
Gaussian elimination). When ¢,, is not available for some arcs a, it is still possible to

compute the best linear estimator with a simple technique of graph contraction that is
explained in the next Section (provided that there be at least one o—d cut with ¢;,

available on every arc).

The proof of Theorem 1 is based on two lemmas: first, to characterize an unbiased
linear estimator by a set of conditions on the coefficients (A,), 4 along any o—d

route; second, to replace these conditions about the routes by an equivalent condition
which pertains to node potentials and is much more tractable.

Lemma 1, Unbiased linear estimator. The linear estimator §; =Y, .. A,G;, is an
unbiased estimator of the o—d flow if and only if one has 3, _ A, =1 for all o—d

agr

routes r€ R;.

Proof. The random variable ¢, is an unbiased estimator if and only if
Blgi1=4;=2,c:4, - ()

First, ¢;=2 ., 4Auqis- Second, G, =2, .;4,/, in which the flow of route r as

intercepted on arc a is indexed also by “/a” to indicate that the estimator is notional (it
is not required to have it, we only use the link OD estimator): as we assume unbiased
link OD flow, consistently the notional estimator should be unbiased hence

E[G,,,]1=q, . On combining, we get that E[¢;]1=>__ ,A,>.,;El4,,,], hence
qi :Zreiqr[ZaeAka]' (3)

For estimator ¢, to have no bias, both (2) and (3) must hold for any value of a mean

route flow g, : by identification, it must hold that
Vre R, Y ha =1, 4)
Lemma 2, of Feasible Differential. Let (A,),. 4 be a vector indexed by the arcs of G
and let p be any real number. Then ). _ A, =p for aset R; of o—d routes r if and
only if there exists a field of node potentials T=[n(n):ne Nle R" such that
i. mo)=0,
ii. mw(d)=p and

iii. A,=m(n,)—n(n}) forevery a=(n,,n,)e 4.

Proof. Let us define A, =)’

the upstream subpath of » from its origin up to n [resp. the part of r strictly
downstream of #n]. Indeed, if such a network potential 7 exists, then A satisfies
trivially A, =p for any o—d route r. Conversely, suppose that such a A exists. Define

4er My for any route » and denote by r=n [resp. r<n]
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(o) :=0. For any node n in G distinct from o and such that there is an o—d route r
passing through n, define &, (n):=A,,: in fact w,.(n) does not depend on r since for
any other o-d route r’ passing through n, from the constraints on A we have that
T, (n)+A,<,=p aswell as T,-(n)+A,<, =p but (r2n)U (" <n) makes an o-d route
+A =\

points 1, 1i, iil.

hence A,-,+A,.<, =p which implies that A,., =A,», =n(n). Let us now check

i.  m(o)=0 by definition.

ii.  m(d)=p since the sum of the A, on a route from o to d isequalto p.

ysn FA, A<, with
p=m(d), knowing that A,s, =7(n) and A,  =7(d)—7(n"), it holds that
A, =n(n")—7(n).

Actually Lemma 2 holds for the subnetwork G,; =[N,;,4,;] defined by

iii.  Take an arc a = (n,n") traversed by an o-d route r: as p=»A r<n

N,; =N, NN, with node set N comprised of all nodes n reachable from o by a

positive o—n route and node set N, made up of all nodes n connected to d by a
positive n—d route, the arc set 4,; being the restriction of 4 to the arcs with both
head and tail in N,;. To ensure Lemma 2 to hold for the whole of 4, let w(n) :=7(d)
on N;\N,, let n(n)=m(0o) on N}\N, and let n(n):=0 out of N:;UNJ. Thus
A, =0 for ae A\ 4,;, which is consistent with ¢, =0 and 65 =0 since no o—d
route passes through a.

The Lemma’s name was devised after (8).

Bringing the definition of an optimal estimator together with Lemma 1, a linear
combination (A ), , is optimal if and only if it solves the following convex program:

ac A
Min Zsﬁ 7»%1 ;2 A,=1 forevery o—d route r. 5
Ae R ac A agr

In the present form, the set of constraints has an exponential description. On using
Lemma 2 to reduce the number of constraints, the program above is equivalent to

Min ¥ of, ) -ml’;  w0)=0; wd)=1, ()

neR” (n,n")e 4

or, in a more compact way,

2

Min [Eq7|";  m(0)=0; m(d)=1. (7)
neR Y

To solve this convex minimization program subject to linear constraints, let us write the
Lagrangean function L= ||EG TE||2 +u,m(o)+un,[m(d)—1], in which “dual” variables u,
and p, are associated to the potential constraints at node o and d, respectively.
Differentiating the Lagrangian with respect to the variables m(n) for ne N yields:

9L 2B ELm(n)  for ng o.d). (8)
on(n)
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L (BB m)(0)+p,, and
on(o)
oL
) 2(EEs m)(d) +hy -

As it is easy to define u, and P, so as to satisfy the above relations, the following
conditions are necessary and sufficient for the optimality of a potential field 7« :

(EcES m)(n)=0 for ne {o,d}, 9)
n(d)=1,
m(0)=0,

which is exactly the claim in Theorem 1 since E;ES =L 5.
o

3.3 The issues of existence and uniqueness

The problem as stated in (7) is a quadratic minimization program with non negative
coefficients: there exists an optimal solution if and only if there is a feasible solution,
which can be derived on the basis of the following Lemma.

Lemma 3, Feasible Solution. The program (9) admits a feasible solution if and only if
o and d are positively connected and there is an o-d cut j=[S:N\S]| made up of

informative arcs with Gi <o, The associated feasible solution is m(n):=0 at ne S and

n(n)=1at ne N\S.

Proof. If there is an o-d route which does not traverse any informative arc, then it is
impossible to estimate the OD flow since that route flow cannot be estimated. A
necessary and sufficient condition for no uninformative o—d route to exist, is that an
informative cut exists that separates d from o: it is sufficient because it prohibits the
existence of an uninformative o—d route, and it is necessary because if no such cut
exists then either there is an uninformative o—d route or there is no o—d route,
meaning an infeasible problem. The feasible solution associated to an informative cut j

yields A, ==¢; (a)/Gﬁ along the cut and A, =0 out of it.
About uniqueness, in general the linear system provided by Theorem 1 is non-singular,

meaning that the optimal linear estimator is unique. More precisely, we have the
following Proposition.

Proposition 1, Uniqueness of optimal estimator. If all the q,, have strictly positive

variances, then the system (9) provided by the Theorem [ is non-singular.
Proof. Let us suppose that there are two optimal linear estimators ¢, => A,q;, and
g: =>.N,q;, » with var[g;]=var[g;]. It holds that

. . s A, +N, .
var[g;] < Var[%q,- +%qi] = Z(%)z var[g, |
<L (XN, varl§y, 1+ A7 varl§;,]) = var[g;]

The second inequality stems from the fact that (A, + A, )2 < 2(k2a + k;z ).
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Hence, all inequaliti lities, and (22*2)2 =1 (a2 +22) f h
ence, all inequalities are equalities, an. (T) —5( , T A, ) foreveryarc asuc

that var[g,,]#0, i.e. A, =\, for every arc a such that var[g,,]#0.

For instance, if there are several o —d cuts with variance zero, the system is singular.

Hereafter a related remark about an optimal linear estimator of null variance zero is
given, which may simplify in some cases the construction of the estimator.

Proposition 2. [f the optimal linear estimator has null variance, then there is an
optimal linear estimator associated to an o—d cut.

Proof. Take an optimal linear estimator of variance zero. Whenever A, #0 we have
var[g,,]=0. Since the A, come from a potential field 7, there is a nonzero A, on any

o—d path r (directed or not). Hence, if we delete all arcs with A, #0, o and d are in

distinct connected components (connected in the sense of the underlying undirected
graph). There is therefore an o—d cut with A, # 0 for all its arcs, hence var[g,,]=0

for all its arcs, implying that the cut estimator has variance zero and is optimal.

3.4 Energy minimization problem in arc flows

In the linear system that characterizes the optimal node potentials, each node constraint
formulated as dL/dn(n)=0 at node n can be interpreted as a flow conservation

constraint at n. This leads us to design a problem of network flow, precisely a nonlinear
distribution problem, which is equivalent to the node potential problem and enables one
to deal with uninformative links in a straightforward way.

Let us restate system (8) as:

1 oL p B
2o (EgEL m)(n)+b, =0 (10)

with b, =p, /2, b, =n, /2 and b, =0 Vne N\{o,d}.
As Egm=[0,(n(ny)~m(n,))],e 4 and
(EEGm)(n) = 3 4e(n,a)0 (n(n}) —1(ny)
=Y e 4t Ca (M) =T(0)) =3 e 4- O (RUn7) = (n))
the system is equivalent to
Ve N 3,4 Oaling)=(m)]= X e 4= Oa[n(n)—n(n})]=b,
On replacing Gi[n(n;) —7(n})] by an arc flow x,, we get that
Vne N ZGEA;xa—ZaeA;xa:bn, (11)

or in matrix notation Ex=b5b,
which states the conservation of flow at node n, or more precisely: That at node »n the
network flow x=[x,],c 4 receives a net inflow b, from the outside. At nodes distinct

from o and d the net inflow is zero, meaning flow conservation. At o the network
imports b, whereas at d the network imports b, : then it must hold that b; =-b,, .
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We also characterize flow x by the requirement that there exists a potential vector T
such that x, = o2[n(n;)-m(n’)]. Let R, =1/62 if 62 >0 or 0 if 62 =0 or R
otherwise — an arbitrarily large value to cope with the case of zero Gi which means a

deterministic knowledge of link OD flow g¢;,, and let 4* be the subset of informative
links with G2 < oo it holds that

Vae 4% mn,)-7n(n})=R,x, (12)

An uninformative arc has infinite variance so x, is finite only if 7(n,)=m(n), which
further requires R,x, to be zero. This is compatible with (12) applied to ae 4\ 4* with
R, =0, so from now on the distinction between 4* and A4 can be ignored. In matrix

notation, letting R , = Diag[R, :a€ A], the extension of (12) to A4 is restated as

~E'n=R  x (13)
The set of conditions (11), (13) amounts to the primal-dual optimality conditions of the

following optimization program:

min, J(x)=2x'R x=1% _ R,x; st Ex=b (14)

ac A

since those primal-dual conditions are made up of (11) together with the zeroing of the
Lagrangian derivatives d£;/dx, = R,x, +7(n} )—7(n}), in which 7t(n) now stands for
the dual variable associated to the n-th constraint (Ex)(n)=5b, .

Thus the network flow is an optimal solution to the problem of minimizing some kind

of electrical energy. The arc resistance R, =1/ GZ is the reciprocal of the link variance,
hence it is homogeneous to the precision (or accuracy) in a Bayesian mixture. We can

also think of x as an imprecision flow, in consistency with
Imprecision = Variance = c° (A?t)2 = Gz(An) =X since AT is a number

To sum up our discussion, let us state:

Theorem 2, Optimal imprecision flow. On the oriented graph G =[N, A] with node-
arc incidence matrix E, consider the diagonal matrix R , of n-th term R, = 1/65 and
the inflow vector b with components +1 at node o, —1 at node d and 0 elsewhere. The
network flow x that minimizes J(x) =%xt R, x subject to Ex=b yields node
potentials w(n) and arc tensions v, =x,/6>. Letting A, =v,/(n(d)—n(0)), the
coefficients (A,) e 4 provide an optimal unbiased linear estimator q; =7y .. /A,q;, of

the network o—d flow g, on the basis of the independent link origin-destination
estimators q,, of variance Gi.

A range of algorithms were designed to solve the electrical network problem (14),
including methods analogous to traffic assignment algorithms since electrical
equilibrium closely resembles traffic equilibrium — see e.g. (9, 10).
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3.5 The case of dependent local estimators

If the link estimators ¢,, are independent then their covariance satisfies cov[g;,,4;;]1=0

if a#b. However some dependencies may arise, yielding non zero covariance that
must be taken into account. It is straightforward to extend the node potential problem to

that case: denoting by v, =cov[§,.q;] and knowing that o> =cov[§,,q,], the
variance of a network estimator becomes

var[q;] = Za’beAkakbvab ) (15)

With respect to node potentials that are still in order since an unbiased estimator is
required, then

G(m) = var[§,] = ¥, e 4 Va[T(n,) = 7(n)][(n; ) — T(n, )] (16)

The problem of variance minimization still has first-order optimality conditions that are
linear in the m(n) variables, since

0G
on(n)

=2, se(ma){ogmng) = m(ng)]+ 3., vas [R(n,) = 7(n; )]} (17)

The linear system of zeroing the Lagrangian derivatives that combine dG/dn(n) with

the potential constraints at nodes o and d, is still easy to solve. The feasibility and
existence condition is the same as in the independent case because the essential
requirement is to have an informative cut separating d from o, be it made up of
independent or dependent local estimators.

4. OPTIMAL ESTIMATOR IN PRACTICE

If a measure g,, is available for every arc a used by the o—d flow, the best linear

estimator is easily computed from the system in Theorem 1 through Gaussian
elimination. In this Section, we will see how to deal with arcs for which no information

is available and how to check if there are enough measures ¢;, to derive a network
estimator ¢; . This can provide some indication in the design of an observation scheme.

Several examples of the method will be given. Lastly, we shall analyze the
computational complexity of the algorithm.

4.1 What if no information is available for some arcs?

Actually, the answer is easy. In the convex program in the proof of Theorem 1, the

index set of the sum 362X’ is restricted to those arcs a for which a measure §,, is

available of finite variance Gg <o. Now, for any arc a=(n,n") for which no

information is available i.e. GZ =oo, let us define A, :=0 and take the convention that
0.0 =0. This does not alter the optimal value of the convex program if it is feasible,
and now the sum of the A, along any o—d route is well-defined and equal to 1. The
remainder of the proof of Theorem 1 becomes valid and yields that m(n)=n(n")
wherever no local information is available on arc (n,7"). This means that we could have
contracted any such arc without modifying the solution. The contraction of an arc is a

Optimal Network Estimation of OD Flow from Link Data ~ November 2008, Submittal to 88th TRB meeting’09



F Leurent, I Meunier 18/23

classical operation in graph theory (/7). Recalling that a loop is an arc of which the
endpoints are identical, to contract an arc means:

¢ To unify its two endpoints into a single node;
e To delete all loops that may have appeared.
The method for finding the best linear estimator can be summarized as follows:

Contract all arcs for which no information is available. Then solve the system in
Theorem 1 for the contracted graph, in which all the arcs are informative for the o-d
pair. Lastly, coming back to the original network, assign to each original node the
potential of the associated unified node in the contracted network, and to each original
arc the tension A, that stems from the potentials of its endpoints.

Note that the sequence of contractions is easily computed, for instance on the basis of a
forward-star representation of the network. The contracted graph yields a linear system
of reduced dimension, which allows for efficient solution.

4.2 Some indication on the design of the measures

According to the previous Subsection if, after all possible contractions, the nodes o and
d have been unified, then no o-d flow can be estimated from the available measures.
An alternative test is:

Delete all arcs for which a measure is available. An estimator of the o—d flow can be
derived if and only if o and d do not remain in the same connected component.

Note that it is easy to test if two nodes are in the same connected component (with
depth-first-search for instance).

Moreover, loops with available measure that are deleted during the contraction steps are
useless: the measures on such loops are lost. Hence,

To avoid useless measurement, the set of measured arcs must be the union of undirected
o—d cuts.

4.3 Examples

Two arcs in series. Consider the graph with two arcs in series: (o,n) and (n,d) as in
Figure 3a. Suppose that the two measures ¢, ,, and ¢, are available and have the

same standard deviation 6, =1. Thus

1 -1 00
L,=[-1 2 -—1|n
o
0 -1 1)4
0 n d

Let us apply Theorem 1: m(0)=0, m(d)=1 and —7(0)+2n(n)—7n(d)=0. Thus,

1
5

The optimal estimator ¢ is equal to %‘Al(o, ) +%C}(n, 4y» in accordance with the intuition

(n) =%. The optimal coefficients for the arcs (o,n) and (n,d) are both equal to

that the serial combination of observations amounts to pooling them with specific
weights.
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Two arcs in parallel. Consider the graph with two arcs aand a' in parallel as in Figure
3b. Suppose that the two measures ¢, and ¢, have the same standard deviation
6,=6,=1. According to Theorem 1, the optimal coefficients are both equal to
n(d)—m(o)=1. The optimal estimator ¢ is then equal to ¢, +4,, in accordance with
the intuition that the parallel decomposition of flow corresponds to a summation.

The realistic example of Section 2. Consider the realistic example in Section 2.
Contraction of the uninformative arcs yields the graph depicted in Figure 4. This graph
has three nodes: o, n and d and five arcs 4, B,C, D, E. Denoting also by

A, B, C, D, E the variances of the corresponding arcs, we obtain that

A+ B —A -B 0
Lyo=| -4 A+C+D+E —-C-D-E |n
-B —-C-D—-E B+C+D+E)|d

0 n d

Application of Theorem 1 yields thatm(d) =1 and also
—An(0)+(A+C+ D+ E)n(n)—(C+ D+ E)n(d)=0. This leads to

(n) = _CHDFE at the Cognac node.
A+C+D+E

Hence A, =m(n)=0.41, Az =1, Ao =Ap =Ag =1-7(n)=0.59.
Thus the optimal estimator of the OD flow is
> aMaGia =0.59(q;c +q9;p +q;p)+0.41g,, +1.0g;3 =182 veh/day,
while its variance amounts to Zakzacsﬁ =~0.41>(C+D+E)+0.592°4+1.0°B =923,
yielding SE = 30,4 veh/day.

This is consistent with, and simpler than, the by-hand computation in Section 2.

(@) ()

FIGURE 3 (a) Two arcs in series; (b) Two arcs in parallel

Rochefort Angouléme

FIGURE 4 Contracted graph of the Angouléme-Rochefort OD pair
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4.4 Computation scheme and its complexity

Let 7 (resp. @ ) denote the number of nodes (resp. arcs) in the original network, and ¢
be the size of the set 7' of informative links.

The graph contraction to keep only the informative links and to delete the loops requires
anumber O(n +a) of elementary operations. To prove this claim an efficient algorithm

is provided hereafter, since a naive implementation would lead to a complexity of

O(na) . The algorithm includes the following steps:

- Initialization. Assume a forward-star representation of the original network with
node field FO[n] to indicate the first position of an outgoing arc a€ A4, in the
array of arcs, and arc field HO[«] to indicate the head node of arc a.

- Incoming arcs. Associate to each node its incoming arcs by building a backward-
star representation of the original network, with node field FI[n] to indicate the
first position of an incoming arc a€ A4, in the backward array of arcs, and arc field
TI[a] to indicate the tail node of arc a. An auxiliary field NI[#] is required to
count the arcs coming in 7. This works as follows:

e Forn=1ton let Nl[n]=0;

e Forn=1ton,for a=FO[n] to FO[n+1]-1, NI[HO[a]]:=NI[HO[a]]+1,
o Let FI[l]:=1;

e Forn=1ton let FI[n+1]:=FI[n]+ NI[n] and NI[n]:=0;

e Forn=1ton, for a=FO[n] to FO[n+1]—1, Let m:=HO[a],
TI[FI[m]+ NI[m]]:=n and NI[m]:=NI[m]+1.
- Connected components. Assign each node n to its connected component in
network [N,A\T], i.e. the subset of all nodes m such that there is a path from »

to m made up of arcs in 4\T whatever the arc direction. The method to discover
the connected component is to mark the nodes progressively, only one time each:
on the first time that an arc connection reveals that the node belongs to the
component under construction, the node is included in a chained list to wait for
treatment, which consists in searching its own connections to other nodes. To that
end the following fields are required: field CN[n] to relate node »n to its

component, which is referred to by its minimum node index; component index
CI[#] to relate node n to its component index n° in {l,.77} where 7 stands for the

number of connected components; and reverse component rCI[n°] to relate

component index x° to its node of minimum node index; and also a “next node”
field NN[#] to chain node n to the next node in its connected component, or to

contain 0 if 7 is the last node in that list. Here are the detailed operations:
o Jetn=0;
o Forn=1ton let CN[n]:=n, NN[n]:=0, CI[n]:=0 and tCI[n]:=0,
e Forn=1to n,if n=CN[n] then:
» Letn=n+1, Cl[n]:=n and rCl[n]==n;

» JLet f=n and ! =n // pointers on first and last elements in list;
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= Repeat:
o Let CN[f]=n and CI[f]=n;

o for a=FO[f] to FO[f +1]-1, if (a¢ T ) and (NN[HO[a]]=0) then
let NN[/]:=HO[a] and ¢:=HO[a];

o fora=FI[f]to FI[f+1]-1,if (ae T ) and (NN[TI[a]]=0) then let
NN[/]=TI[a] and ¢ =TI[a];

o Let f=NN[f];
Until (£ =0).

- Contracted network. Build a forward-star representation of the contracted
network, excluding loops, by using node array FC[r°] of outgoing informative arcs
and arc array HC[a®] of head node. An arc field OA[a®] relates each arc @° in the

contracted network to its index a in the original network. An auxiliary node field
NA[#7°] is required to count the number of informative arcs that go out of »°. This

works as follows:

Define a the number of contracted arcs and initialize its value at zero.
For ni=1to n, for a:=FO[n] to FO[n+1]-1, if (ae T ) and
(CN[HOJ[a]]# CN[n]) then let NA[CI[n]]:= NA[CI[n]]+]1 and a =a +1;
Let FC[1]:=1;

For n°=1 to n do FC[n°+1]:=FC[n°]+ NA[r°] and NA[r°]:=0;

For ni=1to n, for a:=FO[n] to FO[n+1]-1, if (ae T ) and
(CN[HO[a]]# CN[n]) then let NA[CI[n]]:= NA[CI[n]]+1,

b :=FC[CI[n]]+ NA[CI[n]], HC[b]:=CI[HO[a]] and OA[b]:=a.

As each step Initialization, Incoming arcs, Connected components and Contracted
network has a computational complexity of O(7 +a), so does the sequence of them.

Now, letting z denote the number of traffic demand zones, there are z contracted

zones with respect to the contracted network, yielding at most z72<z? 0D pairs.

For any contracted OD pair, the computation of the optimal network estimator is
performed along the following steps:

customization of the local information, yielding the link OD flow ¢;, and

variance GZ (in fact Gg)z) by contracted arc a for that OD pair, in O(7)
operations.

Building the customized Laplacian matrix L(;)z ,an O(@)=0(%) task since the

matrix is made up of zeroes save for the accumulation of 62 in cells (nj,n;

and (n,,n;) and in the diagonal line.
Solving Lg)z n) equal to a simple vector in the right-hand side: by using
Gaussian elimination this amounts to a 0(53) task.

Deriving the arc coefficients X(ai) from the node potentials ng) ,an O(a) task.
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Overall, the computational complexity of the OD treatment amounts to O(ﬁ3), making

the whole computation of an “optimally estimated” trip matrix an 0(3217 3 +n+a)
task.

5.  CONCLUSION

A systematic, efficient yet relatively simple method was provided to estimate an OD
flow at the network level on the basis of link OD information on a subset of network
links. The problem of optimal estimation is stated as the estimator of minimal variance
among the linear combinations of link-based estimators that are unbiased. This problem
is endowed with nice graph-theoretic properties: notably, the combinatorics are reduced
to a linear system in node potentials, or equivalently (in the independent case) to a linear
system in arc flows.

Our model does not require any assumption about route choice proportions, contrarily to
entropy-based models (/2) and related statistical approaches (/3). Based on this fact,
future work could be targeted at the joint estimation of OD flows and route choice
behaviour, on the basis of additional information about route attributes and of a
behavioural model of traffic assignment to road networks. Among the topics that also
deserve further research, let us mention: the use of additional link counts deprived of
OD link surveys; the consideration of counts between link pairs, particularly so when a
cordon trip matrix is available; the treatment of biased local estimators.
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