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User Equilibrium in a Bottleneck under Multipeak
Distribution of Preferred Arrival Time

Fabien Leurent, Nicolas Wagner (Université Parig;Eymt)
Abstract

This paper studies the pattern of departure timessangle bottleneck, under general
heterogeneous preferred arrival times. It delivim®e main outputs. Firstly, the

existence of equilibrium is proven without the slaal "S-shape” assumption on the
distribution of preferred arrival time i.e. thatndand, represented by the flow rate of
preferred arrival times, may only exceed bottleneakacity on one peak interval.

Secondly, a generic algorithm is given to solvedbparture time choice equilibrium

problem. Lastly, the graphical approach that pezgathe algorithm provides insight

in the structure of the queued periods, especwdlyoy characterizing the critical

instants at which the entry flow switches from admg rate (over capacity) to an
unloading one (under capacity) and vice versa. Nigaldllustration is given.

Keywords

Traffic equilibrium. Bottleneck model. Departureme choice. Heterogeneous
demand. Schedule delay.
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Manuscript Text

1. INTRODUCTION

Transportation planners have long known how to rdatee equilibrium between
travel demand and supply in a static framework., ¥etmpared to dynamic models,
static models tend not only to overestimate th#icréoads on major links in peak
periods, but also to underestimate the travel aloag them! It is much better in such
cases to use a dynamic equilibrium model, featuboth the dynamics of traffic
phenomena and congestion, and the users’ choicedepérture time. This is
particularly true in the urban setting because ribwork users are able to adapt
themselves to a time-varying quality of servicedajusting their departure time, by
leaving earlier or later than initially planneda®to trade travel cost against the delay
cost of a time lag at the destination between thetmal and target arrival times.

The seminal paper on trip scheduling is due to kégkl), who considered a fixed

number of commuters traveling from an origin toeatthation by a single route where
congestion occurs at a bottleneck; each user l@mgroeconomic agent minimizing

a cost function that involves travel time as wellscthedule delay. In the simplest
version of the model, Vickrey considered homogeseogers that have same
preferred arrival time and same cost function.

Many extensions of the model have been providdteriiterature, with focus on user
heterogeneity. That pertaining to preferred arrivimhes has been treated by
Hendrickson and Kocur2] with no solution algorithm. Heterogeneity pertamto
the costs of travel time and of schedule delay besen addressed by e.g. Van Der
Zijpp and Koolstra ), Arnott et al (4). Other extensions include the modeling of
stochastic demand and capacity, multiple routeslastic demand — for review see
Arnott et al (5).

The known results about the equilibrium pattern départure times can be
summarized as follows. When the preferred arriiraketis common to all users, a
single congestion period emerges with queue atlebeitk first increasing to a
maximum and then vanishing)( Smith @) and Daganzo/ showed that this simple
departure pattern holds for a distribution of pnefé arrival times, under the so-called
“S-shape” assumption of a unique peak period,a.single interval on which the
density of preferred arrival times exceeds thelégck capacity rate. However, in
the case of a finite number of preferred arrivdiesiules and heterogeneous cost
functions, Lindsey &) and Van Der Zijpp and Koolstr8)(showed that the resulting
departure pattern may be much more complex withsiplys several congestion
periods and multiple maxima in queuing time. Rannaidet al (9) addressed a similar
model to 8) in a game-theoric framework.

The purpose of this paper is to extend model oftlsrand Daganzo to a general
distribution of preferred arrival times. Indeedsthnduces a complex pattern of
departure times, as ir8)(and @). The core principle in our analysis is to cast th
distribution of departure times into a differentiajuation which involves the
distribution of preferred arrival times, as medihtey bottleneck flowing, together
with the costs of schedule delay and travel timdwe Tdifferential equation

characteristic of equilibrium also inspires a soltalgorithm, which consists in

searching for candidate initial instants of quepedods.
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The paper is organized into four main parts anodrelasion. First, Section 2 states
the modeling assumptions and provides intuitivesoaang into the structure of the
equilibrium pattern. Then, in Section 3 the charastic differential equation is

obtained by mathematical analysis of the optimaldpditions. Next, Section 4 states
the solution algorithm and provides a theorem ofstence of a departure time
equilibrium under general distribution of preferrauival times. Section 5 is devoted
to numerical illustration. Lastly, Section 6 giv&sme concluding comments.

2. THE MODEL

Consider a single origin-destination pair connedigd single route, and a set Nf
users with heterogeneous preferred arrival timesa Igame-theoretic perspective,
every user is modeled as a microeconomic agenirgpekilaterally to minimize a
travel cost function by adjusting his departureetim His choice behavior involves a
cost function of the travel time/(h) at h; the distribution of individual choices gives

rise to a distribution of departure times which emla cumulated trip volume at the
entrance of the route, which may be called the aeimkn turn the macroscopic entry

trip volume, denoted aX, (h) , determines the route travel tim&h o the basis of
queuing dynamics. The travel time functiom represents the supply state. The
demand function linkingX, to w, and the supply function linkingv to X, , make

up a circle of dependency, typical of an equilibrigproblem between supply and
demand.

This section is purported to specify the assumgtiinst on the supply side, then on
the demand side, so as to state the equilibriurbl@noin a formal way.

The following notations will be used:
- H,, H_andH,, respectively are the domains of departure, araval preferred

times. Without going into the details, let us assuhat these are sufficiently large
intervals so that no departure and arrival takasgbut of them.

- X, is a distribution of departure time over, i.e. X, (h) represents the number
of users having departed befonehence also the cumulated trip volume, is

assumed to be continuous and differentiable neaxlgrywhere, with time
derivative x, (h) to be interpreted as the flow rate of departingrsigth. A last

requirement onX, is that at a maximum instat, .., X, (h,.) =N the total
number of users

- K the bottleneck capacity, a flow rate.

- w defined onH, is a travel time function assumdd be continuous and
differentiable nearly everywhere.

- W the function that maps a distributiof, to a travel time functiormw.

- The differentiation of functionf with respect to instart is denoted as .

User Equilibrium in a Bottleneck under MultipeaksBibution of Preferred Arrival Time
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2.1 Transport supply - Flowing model.

Let us first consider the derivation of travel tirhenction w from departure time
distribution X, . Travel along the route is assumed uncongestegpéxerhaps at a
single bottleneck of deterministic capacky. If the entry flow coming in bottleneck
has rate in excess df, then a waiting queue develops where users wdieaoe

gueue according to a First In — First Out discplilet us define the travel time
function w by the following relationship, in whiclfQ(h) denotes the number of

queued users dt in the bottleneck, ant, is the free flow travel time:

wi(h) =t + 20 ®
K
whereQ stems from the following differential equation :
. X, (h)-K if Qh)yz0orx, (h)—-K>0
Q(h) = : (2)
0 otherwise

When X, is continuous, the resulting travel time is well defined and is continuous
and differentiable nearly everywhere. Without ladsgenerality, we assume that
t, =0 thus makingw to stand for waiting time.

The flowing model is represented in a compact wathle following notation:

w=W(X,) 3

2.2 Demand side

User behavior. Every user is characterized by a preferred drtivee n[JH, and a

travel cost function representing a trade-off betwe travel timeand a schedule
delay, defined as the arithmetical time lag betwdenactual arrival time: and n).

Given travel time functiorw, the costg to a user with preferred arrival timg upon
departing ath is defined as:
g™ (h,n) = aw(h) + D(h+w(h) -n) (4)

where D is theschedule delay cost functi@nd a thetrade off between cost and
timealso referred to as the value of time (to the uset)also:

Assumption 1, on Cost of Schedule Delay
a) D is continuous.

b) D is differentiable ori] \{0} with derivativeD,
c) D is convex.
d) D achieves a minimum & and D(0) =0.

These are standard assumptions, é).(8) and yield a cost of schedule delay that
increases with the lag between actual and prefamedal time. Assumptions 1c and

1d makeD to decrease ofl~ and increase ofl ™.

User Equilibrium in a Bottleneck under MultipeaksBibution of Preferred Arrival Time
November 1%, 2008 Submitted to 88TRB Meeting ‘09



Leurent, Wagner 6/20

Each user is an economic agent modeled as a ratiesssion-maker with perfect
information: he chooses his departure time so asimémize his cost function. Given
his preferred arrival tima) and the travel time functiow, his choice of departure

time amounts to the following mathematical program:
ming!™ (h,n) 5)

The distribution of users. Consider now a set dil users with a same cost function
g, but heterogeneous preferred arrival times. Thisepresented by a cumulative

distribution X, on H,: X (n) is the number of those users with preferred drriva
time is less tham. The derivative of X, denoted asx,, is defined almost

everywhere and is readily interpreted as the flate 1of users with preferred arrival
time n. From its definition, X, is increasing and semi-continuous. Let also:

Assumption 2, on the Distribution of Preferred Arrival Time:
a) X, is continuous.

b) x, >K on a finite number of intervals.
c) X, # K almost everywhere

Assumption 2bgeneralizes the S-shape assumption considered),in6j and (),
which could be stated asx, >K on a single interval”’. Those intervals are called

peak periodsas along each of them there are more users thatwoefer to arrive
than allowed by the route capacity. Intuitively igher number of peak periods will
give rise to a more complex distribution of depagttime, with potentially several
distinct queuing periods. Assumption 2a is purebhhical, so is 2c which is required
only to make precise the statement of the algostimBection 4.

The order of departure. In the literature, little consideration has beemegi to
represent the departure choice decision of a aemtis distribution of users. A natural
approach is to introduce a departure choice funddomapping a user with preferred
arrival timen to his chosen departure tinme Then distributionX, stems from:

X (h) = [ Ly mpery X o (0) . (6)

Yet, relation (6) is not convenient to handle. Hur sake of analytical simplicity, let
us assume:

Assumption 3, on Natural Order. The departure choice function H is continuous and
increasing.

This implies that users depart in the order of easing preferred arrival time, and
hence is referred to as the natural order assumpdin obvious issue pertains to the
existence of an equilibrium choice function whicbul not satisfy to a natural order.
Daganzo 7) investigated the case with a strictly convex sdcihe delay costs function
and showed that natural order is satisfied by nred$e functions of equilibrium
choice of departure time. However, this does ntgrekto barely convex functions, as
showed in ).

Under the natural order assumption, equation (6pines:

User Equilibrium in a Bottleneck under MultipeaksBibution of Preferred Arrival Time
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X, =X oH™. (7)

For an increasing functiork such asX or H, our definition of its reciprocal
function F * is as follows:

F(x)=inf{h:F(h)>x}.

2.3 Stating the problem of User Equilibrium

Each user tries to minimize his cost function unukaifect information. By definition,
the user equilibrium (UE) is a situation where ngemcan reduce his cost by
unilaterally changing his decision, here of departime.

A natural statement of the problem is:

Definition 1, User equilibrium based on departure time function. Find an increasing
function H([) such that, lettingX, = X ;o H™:

g™(HMm)m) < g"(h',n) for almost everyn OH ,, WOH,, (8a)

w=W(X,). (8b)

The associated distribution of departure times stémmm natural order. Egn (8a)
expresses the impossibility for any user to improwehis departure time decision;
Eqgn (8b) is the flowing equation.

Let us provide a simpler alternative formulation:
Definition 2, User equilibrium based on departure time distribution. Find an
increasing functionX., (I such that, lettingH , = X;l o X,

g™ (hH () < o™ (n,H(h) for aimost evenh, W' OH,, (9a)

w=W(X,). (9b)

In (9a) the optimality condition is expressed bymerating the users in order of
departure time, whereas in (8a) each user is ldid®lehis preferred arrival time. The
relationship between the two arises from the flaat,tin natural order, the n-th user to
depart is also the n-th user in the order of pretearrival time.

The two problems are equivalent in the followingywa

Proposition 1, Equivalency of equilibrium statements. (i) A solution X, of (9)
yields a solutionH = X o X, of (8). (i) Conversely, ifH is a solution of (8) then

X, = X,oH™ is a solution of (9).

Proof. (i) Assume thatX, is a solution to (9) and considét = X' o X,. ThenH

is defined, an increasing function lofis the composition of two increasing functions,
with associated departure distributioX, . ConsidernlJH, and apply (9a) to
h=H () : then for allh' OH, it holds thatg"! (H (n),n) < g™ (h',n )hence (8a). (i)
Same argument in reverse order.
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This enables us to study the equilibrium by focgsam X, rather thanH . In the
sequel, we address the UE problem in departuredistgbution.

3. PROPERTIESOF EQUILIBRIUM DEPARTURE TIME
DISTRIBUTION

In this section, necessary conditions are derivecr allegedly optimal patterix,

from the optimality equation (9). Then these caondg are shown to be also
sufficient. This line of attack had already beeketaby Smith ), but in the specific
case of an S-shape distribution of preferred drtixze.

3.1 On queued and peak periods

Assuming thatX, is a solution of the UE problem, let us consiger W(X,). As
w is continuous, the sets of such thafw=0} [resp.{w> 0}] are countable unions

of closed [resp. open] intervals. We refer to thasiervals asunqueued[resp.
queuedl periods.

Consider first an unqueued peritd: users departing during incur only a cost of
schedule delay. Thus, it is optimal for a user vpitaferred arrival time) to choose

h interior toU if and only if he hash=r. Otherwise he could lower his cost by
marginally changingh towardsn. Then at equilibriumH ; =1d onU and x, =X,.

Now consider a queued peri€@l. As w is continuous, non negative and is zatohe

endpoints of the period interval, it has a leaseé emaximum value and possibly
minima. The general pattern of travel time is tfane expected to be a sequence of
increasing then decreasing sub-periods.

This gives us a crucial insight into the structwfe an equilibrium state. First,
whenever there is no queue, users arrive (and fegtatheir preferred arrival time
and thus incur no cost. Second, the peak periofisedeabove (atx, > K ), play an
important role in the problem: as unqueued depaffow is equal to scheduled flow
at arrival, an unqueued period cannot intersecteak pperiod except perhaps at
isolated points (since w=0 cannot be sustained whex. >K). Therefore, the
maximum number of queued periods is bounded byntimaber of peak periods;
whereas the number of unqueued periods is limdexhe plus that bound.

To sum up, we have highlighted two important feasuof H, and H, under an
equilibrium distribution The set of departure times is divided into alteedgperiods
of unqueued and queued states. Providedkhabe “large enough”, the first and last
periods should be unqueued. To state this principlelicitly, we denote
Q =]q0,ql[,...,Q2nq+l the sequence of unqueued and queued periggs, and
O+ Deingtransition instantsfrom an unqueued period to the next queued period,
and from queued to unqueued, respectivelgimilarly, we denote by
P =1Py, Pl s---s P2np+1 the sequence of successive peaks (wkgh K) and off peak

(when x, <K') periods inH .

User Equilibrium in a Bottleneck under MultipeaksBibution of Preferred Arrival Time
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3.2 Necessary conditions

Given a solutionX, of the UE problem (9), consider the associatecttians of
travel time w=W(X,), preferred timeH ; = X 1o X, and costg (the superscript

w is omitted for the sake of legibility). Our aimt@sturn the optimality conditions on
the basis ofg into conditions onX, by means of the flowing equation. To do so, the

two states of unqueued versus queued traffic masaddressed as distinct cases.
About unqueued periods, we already established that

X, = X, (10)

and it holds that wh)=0 and H_, (h)=h. Then h= X 1o X,p(h) and
X, (h) = X,(h). This applies notably to each instagtof transition between queued
and unqueued state, yielding that

X (g) =X,(q) foranyil{01.2n, } (11

About a queued perio@, for a given departure instatt in H,, with H (h) the

preferred arrival time of the users departing ht consider the function
g™ :h'> g(h',H (h). As the functionsh'> w(h )and h'— D(h'+w(h’)—=H (h))

are differentiable a.e. o®, so isg™. Denoting g™ its derivative, for almost every
h it must hold thaty™ (h")= 0

Yet asD is differentiable orJ \{0} , wheneverh'+w(h') -H (h) z 09" is
g™ (h) = aw(h') + D, (h+w(h) = H  (h)) @+ vi(h')) (12)

Eqgn 12 is easily extended a.e. @nby definingD, (0) =0. For almost everh inQ,
we thus have:

aw(h') +D, (h'+w(h'’) -H (h)) L+ W(h')) =0 (13)

Introducing the flowing equation (3), we get that:
X, =K (14)

D,(/)+a

where /(h) =h+w(h) -H (h)is the arrival time lag of the user departindhat

Eqgn (14) has two remarkable features. Fixst< K whenever/ >0 and x, >K

when /< 0. Yet, / can be interpreted as the schedule delay incussed user
departing at. Consequently, each queued period can be divideaily sub-periods
when users depart early (that is, depart at a yielding arrival earlier than preferred
ex-antg, during which the entry flow rate is beyond capaand the queue builds up;
and late sub-periods when users depart late, dwingh the entry flow rate is under
capacity and the queue diminishes. Second, (14) bmarstated as a differential
equation inX, over Q =]q._,;q [. Indeed, according to the flowing equation (3) we

havew = (x, —K)/K on Q,, so by integrating oveljg,_;;h :[

User Equilibrium in a Bottleneck under MultipeaksBibution of Preferred Arrival Time
November 1%, 2008 Submitted to 88TRB Meeting ‘09



Leurent, Wagner 10/20

W(h) +h=q_, + X, (h) _KX+(qi—1) (15)

Taking the definition ofH | = X;l o X,, the arrival time lagg can now be expressed
as a function of X,, so that (14) yields the following differential weion in
X, =[x, dh:

dX, a

=K. _ (16)
dh o+ Dé(qi—l + X, (h) é(+(qi—1) _ X;l o X+(h))

To sum up, we have shown that the equilibrium departime distribution satisfies
the differential equations (10) and (16) respetyiven unqueued and queued
intervals. Successive integrations of these eguositialong theQ, periods with

appropriate initial condition coming from the prews period yields the equilibrium
departure time distribution, provided that Qg periods are given.

3.3 Necessary and Sufficient Conditions

Let us now demonstrate that the necessary conditioa also sufficient conditions,
owing to the following property:

Proposition 2. Let X, be a departure time distribution with associatedusenceQ,
of unqueued and queued periods. Thenis an equilibrium solution state if and only
if it satisfies (14) and (11) o®,; and (10) onQ,;.; -

Proof. Having demonstrated the “only if” part in the pias subsection, let us tackle
the “if” part by taking a departure time distribarti X, with associated distributions

w=W(X,) andH = X;l o X, of travel time and preferred time, respectivetyis|
assumed thalX, satisfies (14), (11) oi®,, and (10) onQ, ;. Let us fix anyh in
H, and consider the functiog® : h'— g(h',H  (h)). Our aim is to show thag™
admits a global minimum at'=h. From its definition g is continuous and
differentiable almost everywhere, with derivatig€’ given by (12).

Since H ; is an increasing function (as composition of tworeasing functions), as is

D, because of the convexity of @™ is a decreasing function d¢f : around point
h' =h we have that:

g™ (h)Zg™(h) if h'Ih (17)
Yet g" (h) = avi(h) + D, (h+w(h) = H (h)).(W(h) +1) is zero almost everywhere on

the basis of either (14) in a queued state orifL@n unqueued state. This it holds that
for almost everyh, h'(OH

g™(h')Z0 if h'Sh (18)

which means thah'=h is the unique minimum of functiog™. Thus X, satisfies
the optimality condition (9a), as well as (9b) Bgamption.

User Equilibrium in a Bottleneck under MultipeaksBibution of Preferred Arrival Time
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3.4 Graphical interpretation of the NSC under V-shape schedule delay costs

From here it is assumed th@at has the simple, V-shape form:
D(h+w-n)=B(h+w-n)" +y(n-h+w)" (19)

where 3 [resp.y] are themarginal cost of arriving early [resp. latekith respect to

the preferred timen and ()* denotes the positive part. Under this V-shapenfo
equation (14) can be restated in the following senvpay:

e :{xf = Ka /(o -B) if h+w(h)<H ,(h)

L : (20)
X, =Ka/(a+y) if h+w(h)>H ,(h)

Therefore only two departure flows are admissibl@iqueued period, one made of
users planning to arrive early regarding their gmefd time and the other of users

planning to arrive late. These are denotedjy and x\, respectively,E and L
standing for early and late. From their definitigh > K and x- <K .

Let us now use the cumulated volume representaticcomment the conditions on
X, . Figure 1 depictX,, H, and X_ = X, (h+w(h)), the arrival time distribution.

Cumulated Volumes

Travel time incurred by -
the user departing at h/
XP
7

Schedule delay incurred by the user departing
ath

h Time

FIGURE 1 Cumulated volume representation of an equilibrium situation

First, note thatX_ can be easily deduced from the sequence ofQhelndeed,

according to the simple flowing model, the exitwilogate is the capaciti on a
gueued period and s _ has slope; out of queued periodX, simply coincides

with X_ and X . Second, in Figure 1 one can reacand / from the horizontal
distance between respectively the graphXofand X, , and those ofX_ and X,,.
Moreover the intersection points between the graghs<_ and X, divide each

queued period into early and late intervals regarding the pref@rarrival time. The
transition instants between two successive perindke critical times at arrival

User Equilibrium in a Bottleneck under MultipeaksBibution of Preferred Arrival Time
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denoted asz,. Such instants on a perioQ =[q,,q. dre the solutions of the
equation:

K'(h_qb)zxp(h)_xp(qb) (21)

Clearly there cannot be more than dneper peak or off peak period, and their total
number over a queued period must be odd.

To each critical time at arrivail, let us associate the corresponding departure time
h , so that they are related by the equation:
i =h +w(h) (22)

The critical times at departure also divide eackuga periodQ, in intervals of

earliness or lateness regarding the departureini.periods where users depart at a
time such that they arrive early or late. Thoseaints correspond to a switch in the

departure flow fromxE to x- or conversely.

I i K E =Early L =Late

Cumulated Volumes

Arrival times

E L E L Departure Times

FIGURE 2 Critical timesat arrival and at departure

4. UE ALGORITHM UNDER V-SHAPED COST OF SCHEDULE DELAY

This section provides an algorithm to compute tlgeildorium departure time
distribution based on the properties establishezl/ipusly. The objective of the
algorithm is to build the distribution of departutieme by determining the queued
periodsQ,, . The principle is that, given the beginning ofweqged period, bottX

and w are easy to compute by integrating equations &hdl) (2) and stopping when
w =0: thus the main unknown variable is the initialtarg of a queued period, and
the algorithm is purported to test candidate ihitiatants.

Two questions arise about a candidate initial mtstgirst, will the associated queued
period induce an equilibrium state? Then, how araefor all queued periods in such
a way as to delimit precisely each of them? Bothiés are addressed in an integrated
way, by progressive identification of the successipeued periods. A criterion is

User Equilibrium in a Bottleneck under MultipeaksBibution of Preferred Arrival Time
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provided that both guarantees the current queueddo® be correct and ensures that
the search for the next queued period should foodater instants.

We shall first present an algorithm for testing andidateinitial instant i‘zo, then

expose the full computation method and next givepfoof of convergence. Lastly,
based on the algorithm termination we derive thiedong existence result:

Theorem 1, Existence of equilibrium. The user equilibrium problem with general
preferred arrival time distribution and V-shapedstof schedule delay admits at least
one solution.

4.1 Testingacandidateinitial instant of a queued period

Assuming that a sequence of queued periods hasitheetified up to timeh, , our
aim is to identify the initial instam%O of the next queued period, prior to the
beginning of the next peak period.

The algorithm is as follows. First equation (21)s@lved on[}zo,+oo[, yielding a
sequence of solution;arsi , Which is referred to as the sequence of intei@etimes at
arrival. Then the sequencéli and (W ) are derived in a recursive way, by setting

initial value to ﬁo = ?‘zo andw, = Oand by using the following, recursive formulae:

X, (N —h) =K (., —5;) with X, =xE if iis even orx" if odd, and  (23)
W =7 —hy (24)
The sequence(s%i), (ﬁi) and (W ) are purely geometric constructions, as illusttate
in Figure 3. Yet intuitively(}zi) and (ﬁi ) would correspond to theth critical times at
arrival and departure derived from a given cancﬂ!idézt0 and (W) to the
corresponding waiting times. They define a can@ahstribution )2+ thata priori is
not flow-consistent with the candidate arrival timtistribution X_. Two unphysical
phenomena may occur:
“Travel time becomes negative”: for some ﬁi <i‘zi or equivalentlyw. < 0

This typically corresponds to a situation wheredardidate queued period started
too early.

- "Queue does not vanish™: for all, ﬁi >f'zi or equivalently w. > 0, which
corresponds to a situation where the candidateeguperiod started too late.
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FIGURE 3 Testing a candidate initial instant

We claim that the sequenac& allows us to assess the suitability ipg as initial

instant of queuing in an equilibrium state. Theuitibn is as follows: assume that
there existk such thatw, = Oandw, > Ofor i <k. Then, by derivingX, from the

sequence(ﬁ)isk, (14) and (16) hold oQ =[q; ﬁi] andQ indeed describes a queued
period. Therefore, the conditionCk such asw, = Oand W, = O for i<k” is a
necessary condition fd7r0. Yet, it will be seen later on to be too weak foffisiency;
the appropriate criterion is in fact’k such thatw, = Oand w, = O for all i” or

equivalently ‘min,w, = 0. Intuitively, this guarantees that the candidageeued
period “leaves enough space” for the subsequers. one

The algorithm is stated below in explicit pseudoleo

Algorithm 1. Qrest (}zo)

Outputs: h,, min; W,
Set W, toOand h, to 4,
Solve K.(2-q) = X ,(7) = X ,(q) on[qg,+ andSet then solutionsto the sequence

(};ti)i:o”n_1 in increasing order.

For i=1.n-1 do:

Set ﬁi = ﬁi_1+ K /[x, (?‘zi —fzi_l)] with x, equal tox if i is even otto x: otherwise
Set W=7 -h

End For

Set k to argmin; W, and h, to h,

4.2 Main algorithm

The general philosophy of our method is to findcassively the queued periods in
the UE departure time distribution, starting frohe tfirst peak period. Algorithm 2
consists in searching over an interjia),h, fof the initial instant of a queued period,

by testing candidate initial instanﬁso on the basis of Algorithm 1. The search
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method is a dichotomy process oriented by the sigmin; W, . Algorithm 3 uses
Algorithm 2 repeatedly until all peak periods haween addressed; it returns the
sequence of queued periods which fully determiXes The computation process is
illustrated in Figure 4.

Algorithm 2: f i ndQueuedPer i od([h,,h.] )

Outputs: [y, g ]
Parameter € a tolerance level
Ensure x, <H on[hy,h,]
Repeat
Set gq,:=(h,+h,)/2
Set {g,,min_w} to QTest @,)
If min_w>0 then Set h, :=q,
else Set h, :=q,
Until [min_w| <e.

Algorithm 3: equi | i bri unConput ati on(H.)

Outputs: (Q,)

Set k=1
Set h, to initial instant of first peak period.
Set h,:=infH,
Repeat
Set Q, tofindQueuedPeri od([hy,h.])
Set ki=k+1
Set hy, == supQy,y

Set h, to initial instant of first peak period afté),,
Until there is no peak period afthy
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FIGURE 4 User equilibrium algorithm

4.3 Proofs of termination and existence theorem

Consider the functionsv, (h, Ylefined by (23), (24) for each, O[h, , h, g given
period. The following property is demonstratedhia hext subsection.

Proposition 3. W,.(h,) = min; W, (hy) is a continuous and decreasing function

This implies that the equatioW,,= ®as a solution ath, on [h,,h] if
“Wie(hy) 20 andW,.(hy) < 0. Then Algorithm 2 applied to an off-peak periodtw
a subsequent peak and no queue inherited fromqu®\peaks, hencéj.(h,)= O
and W,.(h,) < 0, must terminate and yield a suitabhg O[h, , h, . Nloreover, by

progressive identification of the successive qugudariods in the equilibrium state,
Algorithm 3 must terminate.

Let us finally address the issue of existence foreguilibrium departure time
distribution. Consider the departure timé, computed from the outputgg, ) of

Algorithm 3 together with its associated distrilbas w and H, of travel time and
preferred time, respectively. Then for &l, w=0 on Q, and w= 0 elsewhere.
Moreover X, satisfies by construction (14) and (16) in theuggecase and (10) in

the unqueued case. The existence theorem themviotoectly from Proposition 2.
4.4 Proof of Proposition 3
This subsection can be omitted without loss ofioaity.

Consider an interval[h,,h, ]included in an off-peak period and denote
P =[p_,p], i=1.2n the sequence of peak and off-peak periods dfterThe

proof proceeds in three steps. We shall first defor eachi a function}zi (hy) on
[hy,,h.] that takes its value if? . Second, some properties of these functions will be
established. Third, we shall conclude abouh; W, .
We shall make use of an auxiliary function as foko

(hg,71) > A(hy, 1) = K.(7 = hy) = X (1) + X ()
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Step | Defining 7, (hy)

For any h, in [h,,h,] let us define}zo,...,}zZn by setting?’zO '=h, and by using the
following recursive rule. For any from 1 to 2n, try to solve the equation
A(hy,7) =0 in 7 on R if there is a solutior: then set)%i to 71, else set:, to either
p; or p,, according to the following table of cases.

Case A>0o0nP A<OonP
i odd p; Pi-1
i even Pi-1 P;

The derivation of a sequencé'zi), illustrated in Figure 5, stands as an ad-hoc

extension of formula (21) so as to address degepanathe number of queuing sub-
periods: when several neighboring peak periods gise to a common, queuing-
dequeuing couple of sub-periods, then there is amwg “true” critical time of
maximal waiting, located in an off-peak period.

<K

Cumulated Volumes

Time

A

ﬁo h=h, ﬁz h,=hs g

FIGURE 5 Derivation of would-becritical arrival times

Step I1: Properties of }zi(ho)

Let us show that the function%i(ho) are continuous and monotonic, in a way
decreasing ifi is odd meaning an off-peaR or increasing ifi is even meaning a

peak RB. In the case of evem, considerA(h,,7# Yon Jh,,h[x]p,_, p;[. This is a
continuous function with partial derivatives witspect to andh, as follows:

Apo(hg, ) =%, (h) =K <0 andA, (hy, 7)) = K =%, () > O
Consequently the equatiofi(h,7) =0 defines implicitly a function}zi(h) which is
continuous and increasing on an interyalb , if such a way thata, ”T f'zi) and
(b, Iirtp f'zi) lie on the boundary ofh,, h,[X]pi_;, p; -[Hence,]a;b [is such that = h,
or lim hhi = p. andb=h, or lim#, = p;. Furthermore, for allz A,(h,,%) <0 for

~a h-a

h<a andA, (h,,7) < Ofor h>b.
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Lastly, prolongating eacbgli on[hy,h, ] by the process defined above is continuous.

The case when is odd is similar.

Step I11: Proof that W, .(h,) isa continuous and decreasing function

Derive ﬁi (h,) and w (h,) from }zi(ho) on the basis of (23) and (24). By
straightforward substitution of (23) into (24) wetghat

. XK o~ s
VVi+1 :\Ni + Xl + (hi+1_hi) (25)
X

A

As }ziﬂ —h; Is a decreasing (resp. increasing) with respedi taf i is even (resp.
odd) hencex’ —K is positive (resp. negative) the incremental part(25) is a
decreasing function ofy,. Then eachw, is a decreasing function df,, owing to
recursion and to the initial conditiow, = . @oncluding, the minimun\\,, is a

continuous and decreasing function lgf as the minimum of a sequence of such
functions.

5. NUMERICAL EXPERIMENTS

Having implemented the algorithm in a computer paoyg under the Scilab
environment 10), a series of numerical experiments were perfortnedrogressively
moving two peak periods closer to each other (FEgbly. Initially there are two
distinct queued periods, each of them with a singg&imum of travel time. Then the
two queues are merged into a single one with twgimma Further, when the peak
periods are close enough, the two maxima collatsea single one yielding the same
pattern as with a single peak period: the well-kngattern made up of one loading
sub-period followed by an unloading one.
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FIGURE 6 Some numerical experiments

6. CONCLUSION

This paper showed that relaxing the S-shape assumph the pattern of preferred

arrival times in the single bottleneck may giverie a much more complex pattern of
departure times, with potentially several queuedopds and travel time maxima.

Applications of such a model may include the assess$ of transportation policies,

such as congestion pricing or flextime promotion.

Among the improvements that would make sense, aormafje is to introduce
heterogeneity in the cost of schedule delay. Indmedplex road pricing schemes are
based on the principle that one can segregatesuigidule costs from lower ones by
imposing time varying tolls. Therefore the heterugty in schedule delay cost
functions and in the user cost of time is essemiassessing the benefits of such
schemes.
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