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 that the arithmetic average of geometric Brownian motion is increasing in the convex order. The Brownian sheet plays an essential role in the construction. Our method may also be applied when the Brownian motion is replaced by a stable subordinator.

Introduction and Main Result

To (B t , t 0) a 1-dimensional Brownian motion, starting from 0, we associate the geometric Brownian motion:

E t = exp(B t - t 2 
), t 0 and its arithmetic average:

1 t A t = 1 t t 0 ds E s , t 0 
A recent striking result by P. Carr et al [START_REF] Carr | On the qualitative effect of volatility and duration on prices of Asian options[END_REF] is the following:

Theorem 1. i) The process ( 1 t A t , t 0) is increasing in the convex order, that is: for every convex function g : R + → R, such that E |g 1 t A t | < ∞ for every t > 0, the function:

t → E g 1 t A t is increasing
ii) In particular, for any K 0, the call and put prices of the Asian option which we define as:

C + (t, K) = E 1 t A t -K + and C -(t, K) = E K - 1 t A t +
are increasing functions of t 0.

The proof of Theorem 1 as given in [START_REF] Carr | On the qualitative effect of volatility and duration on prices of Asian options[END_REF] (see also [START_REF] Baker | A proof of the increase in maturity of the expectation of a convex function of the arithmetic average of geometric brownian motion[END_REF] for a slight variation) is not particularly easy, as it involves the use of either a maximum principle argument (in [START_REF] Carr | On the qualitative effect of volatility and duration on prices of Asian options[END_REF]) or a supermartingale argument (in [START_REF] Baker | A proof of the increase in maturity of the expectation of a convex function of the arithmetic average of geometric brownian motion[END_REF]). In the present paper we obtain directly the result of Theorem 1 as a consequence of Jensen's inequality, thanks to the following Theorem 2. i)There exists a filtered probability space (Ω, G , G t , Q) and a continuous martingale (M t , t 0) on this space such that: for every fixed t 0, = M t ii)More precisely, if (W u,t , u 0, t 0) denotes the standard Brownian sheet and F u,t = σ{W v,s , v u, s t} its natural increasing family of σ-fields, one may choose:

M t = 1 0 du exp(W u,t - ut 2 ) , t ≥ 0
which is a continuous martingale with respect to (F ∞,t , t 0)

We note that in [START_REF] Madan | Making Markov martingales meet marginals: with explicit constructions[END_REF] several methods have been developed to construct martingales with given marginals. Theorem 2 may also be considered in this light, providing a martingale whose one-dimensional marginals are those of ( 1 t A t , t 0 ). In Section 2, we give our (very simple!) proof of Theorem 2, and we comment on how we arrived gradually at the formulation of Theorem 2. We also obtain a variant of Theorem 2 when (exp(B t -t

2 ), t 0) is replaced by (exp(B t -at), t 0) for any a ∈ R.

In Section 3, we study various possible extensions of Theorem 2, i.e. : when the original Brownian motion (B t , t 0) is replaced by certain Lévy processes, in particular stable subordinators and self-decomposable Lévy processes. In Section 4, we study some consequences of Theorem 1.

Proof of Theorem 2, and Comments

(2.1) We first make the change of variables: u = vt, in the integral

A t = t 0 du exp(B u - u 2 )
We get:

1 t A t = 1 0 dv exp(B vt -vt
2 ) It is now immediate that since, for fixed t,

(B vt , v 0) (law) = (W v,t , v 0), then: for fixed t, 1 t A t (law) = 1 0 dv exp(W v,t - vt 2 ) 
Denoting by (M t ) the right-hand side, it remains to prove that it is a (F ∞,t , t 0) martingale. However, let s < t, then:

E M t F ∞,s = 1 0 dv E exp(W v,t - vt 2 ) F ∞,s . Since (W v,t -W v,s ) is independent from F ∞,s , we get: E exp(W v,t - vt 2 ) F ∞,s = exp(W v,s - vs 2 ) 
so that, finally:

E M t F ∞,s = M s .
This ends the proof of Theorem 2.

Remark:

The same argument of independence allows to show more generally that, if f : R × R + → R is space-time harmonic, i.e. (f (B t , t), t 0) is a martingale, then:

M (f ) t def = 1 0 du f (W u,t , ut)
is a (F ∞,t , t 0) martingale. Thus in particular, for any n ∈ N, one gets:

for fixed t, 1 t t 0 du H n (B u , u) (law) = M (n) t
where:

M (n) t = 1 0 du H n (W u,t , ut)
and

H n (x, t) = t n/2 h n ( x √ t
) denotes the n th Hermite polynomial. Consequently, in that generality,

( 1 t t 0 du f (B u , u), t 0)
is increasing in the convex order sense.

(2.2) At this point, we feel that a few words of comments on how we arrived gradually at the statement of Theorem 2 may not be useless. (2.2.1) We first recall the basic result of Rothschild and Stiglitz [START_REF] Rothschild | Increasing Risk: I. A definition[END_REF]. The notation cv means domination in the convex order sense; see [START_REF] Shaked | Stochastic orders with applications[END_REF], [START_REF] Shaked | Stochastic orders[END_REF]. Proposition 1. Two variables X and Y on a probability space satisfy: X cv Y if and only if on some (other) probability space, there exists X and Ŷ such that:

(i) X (law) = X (ii) Y (law) = Ŷ (iii) E Ŷ X = X
For discussions, variants, amplifications of the RS result, we refer the reader to the books of Shaked-Shantikumar ([1], [START_REF] Shaked | Stochastic orders[END_REF]). Thus in order to show that a process (H t , t 0) is increasing in the convex order sense, one is led naturally to look for a martingale (M H t , t 0) such that:

for fixed t, H t (law) = M H t (2.2.
2) The following variants of Proposition 1 shall lead us to consider properties of the process:

1 t A (a) t ≡ 1 t t 0 ds exp(B s -as)
for any a ∈ R.

The notation [icv], and [dcv] used below indicates the notion of "increasing convex " resp. "decreasing convex" order. (See e.g. [START_REF] Shaked | Stochastic orders with applications[END_REF], [START_REF] Shaked | Stochastic orders[END_REF] for details; in particular, Theorem 2.A.3 in [START_REF] Shaked | Stochastic orders with applications[END_REF] and Theorem 3.A.4 in [START_REF] Shaked | Stochastic orders[END_REF]) Proposition 2. Two variables X and Y on a probability space satisfy:

X [icv]
Y if and only if there exists on some (other) probability space, a pair ( X, Ŷ ) such that: t , t 0) increases in the [dcv] sense. We leave the details of the proof of Theorem 3 to the reader as it is extremely similar to that of Theorem 2.

(i) X (law) = X (ii) Y (law) = Ŷ (iii) ↑ X E Ŷ X Proposition 3.
(2.2.3) The following statement is presented here in order to help with our explanation of how we arrived gradually at the statement of Theorem 2. Proposition 4. Let (Z u ) and (Z u ) denote two processes. Then under obvious adequate integrability assumptions, we have:

1 0 du Z u E Z u Z cv 1 0 du Z u Z u
Again, the proof is an immediate application of Jensen's inequality. We now explain how we arrived at Theorem 2: we first showed that, for 0 < σ < σ, there is the inequality:

I σ ≡ 1 0 du exp(σ B u - σ 2 2 u) cv 1 0 du exp(σB u - σ 2 u 2 ) ≡ I σ (2) 
Indeed, to obtain (2) as a consequence of Proposition 4, it suffices to write:

(σB u , u 0)

(law)
= (σ B u + γβ u , u 0) where (β u , u 0), is a BM independent from (B u , u 0) and σ 2 = (σ ) 2 + γ 2 , i.e. γ = σ 2 -(σ ) 2 Once we had made this remark, it seemed natural to look for a "process" argument (with respect to the parameter σ), and this is how the Brownian sheet comes naturally into the picture.

3 Variants involving stable subordinators and selfdecomposable Lévy processes

(3.1)
Here is an analogue of Theorem 1 when we replace Brownian motion by a (α)-stable subordinator (T t ), for 0 < α < 1, whose law is characterized by:

E [exp(-λT t )] = exp(-tλ α ) , t 0, λ 0 Theorem 4. The process 1 t A (α) t def = 1 t t 0 ds exp(-λT s + sλ α
) is increasing for the convex order.

We prove Theorem 4 quite similarly to the way we proved Theorem 1, namely: there exists a α-stable sheet (T s,t , s 0, t 0) which may be described as follows:

(T (A), A ∈ B(R 2 + ), |A| < ∞) is a random measure such that: i) for all A 1 , ..., A k disjoint Borel sets with |A i | < ∞, T (A 1 ), .., T (A k ) are independent random variables, ii) E [exp(-λT (A i ))] = exp(-|A i |λ α ), λ ≥ 0. (T(A i ) is an α-stable random variable) Then we denote T s,t = T (R s,t ), with R s,t ≡ [0, s] × [0, t]
See, e.g., [START_REF] Samorodnitsky | Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance[END_REF] for the existence of such measures. The result of Theorem 4 is a consequence of:

Theorem 5. The process M (α) t = 1 0 du exp(-λT u,t + utλ α ) is a F (α)
∞,t ≡ σ{T h,k , h 0, k t} martingale, and for fixed t:

1 t A (α) t (law) = M (α) t (3.2)
We now consider a self-decomposable Lévy process. (See e.g., Jeanblanc-Pitman-Yor [START_REF] Jeanblanc | Self-similar processes with independent increments associated with Levy and Bessel processes[END_REF] for a number of properties of these processes.) Assuming that: ∀α > 0, E [exp(αX u )] < ∞; then: E [exp(αX u )] = exp(uϕ(α)), for some function ϕ. In this framework, we show the following. Theorem 6. The process (I α = 1 0 du exp(αX u -uϕ(α)), α 0) is increasing in the convex order.

Proof. Since (X u , u 0) is self-decomposable, there exists, for any c ∈ (0, 1), another Lévy process (η

(c) u , u 0) such that: (X u , u 0) (law) = (cX u + η (c)
u , u 0), with independence of X and η (c) . Consequently, we obtain, for any (α, c) ∈ (0, ∞) × (0, 1)

I α (law) = 1 0 du exp(αcX u -uϕ(αc)) exp(αη (c) u -uϕ c (α)) (3) 
where on the RHS of (3), X and η (c) are assumed to be independent. Denote by I α the RHS of (3), then :

E I α X = 1 0 du exp(αcX u -uϕ(αc))
which implies, from Jensen's inequality: for every convex function g,

E [g(I αc )] E [g(I α )]
However we have not found, in this case, a martingale (µ α , α 0) such that:

for every fixed α, I α

= µ α Remark: We note that the above argument is a particular case of the argument presented in Proposition 4, which involves two processes Z and Z .

Some consequences

Since the process ( 1 t A t , t 0) is increasing in the convex order, we find, by differentiating the increasing function of t:

E[(K -1 t A t ) + ]
for every K 0 and t 0, E 1(

1 t A t < K) (E t - 1 t A t ) 0,
although, it is not true that: E E t 1 t A t is greater than or equal to 1 t A t , since this would imply that: 1 t A t = E t , as the common expectation of both quantities is 1.

(4.1) More generally, the following proposition presents a remarkable consequence of the increasing property of the process ( 1 t A t , t ≥ 0) in the convex order sense.

Proposition 5. For every increasing Borel function ϕ : R + → R + there is the inequality:

E ϕ 1 t A t 1 t A t ≤ E ϕ 1 t A t E t . ( ) 
Equivalently, E ϕ 1 t A t 1 t A t ≤ E ϕ 1 t Ãt , ( ) 
where Ãt = t 0 du exp(B u + u 2 )
Proof. We may assume ϕ bounded. Then, g(x) =

x 0 dyϕ(y) is convex (its derivative is increasing), and formula ( ) follows by differentiating the increasing function:

t → E g 1 t A t .
Formula ( ) follows from ( ) by using the Cameron-Martin relationship between (B u , u ≤ t) and (B u + u, u ≤ t) (4.2) As a partial check on the previous result ( ), we now prove directly that, for every integer n

≥ 1, t → E[( 1 t A t ) n ] is increasing and that: E[( 1 t A t ) n ] ≤ E[( 1 t A t ) n-1 E t ]
Here are two explicit formulae for:

α n (t) = E[( 1 t A t ) n ], and β n (t) = E[( 1 t A t ) n-1 E t ]. α n (t) = n! t n E[ t 0 ds 1 t s 1 ds 2 ... t s n-1 ds n exp((B s 1 + ... + B sn ) - 1 2 (s 1 + .. + s n ))] = n! t n t 0 ds 1 t s 1 ds 2 ... t s n-1 ds n exp( 1 2 C(s 1 , .., s n )) where C(s 1 , .., s n ) = E[(B s 1 + B s 2 + .. + B sn ) 2 ] -(s 1 + ... + s n ) = 2 1≤i≤n s i (n -i) ( 0) 
Consequently:

α n (t) = n! 1 0 du 1 ... 1 u n-1 du n exp( t 2 C(u 1 , ..., u n )) (3) 
from which it follows that α n (t) is increasing in t. 

admits the same one-dimensional marginals as the (W t ) submartingale µ(du 1 , .., du n )E

(u i ) t (W ) (6) 
where E (u) t (W ) = exp(W u,t -ut 2 ). Hence, the common expectation of ( 5) and ( 6) increases with t; α n (t) and β n (t) constitute particular examples of this.

  We have already seen from formula[START_REF] Rothschild | Increasing Risk: I. A definition[END_REF], that α n (t) is increasing in t; consequently: α n (t) ≥ 0 and by definition of α n : To conclude this paper, let us connect the properties of increase of the functions α n and β n with our method of proving Theorem 1 using the Wiener sheet, as performed in Theorem 2. Indeed, the same argument as in Theorem 2 shows that for any positive measure µ(du 1 , ..., du n ) on [0, 1] n the process: µ(du 1 , .., du n )

	Now β n (t) = 0 Hence: β n (t) ≥ α n (t). (n -1)! t n-1 × 1 du 1 ... 1 u n-2 α n (t) = n E du n-1 exp( 1 t A t = n t {β n (t) -α n (t)} t 2 C(u 1 , ..., u n-1 , 1)) n-1 -1 t 2 A t + E t t i=1 (4.3) n E (u i t)	(4)

t 0 ds 1 ... t s n-1 ds n-1 E exp((B s 1 + ... + B s n-1 + B t ) -1 2 (s 1 + ... + s n-1 + t))

= (n -1)!