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Application of Mean Field Games to Growth

Theory

Jean-Michel Lasry, Pierre-Louis Lions, Olivier Guéant

Abstract

This article discusses the interaction between economic growth in the
sense of human capital accumulation and the dynamics of inequalities.
We use a mean-field game framework in which individuals improve their
human capital both to improve their wages and to avoid potential com-
petition with less skilled individuals.
Our contribution is twofold. First, we exhibit a mechanism in which
competition between a continuum of people regarding human capital ac-
cumulation lead to growth. Second, our model highlights the importance
of Pareto distributions to describe inequalities since power laws appear
naturally as explicit solutions of our problem.

Introduction

Recent theories of economic growth, following the Schumpeterian model
developed essentially by P. Aghion and P. Howitt ([AH92]), mainly focus
on research and industrial innovation as the only way to generate a non
decreasing growth process.
Here, we are back to former ideas to explain growth with human cap-
ital accumulation only. However, our framework is quite new since we
use the theory designed by J.-M. Lasry and P.-L. Lions on mean-field
games ([LL06a, LL06b, LL07a]). This new framework allows us to model
in a simple way the interaction between people and growth will be a by-
product of the interaction and competition between people to improve
their welfare.
We basically model a continuum of individuals whose wages depend not
only on their own human capital but also on the whole distribution of hu-
man capital. This distribution dependency is important in two different
ways. First, we take into account a competition effect in the labor mar-
ket. Second we model the easiness or difficulty to improve human capital
depending on the proximity to the technological frontier.
Like in the recent paper by Aghion et al (2001) ([AHHV01]) or as in
Aghion and Howitt ([AH]), growth is fostered by an escape competition
effect. However, in our setting, it is the threat of competition that forces
people to improve their human capital and not competition by itself: be-
cause individuals less skilled than a given person represent a threat for
this person, she is forced to accumulate human capital. That leads even-



tually to economic growth.
In addition to the growth process, the mean-field game framework allows
us to deal with the distribution of wages across people. The distribution
of wages is indeed known to be quite well described by a Pareto distri-
bution (at least for the tail) and we show that Pareto distributions for
human capital and wages are indeed stable in our setting.
Our contribution is therefore to shed light on a growth process which is a
consequence of a competition effect and which is compatible with power
law distributions for inequalities.

In the first section we will present the setup of our model and derive
a solution using classical methods (Euler Lagrange). In a second part,
we exhibit comparative statics and then, in a third part, we go deeply
into an analysis of the mechanisms that are involved in our model. In the
fourth section, we use the mean field game partial differential equations
to solve the problem in a different way and we generalize the solution to
a stochastic framework. Partial proofs are given in the appendix: a more
mathematical paper to be published may contain more precise proofs.

1 The model

1.1 Introduction

We assume that there is initially a working population of size 1 with a
given distribution of human capital. Human capital will be denoted q and
the distribution, at time t, will be referred to as m(t, q).
For a given worker, wage per hour will be a function not only depending
on the individual human capital but also on the scarcity of her specific
human capital1. In other words, the salary of a worker with human capital
q is, at time t, given by:

w(t, q) = G(q, m(t, q)), G( ·︸︷︷︸
+

, ·︸︷︷︸
−

)

The main interest of this equation is to model a competition effect in
the labor market: unskilled people have a small salary because they are
unskilled and also because most of the time they are so numerous that
they can be replaced by other similar unskilled people2.

Individuals - who live forever - can improve their human capital with
a cost depending on two factors. First, the cost, in monetary terms, is a
function of human capital change and, second, it is also a function of the
position of initial human capital in the distribution. More precisely, we
will assume that the cost (in monetary terms) at time t is given by:

1One can think this is a very restrictive way to model competition since it imply a very low
substitution between people. Another setting that leads to similar results could be to replace
the density function by the tail function.

2We assume here, as it will be the case in what follows, that m(t, ·) is a decreasing function.



C(t, q,
dq

dt
) = H(

dq

dt
, F (t, q)), H( ·︸︷︷︸

+

, ·︸︷︷︸
−

)

where F (t, q) =
∫∞

q
m(t, u)du is the number of people in the population

with a human capital greater than q. That is to say it is more costly for
skilled workers to improve their human capital than for unskilled work-
ers. This hypothesis is relevant since it is often more difficult to improve
human capital for an individual in the right tail of the distribution since
she is near the technological frontier.

1.2 The optimization problem

As in the classical Mincerian approch to human capital accumulation,
we are going to suppose that people improve their human capital all life
long. However, we do not focus on schooling choices in the sense that we
consider a given working population. Human capital accumulation must
therefore be seen as the consequence of on-the-job training.
Each individual chooses her effort continuously to maximize her utility.
Her intertemporal utility is classically given by an expression of the form:∫ ∞

0

u(ct)e
−ρtdt

with a wealth constraint ṡt ≤ rst +
(
w(t, q)− C(t, q, dq

dt
)
)
− ct. This gives

a unique intertemporal constraint that is:∫ ∞

0

cte
−rtdt ≤ s0 +

∫ ∞

0

(
w(t, q)− C(t, q,

dq

dt
)

)
e−rtdt

Therefore, if we assume that r is exogenous the only thing the agent is
going to maximize is the right hand side of the constraint which is her
intertemporal wealth.
Basically, an individual with human capital q has the following program:

Max(qs),q0=q

∫ ∞

0

[
G(qs, m(s, qs))−H(a(s, qs), F (s, qs))

]
e−rsds

where a(·, ·) is defined by dqs = a(s, qs)ds.

1.3 Resolution

1.3.1 A specific setup

To solve the problem we need to specify the two functions G and H. Our
specification is the following:

To derive the wage function we are going to start with a discrete
setting. Imagine that there are n types of workers with human capital



q1, . . . , qn.
A standard production function for a representative firm would be3

Y = A

n∑
i=1

qα
i L1−β

i α > 0, β ∈ (0; 1]

The wage associated to a worker of type i, wi, is then proportional to
qα

i

L
β
i

.

Therefore, if we go from this discrete setting to a continuous one, we
can assume that:

G(q, m(t, q)) =

{
C qα

m(t,q)β , if q is in the support of m(t, ·)
0 otherwise

For the cost, we use the simple specification that follows:

H(
dq

dt
, F (t, q)) =

E

ϕ

(
dq
dt

)ϕ
F (t, q)δ

, ∀q in the support of m(t, ·)

where C and E are two constants and where α, β, δ and ϕ are four pos-
itive parameters subject to technical constraints that are: α + β = ϕ ,
β = δ and we want typically ϕ to be strictly greater than 1 .
This specification can be considered ad hoc but in fact it must be regarded
as quite general since we have two degrees of freedom to choose the param-
eters. An easier specification without any degree of freedom would have
been to set α = β = δ = 1 and ϕ = 2 but we want to remain quite general.

Now, we assume that the initial distribution of human capital is a
Pareto distribution4. We can use a normalization and assume that the
minimal point of the initial distribution is 1. The Pareto coefficient5 of
the initial distribution is denoted k, so that:

m(0, q) = k
1

qk+1
1q≥1

This Pareto distribution is central in the study of economic inequali-
ties and will be stable in our model in the sense that our solution involves
Pareto distributions of human capital at all time.

1.3.2 Explicit resolution

To start the explicit resolution of our problem, let’s begin with the Euler
Lagrange equation associated to it.

3The limit case where β = 1 is a logarithmic case.
4This distribution is usually used in the literature on economic inequalities (see Piketty’s

papers for example, or Atkinson ([Atk05]))
5It is usually a measure of inequality. For example, it is related to the Gini coefficient by

the formula: G = 1
2k−1

.



Proposition 1 (Euler-Lagrange’s equation). Let’s note G̃(t, q) =
G(q, m(t, q)) and H̃(t, q, q̇) = H(q̇, F (t, q)).
The optimal path has to satisfy the following Euler-Lagrange equation:

∂qG̃(t, q)− ∂qH̃(t, q, q̇) = −d

dt

[
∂q̇H̃(t, q, q̇)

]
+ r∂q̇H̃(t, q, q̇)

Proof:

This is a pure application of the Euler-Lagrange’s principle with a dis-
count rate r.

This equation can be solved easily and this is the result of the following
proposition:

Proposition 2 (Growth rate). If ϕ(ϕ−1) < βk then, there is a unique
γ so that the solution of the preceding equation is characterized by a con-
stant growth γ:

• qt = q0 exp(γt)

• m(t, q) = k exp(γkt)

qk+1 1q≥exp(γt)

Moreover, γ is implicitly given by:

ϕ(ϕ− 1)− βk

ϕ
γϕ = rγϕ−1 − C(ϕ + βk)

Ekβ
(∗)

Proof: See appendix.

Before going into the comparative statics and the analysis of the model,
we need to verify that the above solution satisfy the transversality condi-
tion. In other words we need to verify that the integral in the criterion
remains finite.

Proposition 3 (Transversality condition). For the solution exhibited
in Proposition 2 to be an actual solution of the optimization problem, we
need to have γ < r

ϕ

Proof: See appendix.

These propositions are central in our discussion. We have indeed
proved that a constant growth rate was a possible outcome of our model
if the parameters satisfied some constraints. Moreover, the distribution of
human capital and hence the distribution of wealth is always of the Pareto
type and this is interesting in the light of the usual theories of inequalities.

2 Comparative statics

In that part, we analyze the growth rate formula derived previously (equa-
tion (∗)). Basically, γ can be seen as a function of three meaningful pa-
rameters: r, E and k.



• r has to be seen as a parameter linked to impatience. We expect the
growth rate to be a decreasing function of r

• E is a measure of the cost to improve human capital. A small E
indicates efficient on-the-job training in our model and we expect
growth to decrease with E.

• k is a measure of the initial homogeneity in the distribution of human
capital. If we consider that the initial human capital distribution is
a result of the basic educational system then a high k means a very
equalitarian educational system whereas a smaller k represents a
more free educational system that leads to more heterogeneity. The
sign of dγ

dk
will be interesting to evaluate the link between growth

and social homogeneity.

Growth as a decreasing function of r

As expected, γ is a decreasing function of r. This is straightforward if
we consider equation (∗) or the following graph on which we plotted the
left hand side and the right side of (∗).

Figure 1: The impact of an increase in r



Growth as a decreasing function of E

As expected, γ is a also a decreasing function of E. The same argu-
ment as before applies.

Figure 2: The impact of an increase in E

Growth can be fostered by heterogeneity

The last dependency we analyze is on k. The result is in general
ambiguous but we can say the following:

Proposition 4 (Dependence on k6). Suppose as before that ϕ(ϕ−1) <
βk

• For β = 1, the function k 7→ γ(k) is decreasing.

• For β < 1 and as k goes to infinity, γ(k) tends to zero as k
− β

ϕ .

Proof: see appendix.

3 Analysis of our model

Our model generates a constant growth rate for human capital, both for
the entire society and for each single individual. In what follows we discuss
the underlying source of growth and relate our finding to recent papers in
the economic literature.
To begin with, the basic reason why people change their human capital is

6To relate this result to better known measures of heterogeneity, just notice for instance
that the Gini coefficient in the case of a Pareto distribution is simply given by G = 1

2k−1
.

Therefore, we basically show that γ is increasing as a function of the Gini coefficient for the
human capital distribution at least if this Gini coefficient is small enough.



due to two effects. First, there is a pure wage effect since, ceteris paribus,
wage increases with human capital. However, this effect cannot explain by
itself the continuous improvement of human capital at a constant growth
rate. The effect needed to ensure a convincing explanation is a compe-
tition effect, or to say it as in Aghion and Howitt ([AH]), even though
the comparison is not entirely relevant, an escape competition effect. A
given individual taken at random in the population is threaten by people
who have less human capital than he has (say q̃). Indeed, if part of those
people where to improve there human capital so that they end up with
a human capital q̃ they will compete with our individual on the labor
market, reducing her wage. This effect is the origin of continuous growth
in our model. Contrary to Aghion et al., we have here a continuum of
agents and therefore, for any given individual, there is always a threat.
We think therefore that the Schumpeterian effect which basically assumes
that people won’t improve their human capital if the gains are two small
is reduced to nothing because there is always a potential competitor and
that’s why a Darwinian effect (competition effect) dominates. Let’s in-
deed highlight how tough is the threat effect. Each agent knows that every
one is threaten by every one, and that fear will induce behaviors that will
make the frightening event happen and be more important. This model
shows that the growth process is not only due to those who innovate, that
is to say “researchers” near the technological frontier, but is in fact a pro-
cess that involves the whole population and is fostered by those who are
far from the technological frontier and threaten the leaders by improv-
ing their human capital. Also, our model gives a striking example of the
fact that the Darwinian competitive pressure can be much more intense
between agents with rational expectations than between myopic agents.
Myopic agents would fear other agents moves, while agents with rational
expectations fear also the competitive moves of other agents induced by
their own competitive behavior. In other words, Darwinian competition,
as a general concept, when extended to competition between agents with
rational expectations, leads to an extremely tough competitive scheme.

One of the characteristics of our model is also related to the structure
of economic inequalities. Starting with a given Pareto distribution with
parameter k, the solution exhibited above, is always a Pareto distribution
of order k (with a support that depends on time obviously). Recalling
that the Gini coefficient is only determined by k (it is straightforward to
get the formula G = 1

2k−1
), we have also the interesting property that the

Gini coefficient is constant and cannot therefore be modified by the kind
of human capital accumulation process we model.
Is this consistent with reality? The answer depends on the country.
To deal with this issue we have to consider wages instead of human capital.
Because w(t, q) = C qα

m(t,q)β , the wages on the optimal path are given by:

w(t, q) =
C

kβ
exp(−βkγt)qβk+ϕ

Distribution of wages is therefore a Pareto distribution of order p = k
βk+ϕ

for all t. It means that wage inequalities are very stable over time. This
is difficult to test but great work has been done in Piketty ([Pik03]) and



Piketty and Saez ([PS03]) for wages, respectively in France and in the
US7. Even if there are fluctuations in wage inequalities, these inequali-
ties seem (perhaps surprisingly) to have been stable over the twentieth
century in France. However, this is not the case for the US where wages
are less and less equally distributed (Today, the ”working rich” celebrated
by Forbes magazine seem to have overtaken the ”coupon-clippers” - see
[PS03]).
Also, in a book printed recently ([AP07]), Atkinson and Piketty showed
that this stability is true for most of non english-speaking developed coun-
tries whereas inequalities are less stable in the US, the UK, Ireland, Aus-
tralia, New Zealand ...
The conclusion is that our model is quite consistent with the continental
Europe experience in the long run as far as wages inequalities are con-
cerned.

We discussed earlier the impact of initial inequalities represented ei-
ther by k or by G = 1

2k−1
on the growth rate (notice here that the growth

rate of wages is simply given by ϕγ: that can be derived easily from
the above equation for w(t, q)). Our finding is that an education system
which leads to a very homogeneous population could be responsible for
a small growth rate. This has natural policy implications and supports
liberalization of the schooling system and therefore less uniform schools.
However, one must not forget that in our model, on-the-job training is
always feasible and that’s why the main implication of our model is cer-
tainly better expressed by: economic inequalities can be good for growth
as soon as there is no segregation i.e. large access for everybody to the
human capital accumulation process.

4 Mathematical complements and gener-
alization to a stochastic framework

4.1 The mean field game partial differential equa-
tions

In the first part, we found a solution to our problem using a Euler-
Lagrange methodology. This is not in fact the most relevant mathematical
method to deal with the problem. The problem involves indeed the prob-
ability distribution function and the tail function of the human capital
across the population and the mean field games partial differential equa-
tions are in a way far more relevant to solve the problem.

Let’s first introduce the Bellman function of the problem:

J(t, q) = Max(qs),qt=q

∫ ∞

t

[
G(qs, m(s, qs))−H(a(s, qs), F̄ (s, qs))

]
e−r(s−t)ds

7Another article by Atkinson deals with the UK but concerns revenues and not wages



We can translate this optimization problem into the two mean field
games partial differential equations:

Proposition 5 (The mean field games partial differential equa-
tions). Our optimization problem can be represented by the two following
PDEs:

(HJB) G(q, m(t, q)) + ∂tJ + Maxa

(
a∂qJ −H(a, F̄ (t, q))

)
− rJ = 0

(Kolmogorov) ∂tm(t, q) + ∂q(a(t, q)m(t, q)) = 0

where a(t, q) = ArgMaxa

(
a∂qJ −H(a, F̄ (t, q))

)
is the optimal control

function.
In the special case we solved, the two equations can be written as:

C
qα

m(t, q)β
+

ϕ− 1

ϕ

1

E
1

ϕ−1
F (t, q)

β
ϕ−1 (∂qJ)

ϕ
ϕ−1 + ∂tJ − rJ = 0

∂tm(t, q) + ∂q

((
F (t, q)β

E
∂qJ(t, q)

) 1
ϕ−1

m(t, q)

)
= 0

and the optimal control is given by:

a(t, q) =

(
F (t, q)β

E
∂qJ(t, q)

) 1
ϕ−1

Proof: see appendix.

These PDEs can be solved easily if we add the constraint a(t, q) = γq
that corresponds to a uniform and constant growth rate.

Proposition 6 (Resolution of the PDEs). If ϕ(ϕ − 1) < βk, there
is a unique triple (J, m, γ) that satisfies both the PDEs and the additional
equation on the optimal control function: a(t, q) = γq.

Solutions are of the following form:

m(t, q) = k
exp(γkt)

qk+1
1q≥exp(γt)

J(t, q) = B exp(−βkγt)qβk+ϕ1q≥exp(γt)

where γ and B are related by γ =
(

B
E

(βk + ϕ)
) 1

ϕ−1

Proof: see appendix.

This PDE approach allows us to generalize the model. We are indeed
going to add a common noise in the model and show how this noise affects
the results.



4.2 The model with common noise

So far, our model was completely deterministic whereas most applications
of mean field games are in a random setting. Here, it is not natural to
introduce a specific noise for each individual if we want to keep explicit
solutions with m being a Pareto distribution (because of the threshold).
However, it’s possible to introduce randomness through a common noise
on the evolution of the human capital.
More precisely, we can replace the dynamics for q by a stochastic one:

dqt = a(t, qt)dt + σqtdWt

where W is a noise common to all agents. This specification seems com-
plicated since all the functions J , m and F are now random variables.
However, the intuitions developed above can be applied mutatis mutandis
and our specification is robust and deep enough to be generalized to a
complex stochastic framework.

First, consider the Bellman function J . From Proposition 6, we can
see that the expression for J was in fact a function of q and of the lower
bound qm of the q’s so that it’s more natural in general to define here
J = J(t, q, qm) as:

Max(qs)s>t,qt=q,qm
t =qmE

[∫ ∞

t

[
C

qα

m(t, q)β
− E

ϕ

a(t, q)ϕ

F (t, q)β

]
e−r(s−t)ds|Ft

]
Proposition 7 (Partial differential equations with common noise).
The Hamilton Jacobi equation corresponding to the above optimization
problem can be written in the following differential form:

Maxa C
qα

m(t, q)β
− E

ϕ

aϕ

F (t, q)β
− rJ

+∂tJ + a∂qJ +
σ2

2
q2∂2

qqJ + a′∂qmJ +
σ2

2
qm2∂2

qmqmJ + σ2qqm∂2
qqmJ = 0

where a′ is a(t, qm
t )8.

The optimal control function is given by the same expression as in the
deterministic case:

a(t, q) =

(
F (t, q)β

E
∂qJ(t, q)

) 1
ϕ−1

Lemma 1. If a(t, q) = γq, then the probability distribution function of

the q’s is m(t, q) = k
(qm

t )k

qk+1 1q≥qm
t

.

Proposition 8 (Resolution of the PDEs). If ϕ(ϕ − 1) < βk and

r > σ2

2
ϕ(ϕ− 1), then, there is a unique growth rate γ compatible with the

problem and J is of the form:

J(q, qm) = Bqβk+ϕ(qm)−βk1q≥qm

8This is exogenous in the optimization because individuals are atomized



where γ and B are related by γ =
(

B
E

(βk + ϕ)
) 1

ϕ−1

Moreover, γ is given by (∗′):

ϕ(ϕ− 1)− βk

ϕ
γϕ = (r − ϕ(ϕ− 1)

σ2

2
)γϕ−1 − C(ϕ + βk)

Ekβ
(∗′)

Proof: see appendix.

The main conclusion is that the introduction of a common noise leads
to an increase in γ (as it can be seen on the following graph).

Figure 3: The introduction of a noise

To conclude this part, let’s just note that the transversality condition
is modified:

Proposition 9 (Transversality condition). For the solution exhib-
ited in the above proposition to be an actual solution of the optimization

problem, we need to have γ < r
ϕ
− (ϕ− 1)σ2

2
.

Proof: see appendix

Conclusion

Using a mean field game framework, this paper presents a growth model
where growth is fostered by the fear of individuals about the possible
competition of their peers. This model can either be solved by classical
Euler-Lagrange methods or using the partial differential equations of the
mean field games theory. This second approach is a good way to show the
robustness of the model when it comes to the introduction of randomness.



Appendix

Proof of Proposition 2:

Let’s consider a solution of the form qt = q0 exp(γt). If this is true for
every single individual, then, the probability distribution function m(t, ·)
has to be of the Pareto form m(t, q) = k exp(γkt)

qk+1 1q≥exp(γt). This expression

for m(t, ·) leads to F (t, q) = exp(γkt)

qk 1q≥exp(γt).

Therefore, for q ≥ exp(γt) we have:

• G̃(t, q) = G(q, m(t, q)) = C
kβ qα+β(k+1)e−γβkt

• H̃(t, q, q̇) = H(q̇, F (t, q)) = E
ϕ

q̇ϕ exp(−γδkt)qδk

Hence, if we use the preceding proposition, we must have:

C(α + β(k + 1))

kβ
qα+β(k+1)−1e−γβkt − Eδk

ϕ
q̇ϕ exp(−γδkt)qδk−1

= −d

dt

[
Eq̇ϕ−1 exp(−γδkt)qδk

]
+ rEq̇ϕ−1 exp(−γδkt)qδk

Since q̇ = γq we obtain:

C(α + β(k + 1))

kβ
qα+β(k+1)−1e−γβkt − Eδk

ϕ
γϕ exp(−γδkt)qδk−1+ϕ

= −d

dt

[
Eγϕ−1 exp(−γδkt)qδk+ϕ−1

]
+ rEγϕ−1 exp(−γδkt)qδk+ϕ−1

⇒ C(α + β(k + 1))

kβ
qα+β(k+1)−1e−γβkt − Eδk

ϕ
γϕ exp(−γδkt)qδk−1+ϕ

= γδkEγϕ−1 exp(−γδkt)qδk+ϕ−1−E(δk+ϕ−1)γϕ−1 exp(−γδkt)γqδk+ϕ−1

+rEγϕ−1 exp(−γδkt)qδk+ϕ−1

Hence, using the various assumptions on the parameters, we get:

C(ϕ + βk)

kβ
− Eβk

ϕ
γϕ = βkEγϕ − E(βk + ϕ− 1)γϕ + rEγϕ−1

⇒ ϕ(ϕ− 1)− βk

ϕ
γϕ = rγϕ−1 − C(ϕ + βk)

Ekβ

This equation in γ has a unique solution if, as it is supposed here,
ϕ(ϕ− 1) < βk.



Figure 4: The solution for γ

Proof of Proposition 3:

The integrand in the criterion is:

(
C

kβ
qβk+ϕ
0 exp((βk + ϕ)γt− kγβt)− E

ϕ
γϕqβk+ϕ

0 exp((βk + ϕ)γt− kγβt)

)
e−rt

Hence, we must have:

(βk + ϕ)γ − kγβ − r < 0

γ <
r

ϕ

Proof of Proposition 4:

First, let’s differentiate the equation (∗) with respect to k:

(ϕ(ϕ−1)−βk)
dγ

dk
γϕ−1−β

φ
γϕ = r(ϕ−1)

dγ

dk
γϕ−2+

βCϕ

E
k−β−1−βC(1− β)

E
k−β

⇒ dγ

dk

[
(ϕ(ϕ− 1)− βk)γϕ−1 − r(ϕ− 1)γϕ−2] =

β

φ
γϕ+

βCϕ

E
k−β−1−βC(1− β)

E
k−β

If β = 1, it’s then obvious that k 7→ γ(k) is decreasing.
Otherwise, if β < 1, we can see from (∗) that the only limit point for γ is
0 and then, β

ϕ
kγϕ ∼ Cβ

E
k1−β . This leads to the result.

Proof of Proposition 5:



The optimal control function is given by a(t, q) = Argmaxaa∂qJ −
E
ϕ

aϕ

F (t,q)β .

Hence, a(t, q) =
(

F (t,q)β

E
∂qJ(t, q)

) 1
ϕ−1

and Maxaa∂qJ − E
ϕ

aϕ

F (t,q)β can be

replaced by ϕ−1
ϕ

1

E
1

ϕ−1
F (t, q)

β
ϕ−1 (∂qJ)

ϕ
ϕ−1 in the HJB equation.

Proof of Proposition 6:

First of all, the additional condition is equivalent to a constant growth
rate for qt and therefore, we obtain the Pareto distribution m(t, ·) stated
above.
Therefore, we have the following equation for ∂qJ(t, q) if q ≥ exp(γt):

∂qJ(t, q) = E(γq)ϕ−1F (t, q)−β = E(γq)ϕ−1e−βkγtqβk

Hence (the constant being nought),

J(t, q) =
E

βk + ϕ
γϕ−1e−βkγtqβk+ϕ

If we plug this expression into the Hamilton-Jacobi equation we get:

C

kβ
qβk+ϕe−βkγt +

ϕ− 1

ϕ
Eγϕqβk+ϕe−βkγt

−βkγ
E

βk + ϕ
γϕ−1e−βkγtqβk+ϕ − r

E

βk + ϕ
γϕ−1e−βkγtqβk+ϕ = rD

From this we get:

C

kβ
+

ϕ− 1

ϕ
Eγϕ − βk

E

βk + ϕ
γϕ − r

E

βk + ϕ
γϕ−1 = 0

This is exactly the equation (∗) of Proposition 2 and therefore γ is
unique.

Proof of Proposition 8:

First, if a(t, q) = γq then,

∂qJ(t, q, qm) = E(γq)ϕ−1F (t, q)−β = Eγϕ−1qβk+ϕ−1(qm
t )−βk

From this we deduce that the solution is of the stated form with
B = E

βk+ϕ
γϕ−1.

If we want to find B or γ we need to plug the expression for J in the
Hamilton Jacobi equation. This gives:

qβk+ϕ−1(qm)−βk

[
C

kβ
− E

ϕ
γϕ − rB + γ(βk + ϕ)B − βkγB

+
σ2

2
B ((βk + ϕ)(βk + ϕ− 1) + (−βk)(−βk − 1) + 2(βk + ϕ)(−βk))

]
= 0

C

kβ
− E

ϕ
γϕ + γϕB − (r − ϕ(ϕ− 1)

σ2

2
)B = 0



C(βk + ϕ)

Ekβ
− βk + ϕ

ϕ
γϕ + ϕγϕ − (r − ϕ(ϕ− 1)

σ2

2
)γϕ−1 = 0

ϕ(ϕ− 1)− βk

ϕ
γϕ = (r − ϕ(ϕ− 1)

σ2

2
)γϕ−1 − C(ϕ + βk)

Ekβ

As for (∗), it’s clear that, given our hypotheses, this equation has a unique
solution.

Proof of Proposition 9:

The expression in the integral that defines the criterion is:

C

kβ
qkβ+ϕ
0 (qm

t )ϕ − E

ϕ
γϕqkβ+ϕ

0 (qm
t )ϕ

Hence, for the solution to be well defined, the function t 7→ E [(qm
t )ϕ] e−rt

has to be integrable.

But:

E [(qm
t )ϕ] = E

[
exp(ϕ(γ − σ2

2
)t + ϕσWt)

]
= exp(ϕ(γ − σ2

2
)t + ϕ2 σ2

2
t)

We therefore need to have r > ϕ(γ − σ2

2
) + ϕ2 σ2

2
and this is what we

wanted to prove.
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