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Introduction

In this paper we are concerned by the following problem      u tt -∆u -ω∆u t + µu t = u|u| p-2 x ∈ Ω, t > 0 u(x, t) = 0, x ∈ ∂Ω, t > 0 u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x)

x ∈ Ω .

(1.1) in a bounded regular domain Ω ⊂ R n . Here p > 2 and ω, µ are positive constants. Only one of this constant must be strictly positive (as pointed out by Gazzola and Squassina [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF]). We will suppose that µ > 0 and ω ≥ 0 (see Remark 2.4 for the case ω = 0). The present problem has been studied by Gazzola and Squassina [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF]. In their work, the authors proved some results on the well-posedness and investigate the asymptotic behavior of solutions of problem (1.1). In particular, they showed the global existence and the polynomial decay property of solutions provided that the initial data are in the potential well, [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF]Theorem 3.8]. The proof in [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF] is based on a method used in [START_REF] Ikehata | Stable and unstable sets for evolution equations of parabolic and hyperbolic type[END_REF] and [START_REF] Ikehata | Some remarks on the wave equations with nonlinear damping and source terms[END_REF]. In these works, the authors obtain the following differential inequality:

d dt (1 + t)E(t) ≤ E(t)
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The nonlinear wave equations related to (1.1) has been investigated by many authors [START_REF] Ball | Remarks on blow up and nonexistence theorems for nonlinear evolutions equations[END_REF][START_REF] Esquivel-Avila | Qualitative analysis of a nonlinear wave equation[END_REF][START_REF] Haraux | Decay estimates for some semilinear damped hyperbolic problems[END_REF][START_REF] Ikehata | Stable and unstable sets for evolution equations of parabolic and hyperbolic type[END_REF][START_REF] Messaoudi | Global non-existence of solutions of a class of wave equations with non-linear damping and source terms[END_REF][START_REF] Ono | On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation[END_REF][START_REF] Yang | Existence and asymptotic behavior of solutions for a class of quasilinear evolution equations with non-linear damping and source terms[END_REF][START_REF] Zuazua | Exponential decay for the semilinear wave equation with locally distributed damping[END_REF].

In the absence of the nonlinear source term, it is well known that the presence of one damping term i.e. ω > 0 or µ > 0 ensures global existence and decay of solutions for arbitrary initial data (see [START_REF] Haraux | Decay estimates for some semilinear damped hyperbolic problems[END_REF][START_REF] Kopackova | Remarks on bounded solutions of a semilinear dissipative hyperbolic equation[END_REF]). For ω = µ = 0, the nonlinear term u |u| p-2 causes finite-time blow-up of solutions with negative initial energy (see [START_REF] Ball | Remarks on blow up and nonexistence theorems for nonlinear evolutions equations[END_REF][START_REF] Kalantarov | The occurence of collapse for quasilinear equations of parabolic and hyperbolic type[END_REF]).

The interaction between the damping and the source terms was first considered by Levine [START_REF] Levine | Instability and nonexistence of global solutions to nonlinear wave equations of the form P u tt = -Au + F (u)[END_REF][START_REF] Levine | Some additional remarks on the nonexistence of global solutions to nonlinear wave equations[END_REF]. He showed that solutions with negative initial energy blows up in finite time. When ω = 0 and the linear term u t is replaced by u t |u t | m-2 , Georgiev and Todorova [START_REF] Georgiev | Existence of a solution of the wave equation with nonlinear damping and source terms[END_REF] extended Levine's result to the case where m > 2. In their work, the authors introduced a method different from the one known as the concavity method. They determined suitable relations between m and p, for which there is global existence or alternatively finite time blow-up. Precisely, they showed that the solution continues to exist globally "in time" if m ≥ p and blows up in finite time if p > m and the initial energy is sufficiently negative. Vitillaro [START_REF] Vitillaro | Global nonexistence theorems for a class of evolution equations with dissipation[END_REF] extended the results in [START_REF] Georgiev | Existence of a solution of the wave equation with nonlinear damping and source terms[END_REF] to situations where the damping is nonlinear and the solution has positive initial energy. Similar results have been also established by Todorova [START_REF] Todorova | The occurence of collapse for quasilinear equations of parabolic and hyperbolic type[END_REF][START_REF] Todorova | Stable and unstable sets for the cauchy problem for a nonlinear wave with nonlinear damping and source terms[END_REF], for different Cauchy problems.

We recall here that the potential well method introduced by Payne and Sattinger [START_REF] Payne | Saddle points and instability of nonlinear hyperbolic equations[END_REF] is also useful and widely used in the litterature to investigate the local existence, global existence and asymptotic behavior of the solutions to some problems related to problem (1.1) (see [START_REF] Todorova | Stable and unstable sets for the cauchy problem for a nonlinear wave with nonlinear damping and source terms[END_REF][START_REF] Vitillaro | Global nonexistence theorems for a class of evolution equations with dissipation[END_REF][START_REF] Esquivel-Avila | Qualitative analysis of a nonlinear wave equation[END_REF][START_REF] Ono | On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation[END_REF][START_REF] Ikehata | Some remarks on the wave equations with nonlinear damping and source terms[END_REF][START_REF] Ikehata | Stable and unstable sets for evolution equations of parabolic and hyperbolic type[END_REF][START_REF] Yang | Existence and asymptotic behavior of solutions for a class of quasilinear evolution equations with non-linear damping and source terms[END_REF]). Introducing a strong damping term ∆u t makes the problem different from the one considered in [START_REF] Georgiev | Existence of a solution of the wave equation with nonlinear damping and source terms[END_REF]. For this reason less results are, at the present time, known for the wave equation with strong damping and many problems remain unsolved (see [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF]).

The purpose of this paper is to obtain a better decay estimate of solutions to the problem (1.1). More precisely we show that we can always find initial data in the stable set for which the solution of problem (1.1) decays exponentially. The key tool in the proof is an idea of Haraux and Zuazua [START_REF] Haraux | Decay estimates for some semilinear damped hyperbolic problems[END_REF] and Zuazua [START_REF] Zuazua | Exponential decay for the semilinear wave equation with locally distributed damping[END_REF], which is based on the construction of a suitable Lyapunov function. This kind of Lyapunov function, which is a small perturbation of the energy, has been recently used by Benaissa and Messaoudi [START_REF] Benaissa | Exponential decay of solutions of a nonlinearly damped wave equation[END_REF] to study the exponential decay if a weakly damped semilinear wave equations.

Asymptotic stability

In this section, we introduce and prove our main result. For this purpose let us introduce the definition of the solution of problem (1.1) given by Gazzola and Squassina in [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF]. Definition 2.1. For T > 0, we denote

Y T = u ∈ C 0 [0, T ], H 1 0 (Ω) ∩ C 1 [0, T ], L 2 (Ω) ∩ C 2 [0, T ], H -1 (Ω) u t ∈ L 2 [0, T ], L 2 (Ω) Given u 0 ∈ H 1 0 (Ω) and u 1 ∈ L 2 (Ω), a function u ∈ Y T is a local solution to (1.1), if u(0) = u 0 , u t (0) = u 1 and Ω u tt φdx + Ω ∇u∇φdx + ω Ω ∇u t ∇φdx + µ Ω u t φdx = Ω |u| p-2 uφdx, for any function φ ∈ H 1 0 (Ω) and a.e. t ∈ [0, T ] .
Let us first define the Sobolev critical exponent p as:

p =        2N N -2 , for ω > 0 and N ≥ 3 2N -2 N -2 , for ω = 0 and N ≥ 3 and p = ∞, if N = 1, 2 .
We first state a local existence theorem whose proof is written by Gazzola and Squassina, [4, Theorem 3.1].

Theorem 2.1. Assume 2 < p ≤ p. Let u 0 ∈ H 1 0 (Ω) and u 1 ∈ L 2 (Ω).
Then there exist T > 0 and a unique solution of (1.1) over [0, T ] in the sense of definition 2.1.

As in the work of Gazzola and Squassina, [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF], we define the global solutions and the blow up solutions. Definition 2.2. Let 2 < p ≤ p , u 0 ∈ H 1 0 (Ω) and u 1 ∈ L 2 (Ω). We denote u the solution of (1.1). We define:

T max = sup T > 0 , u = u(t) exists on [0, T ] Since the solution u ∈ Y T (the solution is "enough regular"), let us recall that if T max < ∞, then lim t→Tmax t<Tmax ∇u 2 + u t 2 = +∞ .
If T max < ∞, we say that the solution of (1.1) blows up and that T max is the blow up time.

If T max = ∞, we say that the solution of (1.1) is global.

In order to study the blow up phenomenon or the global existence of the solution of (1.1), we define the following functions:

I(u(t)) = ∇u(t) 2 2 -u(t) p p , (2.1) 
J(u(t)) = 1 2 ∇u(t) 2 2 - 1 p u(t) p p , (2.2) 
and

E(u(t)) = J(u(t)) + 1 2 u t (t) 2 2 (2.3)
To have a lighter writing of I, J and E, we will write :

I(t) = I(u(t)) , J(t) = J(u(t)) and E(t) = E(u(t))
Let us remark that multiplying (1.1) by u t , integrating over Ω and using integration by parts we obtain:

dE(t) dt = -ω ∇u t 2 2 -µ u t 2 2 , ∀t ≥ 0. (2.4)
Thus the function E is decreasing along the trajectories. As in [START_REF] Payne | Saddle points and instability of nonlinear hyperbolic equations[END_REF], the potential well depth is defined as:

d = inf u∈H 1 0 (Ω)\{0} max λ≥0 J(λu). (2.5) 
We can now define the so called "Nehari manifold" as follows:

N = u ∈ H 1 0 (Ω)\{0}; I(t) = 0 .
N separates the two unbounded sets:

N + = u ∈ H 1 0 (Ω); I(t) > 0 ∪ {0} and N -= u ∈ H 1 0 (Ω); I(t) < 0 .
The stable set W and unstable set U are defined respectively as:

W = u ∈ H 1 0 (Ω); J(t) ≤ d ∩ N + and U = u ∈ H 1 0 (Ω); J(t) ≤ d ∩ N -.
It is readily seen that the potential depth d is also characterized by

d = min u∈N J (u) .
As it was remarked by Gazzola and Squassina in [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF], this alternative characterization of d shows that

β = dist(0, N ) = min u∈N ∇u 2 = 2dp p -2 > 0 . (2.6)
In the lemma 2.1, we would like to prove the invariance of the set N + : if the initial data u 0 is in the set N + and if the initial energy E(0) is not large (we will precise exactly how large may be the initial energy), then u(t) stays in N + forever.

For this purpose, as in [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF][START_REF] Vitillaro | Global nonexistence theorems for a class of evolution equations with dissipation[END_REF], we denote by C * the best constant in the Poincaré-Sobolev embedding H 1 0 (Ω) ֒→ L p (Ω) defined by:

C -1 * = inf ∇u 2 : u ∈ H 1 0 (Ω), u p = 1 . (2.7)
Let us remark (as in [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF][START_REF] Vitillaro | Global nonexistence theorems for a class of evolution equations with dissipation[END_REF]) that if p < p the embedding is compact and the infimum in (2.7) (as well as in (2.5)) is attained. In such case (see, e.g. [16, Section 3]), any mountain pass solution of the stationary problem is a minimizer for (2.7) and C * is related to its energy:

d = p -2 2p C -2p/(p-2) * . (2.8) Remark 2.1.
It is well know from the potential well theory, [START_REF] Payne | Saddle points and instability of nonlinear hyperbolic equations[END_REF][START_REF] Esquivel-Avila | The dynamics of nonlinear wave equation[END_REF] , that for every solution of (1.1), given by Theorem 2.1, only one of the following assumption holds:

i) if there exists some t 0 ≥ 0 such that u(t 0 ) ∈ W and E(t 0 ) < d, then ∀t ≥ t 0 , u(t) ∈ W and E(t) < d.

ii) if there exists some t 0 ≥ 0 such that u(t 0 ) ∈ U and E(t 0 ) < d, then ∀t ≥ t 0 , u(t) ∈ U and E(t) < d.

iii) ∀t ≥ 0 , E(t) ≥ d .

We can now proceed in the global existence result investigation. For this sake, let us state two lemmas: these two results are stated in [4, Proof of Therorem 3.8] but are not detailed. For a better understanding of the results, we give a short proof of these two results. Lemma 2.1. Assume 2 < p ≤ p. Let u 0 ∈ N + and u 1 ∈ L 2 (Ω). Moreover, assume that E(0) < d. Then for any 0 < T < T max , u(t, .) ∈ N + for each t ∈ [0, T ). Remark 2.2. Let us remark, that if there exists t 0 ∈ [0, T ) such that E(t 0 ) < d the same result stays true. It is the reason why we choose t 0 = 0.

Moreover , one can easily see that, from (2.8), the condition E(0) < d is equivalent to the inequality:

C p * 2p p -2 E(0) p-2 2 < 1 (2.9)
This last inequality will be used in the remaining proofs.

Proof. Since I(u 0 ) > 0, then by continuity, there exists T * ≤ T such that I(u(t, .)) ≥ 0, for all t ∈ [0, T * ). Since we have the relation:

J(t) = p -2 2p ∇u 2 2 + 1 p I(t)
we easily obtain :

J(t) ≥ p -2 2p ∇u 2 2 , ∀t ∈ [0, T * ) .
Hence we have:

∇u 2 2 ≤ 2p p -2 J(t) .
From (2.2) and (2.3), we obvioulsy have ∀t ∈ [0, T * ), J(t) ≤ E(t). Thus we obtain:

∇u 2 2 ≤ 2p p -2 E(t)
Since E is a decreasing function of t, we finally have:

∇u 2 2 ≤ 2p p -2 E(0), ∀t ∈ [0, T * ) . (2.10) 
By definition of C * , we have:

u p p ≤ C p * ∇u p 2 = C p * ∇u p-2 2 ∇u 2 2
Using the inequality (2.10), we deduce:

u p p ≤ C p * 2p p -2 E(0) p-2 2 ∇u 2 2 .
Now exploiting the inequality on the initial condition (2.9) we obtain:

u p p < ∇u 2 2 . (2.11) 
Hence ∇u 2 2u p p > 0, ∀t ∈ [0, T * ), this shows that u(t, .) ∈ N + , ∀t ∈ [0, T * ). By repeating this procedure, T * is extended to T . Lemma 2.2. Assume 2 < p ≤ p. Let u 0 ∈ N + and u 1 ∈ L 2 (Ω). Moreover, assume that E(0) < d. Then the solution of the problem (1.1) is global in time.

Proof. Since the map t → E(t) is a decreasing function of time t, we have:

E(0) ≥ E(t) = 1 2 u t 2 2 + (p -2) 2p ∇u 2 2 + 1 p I(t) ,
which gives us:

E(0) ≥ 1 2 u t 2 2 + (p -2) 2p ∇u 2 2 .
Thus, ∀t ∈ [0, T ) , ∇u 2 + u t 2 is uniformely bounded by a constant depending only on E(0) and p. Then by definition 2.2, the solution is global, so T max = ∞.

We can now state the asymptotic behavior of the solution of (1.1).

Theorem 2.2. Assume 2 < p ≤ p. Let u 0 ∈ N + and u 1 ∈ L 2 (Ω). Moreover, assume that E(0) < d. Then there exist two positive constants C and ξ independent of t such that:

0 < E(t) ≤ Ce -ξt , ∀ t ≥ 0.
Remark 2.3. Let us remark that these inequalities imply that there exist positive constants K and ζ independent of t such that:

∇u(t) 2 2 + u t (t) 2 2 ≤ Ke -ζt , ∀ t ≥ 0.
Thus, this result improves the decay rate of Gazzola and Squassina [START_REF] Gazzola | Global solutions and finite time blow up for damped semilinear wave equations[END_REF]Theorem 3.8], in which the authors showed only the polynomial decay. Here we show that we can always find initial data satisfying u 0 ∈ N + and u 1 ∈ L 2 (Ω) which verify the inequality (2.9), such that the solution can decay faster than 1/t, in fact with an exponential rate. Also, the same situation happens in absence of strong damping (ω = 0).

Proof. Since we have proved that ∀t ≥ 0 , u(t) ∈ N + , we already have:

0 < E(t) ∀ t ≥ 0.
The proof of the other inequality relies on the construction of a Lyapunov functional by performing a suitable modification of the energy. To this end, for ε > 0, to be chosen later, we define

L(t) = E(t) + ε Ω u t udx + εω 2 ∇u 2 2 .
(2.12)

It is straightforward to see that L(t) and E(t) are equivalent in the sense that there exist two positive constants β 1 and β 2 > 0 depending on ε such that for t ≥ 0

β 1 E(t) ≤ L(t) ≤ β 2 E(t). ( 2 

.13)

By taking the time derivative of the function L defined above in equation (2.12), using problem (1.1), and performing several integration by parts, we get: x ∈ ∂Ω, t > 0 u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x)

dL(t) dt = -ω ∇u t 2 2 -µ u t 2 2 + ε u t 2 
x ∈ Ω .

could be treated with the same method and we obtained also an exponential decay of the solution if the initial condition is in the positive Nehari space and its energy is lower that the potential well depth.

  Now, we estimate the last term in the right hand side of (2.14) as follows. By using Young's inequality, we obtain, for any δ > 0 Remark 2.4. Note that we can obtain the same results as in Theorem 2.2 in the case ω = 0, by taking the following Lyapunov functionL(t) = E(t) + ε -ω∆u t + µu t = u|u| p-2 x ∈ Ω, t > 0 u(x, t) = 0,

	Remark 2.5. It is clear that the following problem:
	    	u tt -div	∇u 1 + |∇u| 2
	   						
								2 -ε ∇u 2 2
					+ε u p p -εµ	Ω	u t udx .	(2.14)
					Ω	u t udx ≤	1 4δ	u t	2 2 + δ u 2 2 .	(2.15)
	Consequently, inserting (2.15) into (2.14) and using inequality (2.11), we have:
		dL(t) dt	≤ -ω ∇u t 	2 2 + ε	µ 4δ	+ 1 -µ u t	2 2	
				+ε	    µC 2 * δ + C p *	2p (p -2)	E(0)	p-2 2	-1    	∇u 2 2 . (2.16)
								<0

Ω u t udx.
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From (2.9), we have

Now, let us choose δ small enough such that:

From (2.16), we may find η > 0, which depends only on δ, such that:

Consequently, using the definition of the energy (2.3), for any positive constant M , we obtain:

(2.17)

Now, choosing M ≤ 2η, and ε small enough such that 

On the other hand, by virtue of (2.13), setting ξ = -M ε/β 2 , the last inequality becomes:

Integrating the previous differential inequality (2.18) between 0 and t gives the following estimate for the function L:

Consequently, by using (2.13) once again, we conclude E(t) ≤ Ce -ξt , ∀t ≥ 0 .

This completes the proof.