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Exponential decay for solutions to semilinear

damped wave equation

Stéphane Gerbi∗ and Belkacem Said-Houari†

Abstract

This paper is concerned with decay estimate of solutions to the semilinear
wave equation with strong damping in a bounded domain. Introducing an
appropriate Lyaponuv function, we prove that when the damping is linear, we
can find initial data, for which the solution decays exponentially. This result
improves an early one in [3].

Keywords: strong damping, stable set, global existence, decay rate source, positive
initial energy.
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1 Introduction

In this paper we are concerned by the following problem





utt −∆u− ω∆ut + µut = u|u|p−2 x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω .

(1.1)

in a bounded regular domain Ω ⊂ R
n. Here p ≥ 2 and ω, µ are positive constants.

The present problem has been studied by Gazzola and Squassina [3]. In their
work, the authors proved some results on the well-posedness and investigate the
asymptotic behavior of solutions of problem (1.1). In particular, they showed the
global existence and the polynomial decay property of solutions provided that the
initial data is in the potential well, [3, Theorem 3.8]. The proof in [3] is based
on a method used in [7] and [6]. In these works, the authors obtain the following
differential inequality:

d

dt

[
(1 + t)E(t)

]
≤ E(t) ,

where E is the energy of the solution. Unfortunately they obtain a decay rate which
is not optimal.

The nonlinear wave equations related to (1.1) has been investigated by many
authors [1, 2, 5, 7, 13, 14, 20, 21].

In the absence of the nonlinear source term, it is well known that the presence
of one damping term i.e. ω > 0 or µ > 0 ensures global existence and decay of
solutions for arbitrary initial data (see [5, 10]). For ω = µ = 0, the nonlinear

term u |u|p−2 causes finite-time blow-up of solutions with negative initial energy
(see [1, 9]).
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The interaction between the damping and the source terms was first considered
by Levine [11, 12]. He showed that solutions with negative initial energy blows

up in finite time. When ω = 0 and the linear term ut is replaced by ut |ut|
m−2

,
Georgiev and Todorova [4] extended Levine’s result to the case where m > 2. In
their work, the authors introduced a method different from the one known as the
concavity method. They determined suitable relations between m and p, for which
there is global existence or alternatively finite time blow-up. Precisely, they showed
that the solution continues to exist globally “in time” if m ≥ p and blows up in
finite time if p > m and the initial energy is sufficiently negative. Vitillaro [19]
extended the results in [4] to situations where the damping is nonlinear and the
solution has positive initial energy. Similar results have been also established by
Todorova [17, 18], for different Cauchy problems.

We recall here that the potential well method introduced by Payne and Sattinger
[16] is also useful and widely used in the litterature to investigate the local existence,
global existence and asymptotic behavior of the solutions to some problems related
to problem (1.1) (see [18, 19, 2, 14, 6, 7, 20]). Introducing a strong damping term
∆ut makes the problem different from the one considered in [4]. For this reason less
results are, at the present time, known for the wave equation with strong damping
and many problems remain unsolved (see [3]).

The purpose of this paper is to obtain a better decay estimate of solutions to
the problem (1.1). More precisely we show that we can always find initial data in
the stabe set for which the solution of problem (1.1) decays exponentially. The key
tool in the proof is an idea of Zuazua [21], which is based on the construction of a
suitable Lyapunov function.

2 Asymptotic stability

In this section we introduce and prove our main result. For this purpose let us intro-
duce the definition of the solution of problem (1.1) given by Gazzola and Squassina
in [3].

Definition 2.1 For T > 0, we denote

YT =

{
u ∈ C0

(
[0, T ], H1

0(Ω)
)
∩ C1

(
[0, T ], L2(Ω)

)
∩C2

(
[0, T ], H−1(Ω)

)

ut ∈ L2
(
[0, T ], L2(Ω)

)
}

Given u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω), a function u ∈ YT is a local solution to (1.1),

if u(0) = u0, ut(0) = u1 and

∫

Ω

uttφdx +

∫

Ω

∇u∇φdx + ω

∫

Ω

∇ut∇φdx + µ

∫

Ω

utφdx =

∫

Ω

|u|p−2uφdx,

for any function φ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ] .

Let us first define the Sobolev critical exponent p̄ as:

p̄ =





2N

N − 2
, for ω > 0 and N ≥ 3

2N − 2

N − 2
, for ω = 0 and N ≥ 3

and p̄ = ∞, if N = 1, 2 .

We first state a local existence theorem whose proof is written by Gazzola and
Squassina, [3, Theorem 3.1].

Theorem 2.1 Assume 2 < p ≤ p̄. Let u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω). Then there

exist T > 0 and a unique solution of (1.1) over [0, T ] in the sense of definition 2.1.
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Definition 2.2 Let 2 ≤ p ≤ p̄ , u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω). We denote u the

solution of (1.1). We define:

Tmax = sup
{
T > 0 , u = u(t) exists on [0, T ]

}

Since the solution u ∈ YT (the solution is “enough regular”), let us recall that if
Tmax < ∞, then

lim
t→Tmax
t<Tmax

‖∇u‖2 + ‖ut‖2 = +∞ .

If Tmax < ∞, we say that the solution of (1.1) blows up and that Tmax is the blow
up time.
If Tmax = ∞, we say that the solution of (1.1) is global.

In order to study the blow up phenomenon or the global existence of the solution
of (1.1), we define the following functions:

I(t) = I(u(t)) = ‖∇u‖22 − ‖u‖pp, (2.1)

J(t) = J(u(t)) =
1

2
‖∇u‖22 −

1

p
‖u‖pp, (2.2)

and

E(u(t)) = E(t) = J(t) +
1

2
‖ut‖

2
2 (2.3)

Let us remark that multiplying (1.1) by ut, integrating over Ω and using integration
by parts we obtain:

dE(t)

dt
= −ω‖∇ut‖

2
2 − µ‖ut‖

2
2 , ∀t ≥ 0. (2.4)

Thus the function E is decreasing along the trajectories. As in [15], the potential
well depth is defined as:

d = inf
u∈H1

0
(Ω)\{0}

max
λ≥0

J(λu). (2.5)

We can now define the so called “Nehari manifold” as follows:

N =
{
u ∈ H1

0 (Ω)\{0}; I(t) = 0
}
.

N separates the two unbounded sets:

N+ =
{
u ∈ H1

0 (Ω); I(t) > 0
}
∪ {0} and N− =

{
u ∈ H1

0 (Ω); I(t) < 0
}
.

The stable set W and unstable set U are defined respectively as:

W =
{
u ∈ H1

0 (Ω); J(t) ≤ d
}
∩ N+ and U =

{
u ∈ H1

0 (Ω); J(t) ≤ d
}
∩ N−.

It is readily seen that the potential depth d is also characterized by

d = min
u∈N

J (u) .

As it was remarked by Gazzola and Squassina in [3], this alternative characterization
of d shows that

β = dist(0,N ) = min
u∈N

‖∇u‖2 =

√
2dp

p− 2
> 0 . (2.6)
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In the lemma 2.1, we would like to prove the invariance of the set N+: if the initial
data u0 is in the set N+ and if the initial energy E(0) is not large (we will precise
exactly how large may be the initial energy), then u(t) stays in N+ forever.

For this purpose, as in [3, 19], we denote by C∗ the best constant in the Poincaré-
Sobolev embedding H1

0 (Ω) →֒ Lp(Ω) defined by:

C−1
∗ = inf

{
‖∇u‖2 : u ∈ H1

0 (Ω), ‖u‖p = 1
}

. (2.7)

Let us remark (as in [3, 19]) that if p < p̄ the embedding is compact and the infimum
in (2.7) (as well as in (2.5)) is attained. In such case (see, e.g. [15, Section 3]), any
mountain pass solution of the stationary problem is a minimizer for (2.7) and C∗ is
related to its energy:

d =
p− 2

2p
C

−2p/(p−2)
∗ . (2.8)

Remark 2.1 [15, 8] For every solution of (1.1), given by Theorem 2.1, only one of
the following assumption holds:

i) if there exists some t0 ≥ 0 such that u(t0) ∈ W and E(t0) < d, then ∀t ≥
t0 , u(t) ∈ W and E(t) < d.

ii) if there exists some t0 ≥ 0 such that u(t0) ∈ U and E(t0) < d, then ∀t ≥
t0 , u(t) ∈ U and E(t) < d.

iii) ∀t ≥ 0 , E(t) ≥ d .

We can now proceed in the global existence result investigation. For this sake,
let us state two lemmas.

Lemma 2.1 Assume 2 ≤ p ≤ p̄. Let u0 ∈ N+ and u1 ∈ L2(Ω). Moreover, assume
that E(0) < d. Then u(t, .) ∈ N+ for each t ∈ [0, T ).

Remark 2.2 Let us remark, that if there exists t0 ∈ [0, T ) such that

E(t0) < d

the same result stays true. It is the reason why we choose t0 = 0.
Moreover , one can easily see that, from (2.8), the condition E(0) < d is equiv-

alent to the inequality:

Cp
∗

(
2p

p− 2
E(0)

) p−2

2

< 1 (2.9)

This last inequality will be used in the remaining proofs.

Proof of lemma 2.1: Since I(u0) > 0, then by continuity, there exists T∗ ≤ T
such that I(u(t, .)) ≥ 0, for all t ∈ [0, T∗). Since we have the relation:

J(t) =
p− 2

2p
‖∇u‖22 +

1

p
I(t)

we easily obtain :

J(t) ≥
p− 2

2p
‖∇u‖22, ∀t ∈ [0, T∗) .

Hence we have:

‖∇u‖22 ≤
2p

p− 2
J(t) .
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From (2.2) and (2.3), we obvioulsy have ∀t ∈ [0, T∗), J(t) ≤ E(t). Thus we obtain:

‖∇u‖22 ≤
2p

p− 2
E(t)

Since E is a decreasing function of t, we finally have:

‖∇u‖22 ≤
2p

p− 2
E(0), ∀t ∈ [0, T∗) . (2.10)

By definition of C∗, we have:

‖u‖pp ≤ Cp
∗‖∇u‖p2 = Cp

∗‖∇u‖p−2
2 ‖∇u‖22

Using the inequality (2.10), we deduce:

‖u‖pp ≤ Cp
∗

(
2p

p− 2
E(0)

) p−2

2

‖∇u‖22 .

Now exploiting the inequality on the initial condition (2.9) we obtain:

‖u‖pp < ‖∇u‖22 . (2.11)

Hence ‖∇u‖22 − ‖u‖pp > 0, ∀t ∈ [0, T∗), this shows that u(t, .) ∈ N+, ∀t ∈ [0, T∗).
By repeating this procedure, T∗ is extended to T .

�

Lemma 2.2 Assume 2 ≤ p ≤ p̄. Let u0 ∈ N+ and u1 ∈ L2(Ω). Moreover, assume
that E(0) < d. Then the solution of the problem (1.1) is global in time.

Proof of lemma 2.2: Since the map t 7→ E(t) is a decreasing function of time t,
we have:

E(0) ≥ E(t) =
1

2
‖ut‖

2
2 +

(p− 2)

2p
‖∇u‖22 +

1

p
I(t) ,

which gives us:

E(0) ≥
1

2
‖ut‖

2
2 +

(p− 2)

2p
‖∇u‖22 .

Thus, ∀t ∈ [0, T ) , ‖∇u‖2 + ‖ut‖2 is uniformely bounded by a constant depending
only on E(0) and p. Then by definition 2.2, the solution is global, so Tmax = ∞.

�

We can now state the asymptotic behavior of the solution of (1.1).

Theorem 2.2 Assume 2 ≤ p ≤ p̄. Let u0 ∈ N+ and u1 ∈ L2(Ω). Moreover,

assume that E(0) < d. Then there exist two positive constants Ĉ and ξ independent
of t such that:

0 < E(t) ≤ Ĉe−ξt, ∀ t ≥ 0.

Remark 2.3 Let us remark that these inequalities imply that there exist positive
constants K and ζ independent of t such that:

‖∇u(t)‖22 + ‖ut(t)‖
2
2 ≤ Ke−ζt, ∀ t ≥ 0.

Thus, this result improves the decay rate of Gazzola and Squassina [3, Theorem
3.8], in which the authors showed only the polynomial decay. Here we show that
we can always find initial data satisfying u0 ∈ N+ and u1 ∈ L2(Ω) which verify the
inequality (2.9), such that the solution can decay faster than 1/t, in fact with an
exponential rate. Also, the same situation happens in absence of strong damping
(ω = 0).
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Proof of theorem 2.2: Since we have proved that ∀t ≥ 0 , u(t) ∈ N+, we already
have:

0 < E(t) ∀ t ≥ 0.

The proof of the other inequality relies on the construction of a Lyapunov functional
by performing a suitable modification of the energy. To this end, for ε > 0, to be
chosen later, we define

L(t) = E(t) + ε

∫

Ω

utudx+
εω

2
‖∇u‖22 . (2.12)

It is straightforward to see that L(t) and E(t) are equivalent in the sense that there
exist two positive constants β1 and β2 > 0 depending on ε such that for t ≥ 0

β1E(t) ≤ L(t) ≤ β2E(t). (2.13)

By taking the time derivative of the function L defined above in equation (2.12),
using problem (1.1), and performing several integration by parts, we get:

dL(t)

dt
= −ω‖∇ut‖

2
2 − µ‖ut‖

2
2 + ε‖ut‖

2
2 − ε‖∇u‖22

+ε‖u‖pp − εµ

∫

Ω

ut udx . (2.14)

Now, we estimate the last term in the right hand side of (2.14) as follows.
By using Young’s inequality, we obtain, for any δ > 0

∫

Ω

utudx ≤
1

4δ
‖ut‖

2
2 + δ‖u‖22 . (2.15)

Consequently, inserting (2.15) into (2.14) and using inequality (2.11), we have:

dL(t)

dt
≤ −ω‖∇ut‖

2
2 +

(
ε

(
1

4δ
+ 1

)
− µ

)
‖ut‖

2
2

+ε


C∗δ + Cp

∗

(
2p

(p− 2)
E(0)

) p−2

2

− 1

︸ ︷︷ ︸
<0


 ‖∇u‖22 . (2.16)

From (2.9), we have

Cp
∗

(
2p

(p− 2)
E(0)

) p−2

2

− 1 < 0 .

Now, let us choose δ small enough such that:

C∗δ + Cp
∗

(
2p

(p− 2)
E(0)

) p−2

2

− 1 < 0 .

From (2.16), we may find η > 0, which depends only on δ, such that:

dL(t)

dt
≤ −ω‖∇ut‖

2
2 +

(
ε

(
1

4δ
+ 1

)
− µ

)
‖ut‖

2
2 − εη‖∇u‖22

Consequently, using the definition of the energy (2.3), for any positive constant M ,
we obtain:

dL(t)

dt
≤ −MεE(t) +

(
ε

(
1

4δ
+ 1 +

M

2

)
− µ

)
‖ut‖

2
2 − ω‖∇ut‖

2
2

+ε

(
M

2
− η

)
‖∇u‖22 . (2.17)
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Now, choosing M ≤ 2η, and ε small enough such that

(
ε

(
1

4δ
+ 1 +

M

2

)
− µ

)
< 0 ,

inequality (2.17) becomes:

dL(t)

dt
≤ −MεE(t), ∀t ≥ 0.

On the other hand, by virtue of (2.13), setting ξ = −Mε/β2, the last inequality
becomes:

dL(t)

dt
≤ −ξL(t) , ∀t ≥ 0 . (2.18)

Integrating the previous differential inequality (2.18) between 0 and t gives the
following estimate for the function L:

L(t) ≤ Ce−ξt , ∀t ≥ 0 .

Consequently, by using (2.13) once again, we conclude

E(t) ≤ Ĉe−ξt , ∀t ≥ 0 .

This completes the proof.
�

Remark 2.4 Note that we can obtain the same results as in Theorem 2.2 in the
case ω = 0, by taking the following Lyapunov function

L(t) = E(t) + ε

∫

Ω

utudx.

Remark 2.5 It is clear that the following problem:





utt − div

(
∇u√

1 + |∇u|2

)
− ω∆ut + µut = u|u|p−2 x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω .

could be treated with the same method and we obtained also an expoential decay
of the solution if the initial condition is in the positive Nehari space and its energy
is lower that the potential well depth.
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