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Abstract

We consider the linear Schrödinger equation and its discretization by split-
step methods where the part corresponding to the Laplace operator is approxi-
mated by the midpoint rule. We show that the numerical solution coincides with
the exact solution of a modified partial differential equation at each time step.
This shows the existence of a modified energy preserved by the numerical scheme.
This energy is close to the exact energy if the numerical solution is smooth. As
a consequence, we give uniform regularity estimates for the numerical solution
over arbitrary long time.
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1 Introduction

We consider the linear Schrödinger equation

∂tu(t, x) = −i∆u(t, x) + iV (x)u(t, x), u(0, x) = u0(x), (1.1)

with initial condition u0, and potential function V (x) ∈ R. The wave function
u(x, t) depends on x ∈ T

d or R
d and the time t > 0. The operator ∆ is the
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d-dimensional Laplace operator. In the following, we consider mainly the case
where x ∈ T

d. The case of the whole space is totally similar. The equation (1.1)
is symplectic and its solution preserves the L2 norm and the energy

u 7→
∫

Td

|∇u|2 + V |u|2dx = 〈u| − ∆ + V |u〉. (1.2)

The solution of (1.1) is given by

u(t, x) = exp(it(−∆ + V ))u0(x),

and a standard method to simulate this solution is to consider the approximation

exp(ih(−∆ + V )) ≃ exp(−ih∆) exp(ihV ) (1.3)

for a small stepsize h > 0. The solution at a given time t = nh is then approxi-
mated by

exp(it(−∆ + V ))u0 ≃
(

exp(−ih∆) exp(ihV )
)n

u0. (1.4)

The advantage of this method is that it yields a symplectic scheme preserving
the L2 norm. Moreover, it is very easy to implement by using the fast Fourier
transform: while the operator ∆ is diagonal in the Fourier space, the operator V
acts as a multiplication operator in the phase space. For finite time, this splitting
scheme yields a consistent numerical scheme: as h → 0 and if the numerical
solution is smooth, it can be shown that (1.4) yields a convergent approximation
of order 1 in h, see [12]. Considering higher order approximation such as the
symmetric Strang splitting or higher order splitting methods allows to obtain
higher order approximation scheme under the assumption that the numerical
solution is smooth enough, see [12, 9].

Concerning the long-time behaviour of such methods, very few results exist.
In [3], Dujardin & Faou showed the conservation of the regularity of the nu-
merical solution (1.4) in T

1 over very long time, provided the potential function
is small and smooth. Moreover, even in this situation, resonances effects appear
for some values of h: typically when exp(−ih∆) posseses eigenvalues close to 1.

In the finite dimensional case, the long time behaviour of splitting method
can be understood upon using the Baker-Campbell-Hausdorff formula (see for
instance [8]). Roughly speaking, this result states that for two matrices A and
B, we can write

exp(tA) exp(tB) = exp(tZ(t))

where Z(t) = A + B + t[A,B] + t2 · · · , with [A,B] = AB − BA the matrix com-
mutator. Hence the long time behaviour of the numerical solution corresponding
to (1.4) can be analyzed by considering the properties of the matrix Z(t) which
is a small perturbation of the original operator A+B for small time t. However,
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to be valid, the BCH formula requires h to be small enough with respect to the
inverse of the norms of A and B. This makes this strategy impossible to apply
directly for unbounded operators, unless a drastic CFL like condition is used for
the full discretization of (1.1).

In this paper, we consider the time discretization

exp(ih(−∆ + V )) ≃ exp(ihV )R(−ih∆) (1.5)

where

R(z) =
1 + z/2

1 − z/2

is the stability function of the midpoint rule. Such an approximation is clearly
consistent with (1.1) if the solution is smooth enough. Moreover, it defines a
symplectic numerical scheme preserving the L2 norm, and easily implemented
by using the fast Fourier transform. Similar schemes have been considered in
[1, 13, 16].

Recall that for all x ∈ R we have

1 + ix

1 − ix
= exp(2i arctan(x)).

and hence we can write

R(−ih∆) =
1 − ih∆/2

1 + ih∆/2
= exp(2i arctan

(

− h∆

2

)

),

where now 2 arctan
(

− h∆
2

)

is a bounded operator from L2 to itself. Using this
representation, we show in this work that there exists a symmetric operator
S(h) : L2 → L2 such that

exp(ihV )R(−ih∆) = exp(ihS(h)),

with

S(h) = −2

h
arctan

(h∆

2

)

+ Ṽ (h)

where Ṽ (h) : L2 → L2 is a modified potential.
Hence, for all n and all initial value u0, we have

un =
(

exp(ihV )R(−ih∆)
)n

u0 = exp(inhS(h))u0

and hence the numerical solution un coincides with the exact solution of the
modified equation

∂tu = S(h)u

at each time step tn = nh. This implies that the associated energy

〈u |S(h) |u〉
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is preserved along the numerical solution associated with the split-step scheme
(1.5). Moreover this energy is close to the original energy (1.2) if u is smooth.
Using these properties, we give regularity bounds for the numerical solution over
arbitrary long time.

Such a result is to our knowledge the first extension in an infinite dimen-
sional setting of the classical backward error analysis for Hamiltonian ordinary
differential equation (see [8, 11]). Note in particular that as in the case of linear
ordinary differential equation, this result is valid for arbitrary long time, while
such results classically hold for exponentially long time with respect to the step
size for nonlinear ordinary differential equations.

It is worth noticing that such result does not hold hold for the splitting scheme
(1.3) for which it is known that resonance effects occur, see [3]. The main differ-
ence between (1.5) and (1.3) lies in the high frequencies regularization effect of
the midpoint rule: by essence, the logarithm of the operator R(−ih∆) is bounded
while the logarithm of exp(−ih∆) is not well defined when h∆ possesses eigen-
values close to multiples of 2π. Note that this does not affect the approximation
property of the scheme for finite time and smooth numerical solution.

Similarly this result does not automatically extend to situations where the
propagator R(−ih∆) is replaced by a higher order approximation of exp(−ih∆),
or for higher order splitting schemes (see [8, Chap III]). We discuss this point in
the last section of this work, and show by numerical experiments that in general
resonance effects appear.

Let us mention that in the nonlinear situation, results exist concerning the
long-time behaviour of splitting scheme applied to the nonlinear Schrödinger
equation: see the recent works of Faou, Grébert & Paturel [4, 5] and
Gauckler & Lubich [6, 7] for the long time behaviour of splitting schemes
applied to NLS when the initial solution is small. However, to our knowledge
no existence results for a global modified energy have been proved. Note that in
this direction, concerning the numerical approximation of solitary wave, Duran

& Sanz-Serna [2] have proved the existence of a modified solitary wave over
finite time for the numerical solution associated with the midpoint rule.

2 Statement of the results

We represent a function u ∈ L2(Td) by its Fourier coefficients u = (uk)k∈Zd

defined as

uk =
1

(2π)d

∫

Td

u(x)eik·xdx
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where for k = (k1, . . . , kd) ∈ Z
d and x = (x1, · · · , xd) ∈ T

d we set k · x =
k1x1 + · · · kdxd. We define

‖u‖2
=
∑

k∈Zd

|uk|2, and ‖u‖2

Hs =
∑

k∈Zd

(1 + |k|2)s|uk|2

the L2 and the Hs Sobolev norms on Td, where for k = (k1, . . . , kd) ∈ Zd, we set

|k|2 = k2
1 + · · · k2

d.

For an operator A = (Akℓ)k,ℓ∈Zd acting in the Fourier space C
Z

d
and for α > 1

we set
‖A‖

α
= sup

k,ℓ
|Akℓ|

(

1 + |k − ℓ|α
)

.

We denote by
Lα = {A = (Akℓ)k,ℓ∈Zd | ‖A‖

α
< ∞}.

If A ∈ Lα with α > d, we can easily show that A ∈ L(L2): see Lemma 4.2 below.
We say that A is symmetric if for all k, ℓ ∈ Z

d, we have Akℓ = Aℓk, or
equivalently A∗ = A. In this situation, for u ∈ L2, we set

〈u|A |u〉 =
∑

k,ℓ∈Zd

ūkAkℓuℓ = (u,Au) ∈ R

where ( · , · ) is the L2 product in T
d. For two operators A and B, we set

adA(B) = AB − BA.

Finally, with a real function W (x) we associate the operator W = (Wkℓ)k,ℓ∈Zd

with components Wkℓ = Wk−ℓ where Wn denote the Fourier coefficient of W
associated with n ∈ Z

d. Thus the operator (Wkℓ)k,ℓ∈Zd acting in the Fourier
space corresponds to the multiplication by W . Note moreover that with this
identification, ‖W‖

α
< ∞ with α > d implies that ‖W‖

L∞
< ∞.

The goal of this paper is to prove the following results:

Theorem 2.1 Let α > d, and assume that ‖V ‖
α

< ∞. There exist h0 > 0 and
a constant C such that for all h ∈ (0, h0), there exists a symmetric operator S(h)
such that

exp(ihV )R(−ih∆) = exp(ihS(h)),

satisfying for all h,

S(h) = −2

h
arctan

(h∆

2

)

+ V (h) + hW (h)
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where V (h) and W (h) satisfy

‖V (h)‖
α

+ ‖W (h)‖
α
≤ C‖V ‖

α
, (2.1)

and where moreover V (h) is given by the convergent series in Lα

V (h) =
(

d expZ0(h)

)−1
(V ) = V +

∑

k≥1

Bk

k!
ikadk

Z0(h)(V ) (2.2)

with Z0(h) = −2 arctan
(h∆

2

)

, and where the Bk are the Bernouilli numbers.

Remark 2.2 The size of h0 is only proportional to the inverse of ‖V ‖
α
, and

hence is a reasonably small parameter. In particular it does not depend on a
possible space discretization of the problem through a CFL condition.

The following result shows that S(h) defines a “modified” energy when ap-
plied to smooth functions:

Proposition 2.3 Let β ∈ [0, 1]. Assume that u ∈ H1+β(Td), then we have for
h ∈ (0, h0),

∣

∣〈u|S(h)|u〉 − 〈u| − ∆ + V |u〉
∣

∣ ≤ Chβ‖u‖2

H1+β . (2.3)

where C depends on β and V .

The next results shows the conservation the modified energy S(h) along the
numerical solution associated with the split-step propagator. As a consequence,
we give a regularity bound for the numerical solution over arbitrary long time.

Corollary 2.4 Assume that u0 ∈ L2(Td) and h ∈ (0, h0). For all n ≥ 1, we
define

un =
(

exp(ihV )R(−ih∆)
)n

u0.

Then for all n we have

〈un|S(h)|un〉 = 〈u0|S(h)|u0〉. (2.4)

If moreover u0 ∈ H1, then there exists a constant C0 depending on V and α such
that for all n ∈ N,

∑

|k|≤1/
√

h

|k|2|un
k |2 +

1

h

∑

|k|>1/
√

h

|un
k |2 ≤ C0‖u0‖2

H1
. (2.5)

This last result shows that H1 estimate are preserved over arbitrary long time
only for “low” modes |k| < 1/

√
h whereas the remaining high frequencies part is

small in L2.
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Remark 2.5 The results above obviously remain valid when considering the full
discretization of (1.1) by collocation methods (see for instance [10]), with esti-
mates independent of the spectral discretization parameter.

Remark 2.6 The previous results easily extend to the splitting scheme

R(−ih∆) exp(ihV )

and to the Strang splitting

exp(ihV/2)R(−ih∆) exp(ihV/2). (2.6)

Note that in this last situation, the fact that the method is of order 2 allows
to take β ∈ [0, 2] in (2.3). See Section 7 for further details on other possible
extensions.

3 Formal series

We now start the proof of Theorem 2.1.
In the following, we set

Z0 := −2 arctan
(h∆

2

)

the diagonal operator with coefficients

λk = (Z0)kk = 2arctan
(h|k|2

2

)

, k ∈ Z
d.

We look for a function t → Z(t) taking value into the set of operator acting on

C
Z

d
such that Z(0) = Z0 and

∀ t ∈ [0, h], eitV eiZ0 = eiZ(t).

Derivating the equation in t, this yields (see [8])

iV eitV eiZ0 = i
(

d expiZ(t) Z ′(t)
)

eiZ(t).

Hence Z(t) has to satisfy the equation (see [8, Chap. III.4])

Z ′(t) = (d expiZ(t))
−1V = i

∑

k≥0

Bk

k!
adk

iZ(t)(V ). (3.1)

and Z(0) = Z0. Here, the Bk are the Bernouilli numbers. Recall that for z ∈ C,
|z| < 2π, the expression

∑

k≥0

Bk

k!
zk =

z

ez − 1
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defines a power series of radius 2π.
We define the formal series

Z(t) =
∑

ℓ≥0

tℓZℓ

where Zℓ, ℓ ≥ 1, are unknown operators.
Plugging this expression into (3.1) we find

∑

ℓ≥1

ℓtℓ−1Zℓ =
∑

k≥0

Bk

k!

(

i
∑

ℓ≥0

tℓadZℓ

)k
(V )

=
∑

ℓ≥0

tℓ
∑

k≥0

Bk

k!
ik

∑

ℓ1+···+ℓk=ℓ

adZℓ1
· · · adZℓk

(V ).

Identifying the coefficients in the formal series, we find the induction formula:

∀ ℓ ≥ 1, (ℓ + 1)Zℓ+1 =
∑

k≥0

Bk

k!
ik

∑

ℓ1+···+ℓk=ℓ

adZℓ1
· · · adZℓk

(V ). (3.2)

Note that we easily show by induction that for all ℓ, Zℓ is symmetric. For ℓ = 1,
this equation yields

Z1 =
∑

k≥0

Bk

k!
ikadk

Z0
(V ). (3.3)

Note that the main difference with the finite dimensional situation is that the
“first” term in the expansion is given by an infinite series and that it depends on
the small parameter h through the operator Z0. The key to control this term is
to estimate the norm of the operator adZ0

.

4 Proof of Theorem 2.1

Lemma 4.1 Assume that α > d. There exist a constant Cα such that for all
operator A and B,

‖AB‖
α
≤ Cα‖A‖

α
‖B‖

α
.

Proof. We have for k, ℓ ∈ Z
d,

|(AB)kℓ|(1 + |k − ℓ|α) ≤ (1 + |k − ℓ|α)
∑

p∈Zd

|Akp||Bkp|

≤ ‖A‖
α
‖B‖

α

∑

p∈Zd

1 + |k − ℓ|α
(1 + |k − p|α)(1 + |p − ℓ|α)

But as the function x → xα is convex for x > 0, we have

1 + |k − p|α ≤ 1 +
(

|k − ℓ| + |ℓ − p|
)α ≤ 2α−1

(

1 + |k − ℓ|α + 1 + |ℓ − p|α
)

.
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Hence we have

|(AB)kℓ|(1 + |k − ℓ|α) ≤ 2α−1‖A‖
α
‖B‖

α

∑

p∈Zd

( 1

1 + |k − p|α +
1

1 + |p − ℓ|α
)

and this shows the result, as α > d.

Lemma 4.2 Let α > d. There exist a constant Mα such that for all symmetric
operator B and for all u ∈ L2, we have

|〈u|B|u〉| ≤ Mα‖B‖
α
‖u‖2

.

Proof. We have

|〈u|B|u〉| ≤
∑

k,ℓ

|Bkℓ||uk||uℓ|

≤ ‖B‖
α

∑

k,ℓ

1

1 + |k − ℓ|α |uk||uℓ|

≤ ‖B‖
α

∑

k,ℓ

1

1 + |k − ℓ|α |uk|2

using the formula |uk||uℓ| ≤ 1
2(|uk|2 + |uℓ|2). This yields the result.

Lemma 4.3 Recall that Z0 = 2arctan
(h∆

2

)

, and let W = (Wkℓ)k,ℓ∈Zd be an

operator. We have for all α > 1

‖adZ0
W‖

α
≤ π‖W‖

α
. (4.1)

Proof. For k, ℓ ∈ Z
d we have as Z0 is diagonal

(

adZ0
W
)

kℓ
= (λk − λℓ)Wkℓ,

=
(

2 arctan(h|k|2/2) − 2 arctan(h|ℓ|2/2)
)

Wkℓ.

Hence we have for all k, ℓ ∈ Z
d,
∣

∣

(

adZ0
W
)

kℓ

∣

∣ ≤ π|Wkℓ|
and this shows the result.

Using this Lemma, we see using (3.3) that

‖Z1‖α
≤ ‖V ‖

α

∑

k≥0

|Bk|
k!

πk ≤ C‖V ‖
α

(4.2)

is bounded. In components, we calculate using the expression of adZ0
that

(Z1)kℓ = Vkℓ
i(λk − λℓ)

exp(i(λk − λℓ)) − 1
(4.3)
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Note that for any bounded operator A and B, we always have

‖adA(B)‖
α
≤ 2Cα‖A‖

α
‖B‖

α

where Cα is given by Lemma 4.1 We define now the following numbers:

ζ0 = π and ζℓ = 2Cα‖Zℓ‖α
, for ℓ ≥ 1.

Using (3.2) and Lemma 4.3, we easily see that we have the estimates

∀ ℓ ≥ 1,
1

2Cα
(ℓ + 1)ζℓ+1 ≤ ‖V ‖

α

∑

k≥0

|Bk|
k!

∑

ℓ1+···+ℓk=ℓ

ζℓ1 · · · ζℓk
.

Now for any ρ such that π < ρ < 2π, there exist a constant M such that for all
k, |Bk| ≤ k!Mρ−k. Hence we can write

∀ ℓ ≥ 1,
1

2Cα
(ℓ + 1)ζℓ+1 ≤ M‖V ‖

α

∑

k≥0

ρ−k
∑

ℓ1+···+ℓk=ℓ

ζℓ1 · · · ζℓk
.

Let ζ(t) be the formal series ζ(t) =
∑

ℓ≥0 tℓζℓ. Multiplying the previous equation

by tℓ and summing over ℓ ≥ 0, we find

1

2Cα
ζ ′(t) ≤ M‖V ‖

α

∑

k≥0

ρ−kζ(t)k = M‖V ‖
α

1

1 − ζ(t)/ρ
.

Let η(t) be the solution of the differential equation:

η′(t) = 2MCα‖V ‖
α

1

1 − η(t)/ρ
, η(0) = π.

Taking ρ = 3π/2, we easily see that for t ≤ π
32MCα‖V ‖

α

, the solution can be

written

η(t) =
3π

2

(

1 −
√

1

9
− 16

3
MCα‖V ‖

α
t

)

,

and defines an analytic function of t. Expanding η(t) =
∑

ℓ≥0 tℓηℓ, we see that
the coefficients satisfy the relations η0 = π and

∀ ℓ ≥ 1,
1

2Cα
(ℓ + 1)ηℓ+1 = M‖V ‖

∑

k≥0

ρ−k
∑

ℓ1+···+ℓk=ℓ

ηℓ1 · · · ηℓk

with ρ = 3π
2 . By induction, this shows that ζℓ ≤ ηℓ. Moreover, for all z ∈ C with

|z| ≤ π
32MCα‖V ‖

α

, we have as the coefficients ζℓ are positive,

|ζ(z)| =

∣

∣

∣

∣

∣

∞
∑

ℓ=0

ζℓz
ℓ

∣

∣

∣

∣

∣

≤
∞
∑

ℓ=0

ζℓ|z|ℓ = ζ(|z|) ≤ η(|z|) ≤ 3π

2
.
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Using Cauchy estimates, we see that

∀ ℓ ≥ 1, ‖Zℓ‖ =
1

2Cα
ζℓ =

1

2Cα

ζ(ℓ)(0)

ℓ!
≤ 3π

4Cα

(32MCα‖V ‖
α

π

)ℓ
.

The theorem is now proved by setting

V (h) = Z1, and W (h) =
∑

ℓ≥2

hℓ−2Zℓ

which defines a convergent power series for |h| < h0 = π
32MCα‖V ‖

α

. The estimate

(2.1) on V (h) is then an easy consequence of (4.2). The estimate (2.1) on W (h)
is easily proved.

5 Modified energy

We give now the proof of Proposition 2.3.
For all x ∈ R, we have

arctan(x) − x = −
∫ x

0

y2

1 + y2
dy.

For k ∈ Z
d, this yields

2

h
arctan

(h|k|2
2

)

− |k|2 = −2

h

∫ h|k|2/2

0

y2

1 + y2
dy.

Let γ ∈ [0, 2], it is clear that for all y ∈ R,

y2

1 + y2
≤ yγ .

Hence we have for all k ∈ Z
d,

∣

∣

∣

2

h
arctan

(h|k|2
2

)

− |k|2
∣

∣

∣
≤ 2

h

∫ h|k|2/2

0
yγdy ≤ Chγ |k|2γ+2.

This shows that for all v,

∣

∣

∣
〈v| − 2

h
arctan

(h∆

2

)

|v〉 − 〈v| − ∆|v〉
∣

∣

∣
≤ Chγ‖v‖2

H1+γ . (5.1)

Now we have

〈v |V (h) | v〉 − 〈v |V | v〉 =
∑

k≥1

Bk

k!
〈v | ikadk

Z0(h)(V ) | v〉
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Recall that Z0(h) = −2 arctan
(

h∆
2

)

is a positive operator. The operator Z0(h)1/2

is hence well defined, and for an operator W we have in components

(Z0(h)1/2W )kℓ =
(

2 arctan
(h|k|2

2

)

)1/2
Wkℓ.

Hence we have for all α > 1,

‖Z0(h)1/2W‖
α
≤

√
π‖W‖

α
and ‖WZ0(h)1/2‖

α
≤

√
π‖W‖

α
.

Now using Lemma 4.2 and the fact that Z0(h) is symmetric, we have for all v
and all operator W

|〈v | adZ0(h)(W ) |v〉| ≤ (‖Z0(h)1/2W‖
α

+ ‖WZ0(h)1/2‖
α
)‖Z0(h)1/2v‖ ‖v‖

≤ 2
√

π‖W‖
α
‖Z0(h)1/2v‖ ‖v‖ .

Hence we have

∣

∣〈v |V (h) | v〉 − 〈v |V | v〉
∣

∣ ≤ 2
∑

k≥1

|Bk|
k!

πk−1/2‖V ‖
α
‖Z0(h)1/2v‖ ‖v‖

≤ C‖V ‖
α
‖Z0(h)1/2v‖ ‖v‖

Using (5.1) with γ = 0, this shows that

∣

∣〈v |V (h) | v〉 − 〈v |V | v〉
∣

∣ ≤ C‖V ‖
α

h‖u‖
H1 ‖u‖ .

Finally, we easily have using (2.1) that

∣

∣〈v |W (h) | v〉
∣

∣ ≤ C‖V ‖
α

h‖u‖2
.

Summing the previous inequalities with γ = β in (5.1) we have that

〈u|S(h)|u〉 − 〈u|∆ + V |u〉 ≤ Chβ‖u‖2

H1+β + C‖V ‖
α

h‖u‖
H1

‖u‖

and this yields the result.

6 Bounds for the numerical solution

We prove now Corollary 2.4. Note that Eqn. (2.4) is classic.
Using the fact that V is symmetric, we have for all n, ‖un‖ = ‖u0‖ where

‖ · ‖ denotes the L2 norm.
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Using Lemma 4.2, we can write for all v ∈ L2,

〈v|S(h)|v〉 =
1

h
〈v| − 2 arctan

(h∆

2

)

|v〉 + 〈v|V (h) + hW (h) | v〉

whence using (2.1), Lemma 4.2 and the fact that Z0 is a positive operator

|〈v|S(h)|v〉| ≥ 1

h
〈v| − 2 arctan

(h∆

2

)

|v〉 − C‖V ‖
α
‖v‖2

.

Hence using (2.4) we have that for all n,

1

h
〈un| − 2 arctan

(h∆

2

)

|un〉 ≤ 〈un|S(h)|un〉 + C‖V ‖
α
‖un‖2

≤ 〈u0|S(h)|u0〉 + C‖V ‖
α
‖u0‖2

.

Using (2.3) with β = 0, we find that there exists a constant such that for all n,

1

h
〈un| − 2 arctan

(h∆

2

)

|un〉 ≤ C0‖u0‖2

H1 . (6.1)

Now we have for all x > 0

x >
1

2
=⇒ arctan x > arctan

(1

2

)

and x ≤ 1

2
=⇒ arctan x >

2x

3
. (6.2)

Applying this inequality to (6.1) by considering the set of frequencies h|k|2 ≤ 1
and h|k|2 > 1 immediately yields the result.

7 Higher order approximations

In this section we further investigate the long time behaviour by numerical sim-
ulations and consider higher-order numerical schemes.

We perform the simulations with d = 1, u0 = 2/(2 − cos(x)) and V (x) =
cos(x)+sin(6x). In the next figures, we show the maximal size of the oscillations
of the truncated H1 norm

(

20
∑

k=−20

(1 + |k|2)|un
k |2
)1/2

(7.1)

along the numerical solution un from t = 0 to t = 50, and for stepsize ranging
from h = 0.01 to h = 0.1.

As expected, we see that this quantity is uniformly bounded for the splitting
scheme (1.5) (Figure 1).
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Figure 1: Midpoint approximation of the exponential.

As explained in Remark 2.6, our methods easily extends to the Strang split-
ting scheme (2.6). Considering the alternative Strang splitting

R(−ih∆/2) exp(−ihV )R(−ih∆/2),

the same argument does not apply straightforwardly. The obstruction occurs in
Lemma 4.3 where R(−ih∆) is replaced by R(−ih∆/2)2 in the definition of the
operator Z0, transforming π by 2π in inequality (4.1).

Nevertheless, as shown in Figure 2, the same uniform conservation phe-
nomenon can be observed. This might be justified using the fact that the operator
Z1 defined in (4.3) still makes sense in this situation.

Next we consider schemes of the form

exp(ihV )
s
∏

j=1

R(−γjh∆) (7.2)

where γj ∈ R, j = 1, . . . , s are coefficients satisfying γ1 + . . . + γs = 1. Such an
approximation will be a higher order approximation of the splitting scheme (1.3)
for suitable γj satisfying given algebraic conditions (see for instance [8, Chap
III]). Of course, all these schemes remain symplectic and preserve the L2 norm.
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Figure 2: Strang splitting R(−ih∆/2) exp(−ihV )R(−ih∆/2).
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In Figures 3, 4 and 5, we consider successively classical symmetric composition
methods of order 4, 6 and 8 (see [8, Chap V] and the references therein). The
method of order 4 is the triple jump method for which s = 3,

γ1 = γ3 =
1

2 − 21/3
, and γ2 = − 21/3

2 − 21/3
. (7.3)

The methods of order 6 corresponds to the methods given by Yoshida (see [15]
and [8, Section V.3.2]) and requires s = 7, while the method of order 8 is the
methods given by Suzuki & Umeno, see [14], and requires s = 15.

What we observe is that for the method of order 4, the situation is similar
to the previous cases (regularity conservation), but for the methods of order 6
and 8, resonances appear: for specific values of the stepsize, the regularity of the
numerical solution deteriorates.
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Figure 3: Order 4 approximation of the exponential.
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Figure 4: Order 6 approximation of the exponential.

Finally, we plot in Figure 6 the same simulation for the “exact” splitting
scheme (1.5). In this last situation, it is known that the resonances appear for
step sizes h such that h(k2 − ℓ2) is close to a multiple of 2π for some k and ℓ ∈ Z

(see [3]).
The fact that the method of order 4 possesses a modified energy can easily

seen: With the values of γ1, γ2 and γ3 given in (7.3), we have

R(−γ1h∆)R(−γ2h∆)R(−γ3h∆) = exp(iZ0)
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Figure 5: Order 8 approximation of the exponential.
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Figure 6: Exact splitting.

where

Z0 = −4 arctan
( h∆

2(2 − 21/3)

)

+ 2arctan
( 21/3h∆

2(2 − 21/3)

)

= −G(h∆/2) (7.4)

with

G(x) = 4 arctan
( x

2 − 21/3

)

− 2 arctan
( 21/3x

2 − 21/3

)

.

It is easy to see that for all x > 0 G(x) is an increasing function such that
G(x) ∈ (0, π). Hence Lemma 4.3 remains valid for this Z0. Using the same
techniques as before, and bounds like (6.2) still valid for the function G(x), we
can show the existence of a modified energy for this method, explaining the
absence of resonances.

Note that in the same spirit, we could consider symmetric composition meth-
ods based on the order two Strang splitting (2.6) to build higher order methods
of the form

s
∏

j=1

exp(iγjhV/2)R(−iγjh∆) exp(iγjhV/2)

to approximate (1.1). A general strategy to show the existence of a modified
energy for this method would be to search for an operator Z(t) such that for all

16



t > 0,

exp(iZ(t)) =

s
∏

j=1

exp(iγjtV/2)R(−iγjh∆) exp(iγjtV/2)

with

Z0 = −
s
∑

j=1

2 arctan(hγj∆/2).

In the case of the triple jump method, this operator can be written (7.4), and the
same argument as above shows the existence of a modified energy for this method
by using the same kind of techniques. We do not give the details here. The
derivation of higher order methods possessing a modified energy is an interesting
question that will be addressed in future studies.
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