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Ergodicity of Hamilton-Jacobi equations with a non
coercive non convex Hamiltonian in R2/Z2

Pierre Cardaliaguet ∗

December 18, 2008

Abstract The paper investigates the long time average of the solutions of Hamilton-Jacobi
equations with a non coercive, non convex Hamiltonian in the torus R2/Z2. We give nonreson-
nance conditions under which the long-time average converges to a constant. In the resonnant
case, we show that the limit still exists, although it is non constant in general. We compute the
limit at points where it is not locally constant.

Résumé Nous considérons le comportement en temps grand de la moyenne temporelle de
solutions d’équations de Hamilton-Jacobi pour un hamiltonien non convexe et non coercif dans
le tore R2/Z2. Nous mettons en évidence des conditions de non-résonnance sous lesquelles cette
moyenne converge vers une constante. Dans le cas où il y a résonnance, nous montrons que la
limite existe, bien qu’étant non constante en général. Nous calculons la limite aux points où
celle-ci est non localement constante.

1 Introduction

Since the pioneering work of Lions, Papanicolau and Varadhan [12], the ergodic problem
for Hamilton-Jacobi equations has attracted considerable attention. For equations of
evolutionnary type: {

ut +H(x,Du) = 0 in RN × (0,+∞)
u(x, 0) = 0 in RN (1)

where H : RN ×RN → R is continuous, one might be interested in the long time behavior
of the time average u(x, t)/t. For equations of stationnary type:

λvλ +H(x,Dvλ) = 0 in RN , (2)

the object of investigation is the limiting behavior, when the discount factor λ vanishes,
of the quantity λvλ.

A typical result in this framework is the following: If H(·, p) is ZN−periodic and
H(x, ·) is coercive:

lim
|p|→+∞

H(x, p) = +∞ uniformly with respect to x, (3)
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the following ergodicity property holds:

lim
t→+∞

u(x, t)

t
= lim

λ→0
λvλ(x) = c uniformly with respect to x, (4)

where c is the unique constant such that equation

H(x,Dχ) = −c in RN (5)

has a continuous, periodic solution χ. The periodicity condition has been relaxed in
many situations (compact manifolds, almost periodic setting, stochastic homogenization,
...). However, for first order Hamilton-Jacobi equations, the coercivity of H(x, ·) plays a
central role. Indeed, as can readily be seen from the equation, this condition ensures the
family of functions {vλ} to be equicontinuous, which in turn implies the existence of a
corrector (or approximate corrector in more general frameworks), i.e., a solution of (5).

When the Hamiltonian is not coercive, this crucial equicontinuity property fails and
few results are available. Most of them rely on some partial coercivity or on some reduc-
tion property, which, somehow, compensates the lack of coercivity: let us quote Alvarez
and Bardi [1, 2], Alvarez and Ishii [3], Artstein and Gaitsgory [5], Bardi [6], Barles [7],
Birindelli and Wigniolle [8], Gomes [10] and Imbert and Monneau [11]. We follow here a
completely different approach, based on nonresonnance conditions, initiated for Hamilton-
Jacobi equations by Arisawa and Lions [4]. In [4] the authors investigate—among other
problems—equations (1) and (2) for Hamiltonians of the form

H(x, p) = H(p)− `(x), ∀(x, p) ∈ RN × RN ,

where ` : RN → R is continuous, ZN−periodic and H : RN → R is positively homogeneous
and convex. Under these assumptions, (4) holds as soon as

∀k ∈ ZN\{0} , ∃a ∈ ∂H(0) with k.a 6= 0 . (6)

This is the nonresonnance condition.

The first aim of our paper is to investigate nonresonnance conditions for Hamilton-
Jacobi equations with non convex Hamiltonians. Since this is a very delicate issue, we
were able to obtain results only for plane problems and for equations of the form{

ut +H(Du)− ` = 0 in R2 × (0,+∞)
u(x, 0) = 0

(7)

and of the form
λvλ +H(Dvλ)− ` = 0 in R2 , (8)

where H : R2 → R is locally Lipschitz continuous and ` : R2 → R is continuous and
Z2−periodic. We now present our main result. Let us assume that there is some k ≥ 1 and
some k−positively homogeneous, locally Lipschitz continuous Hamiltonian H∞ : R2 → R
such that

lim
s→0+

skH(p/s) = H∞(p) locally uniformly in p
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and such that

∀p̄ ∈ R2\{0} with H∞(p̄) = 0, DH∞(p̄) exists and is nonzero.

Let us set

P =
{
p = (p1, p2) ∈ R2 | |p| = 1, H∞(p) = H∞(−p) = 0, p2 6= 0 and p1/p2 ∈ Q∗

}
. (9)

Then we show (Theorem 4.1) that if either P = ∅ or

∀p ∈ P , lim
s→0+

∣∣∣H (p
s

)∣∣∣ = +∞ (10)

then ergodicity (4) holds for any ` : R2 → R. For instance condition P = ∅ holds
for H(p1, p2) = −|p1| + α|p2| if and only if α > 0 is irrational. For H(p1, p2) =
−(p1 + a)2 + (p2 + b)2, we have P = {(±1,±1)} and condition (10) holds if and only
if |a| 6= |b|.

In order to underline the difference between our result and the nonresonnance condition
of [4] described above, let us explain the main ideas of the proofs. As pointed out in [4],
the interesting feature of equations (7) and (8) is that they provide uniform continuity
of u(·, t)/t in R2 for any t ≥ 1 and of λvλ in R2 for any λ ∈ (0, 1] (this holds true in
any space dimension). Let now w be a uniform limit of some subsequence (λnvλn). Then
classical arguments of viscosity solutions show that w is a Lipschitz continuous, periodic
solution of

H∞(Dw) = 0 in R2 . (11)

The main issue amounts to establish some rigidity properties for the solutions of this
equation. When H∞ is convex and 1−positively homogeneous, then it is proved in [4]
that any continuous, periodic solution w of (11) is also a solution of

a.Dw = 0 in R2 (12)

for any a ∈ ∂H∞(0). Indeed, w is a viscosity subsolution of (12), hence a subsolution
in the sense of distributions, and, integrating (12) over [0, 1]2 readily gives that equality
holds by periodicity. Note that equation (12) means that w is constant along the lines
t → x + ta for any a ∈ ∂H∞(0). In particular, if (6) holds, one can cover the torus by
such lines and any continuous periodic solutions of (11) has to be constant.

If now H is non convex, then the reduction to linear equations of the form (12) does
not hold. However we are able to show in the plane that, if (9) holds and if w is a Lipschitz
continuous solution of the equation (11), then at any point x̄ at which w has a nonzero
derivative, the map t → w(x̄ − tDH(Dw(x̄))) is constant on [0,+∞) (see Lemma 3.1).
This result is somewhat surprizing since the map t → w(x̄ + tDH(Dw(x̄))) need not be
constant on [0,+∞). As a consequence we prove in Theorem 3.3 that any non constant,
periodic solution of (11) is of the form w(x) = w̄(p̄.x) for some map w̄ : R → R and
some p̄ ∈ P . In particular, if P = ∅, any limit of (λvλ) is constant, which implies (4).
Ergodicity in the case (10) is more subtle and relies on the fact that any cluster point w
of the (λvλ) for the uniform topology has to be of the form w(x) = w̄(p̄.x) for some p̄ ∈ P
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and some w̄ : R→ R.

The second aim of our paper is to analyse the behavior of the solutions of (7) and
(8) in the resonnant case (P 6= ∅). In this case, we cannot expect ergodicity to hold
in general: for instance, if H(p1, p2) = −|p1| + |p2| and `(p1, p2) = ¯̀(p1 − p2) for some
continuous periodic function ¯̀ : R→ R, then one easily checks that vλ = `/λ, so that (4)
does not hold. In this resonnant case, very few is known. The only work we are aware of
is due to Quincampoix and Renault who show in [13] that, if H is convex with respect to
the gradient variable and has a “weak dependence”’ with respect to x, then there exists
a limit for the (u(·, t)/t). We give a similar result for nonconvex H in dimension 2: under
suitable assumptions on H, the limits of u(·, t)/t and of λvλ as t→ +∞ and λ→ 0+ exist
and are equal (Theorem 5.1). Of course this common limit w need not be constant in
general. However, since w is a Lipschitz continuous, periodic solution of (11), our rigidity
result implies that w has to be of the form w(x) = w̄(p̄.x) for some function w̄ : R → R
and some p̄ ∈ P . In fact we can compute explicitely w̄ at any point s ∈ R at which w̄
is not locally constant. The quantity w̄(s) is the sum of two terms: one is the average
of ` over the line p̄.x = s; the other is related to the behavior of H(p) when |p| → +∞.
The proof of these results relies on the existence of “correctors” of a linearized equation
along the lines p̄.x = s. We use these correctors in order to build sub-solutions with state
constraints on sets of the form {w ≥ θ}.

The paper is organized in the following way. We first recall in section 2 some well-
known results on equations (7) and (8). Then we establish in section 3 the rigidity
property of equation (11). The proof of ergodicity is given in section 4, while section 5 is
devoted to resonnant case. We complete the paper by a discussion on some open problems.

Aknowledgement : It is my pleasure to thank Hitoshi Ishii and Guy Barles for
fruitfull discussions. This work was partially supported by the ANR (Agence Nationale de
la Recherche) through MICA project (ANR-06-BLAN-0082) and KAMFAIBLE project
(BLAN07-3-187245).

2 Generalities

In this section, we recall some known results on the Hamilton-Jacobi equations (7) and
(8). We always work here in the framework of viscosity solutions [9]. Let us first focus
on the stationary equation:

λvλ +H(Dvλ) = ` in RN .

In the above equation, H : RN → R is continuous and ` : RN → R is continuous and
ZN−periodic. Under these assumptions, (8) has a unique viscosity solution vλ. This
solution is continuous and ZN−periodic. We set wλ = λvλ.

Lemma 2.1 wλ is continuous, uniformly with respect to λ. Moreover, if ` is Lipschitz
continuous, then so is wλ, with a Lipschitz constant independant of λ.
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Proof : Let ω be a modulus of continuity of `. For any z ∈ RN , vλ(·+ z) + ω(|z|)/λ
(resp. vλ(·+z)−ω(|z|)/λ) is a supersolution (resp. a subsolution) of (8). By comparison,
we get

vλ(x+ z)− ω(|z|)/λ ≤ vλ(x) ≤ vλ(x+ z) + ω(|z|)/λ ∀x ∈ RN ,

which implies that ω is a modulus of continuity for wλ for any λ > 0. Note that if ` is
Lipschitz continuous with a Lipschitz constant L, then we can take ω(t) = Lt, so that the
wλ are all L−Lipschitz continuous. �

From now on we assume that H has a recession function: there exists a continuous
function H∞ : RN → R and k ≥ 1 such that

lim
s→0+

skH(p/s) = H∞(p) locally uniformly in p. (13)

Note that H∞ is k−positively homogeneous.

Lemma 2.2 Under assumption (13), if w is any limit of a uniformly converging subse-
quence of (wλ) as λ→ 0+, then w satisfies

H∞(Dw) = 0 (14)

Proof : Indeed wλ solves

λkwλ + λkH(Dwλ/λ) = λk` in RN .

Letting λ→ 0 gives the result. �

Lemma 2.3 Let w be any limit of a uniformly converging subsequence of (wλ) as λ→ 0+.
Then

lim sup
λ→0

max
x∈RN

wλ(x) = max
x∈RN

w(x) and lim inf
λ→0

min
x∈RN

wλ(x) = min
x∈RN

w(x) .

In particular, if w is constant, then (wλ) uniformly converges to the constant w as λ→ 0.

Proof : For any λ, n, let xλ,n be a maximum point of vλ − vλn . We have (formaly)

Dvλ(xλ,n) = Dvλn(xλ,n)

From the equations satisfied by vλ and vλn we also have

λvλ(xλ,n)− λnvλn(xλ,n) ≤ −H(Dvλ(xλ,n)) +H(Dvλn(xλ,n)) = 0 .

Hence
maxλvλ ≤ λmaxx(vλ − λvλn) + λmaxx vλn

≤ λvλ(xλ,n)− λvλn(xλ,n) + λmax vλn
≤ λnvλn(xλ,n) + 2λ|vλn|∞
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When λ→ 0, xλ,n → xn (up to some subsequence) and we get

lim sup
λ→0+

maxλvλ ≤ λnvλn(xn)

Letting finally n→ +∞ we obtain

lim sup
λ→0+

maxλvλ ≤ max
x

w .

The above argument can be made rigourous by using standard technique of doubling
variables. The reverse inequality

lim inf
λ→0+

minλvλ ≥ min
x
w .

can be proved in the same way by minimizing vλ − vλn . �

We now turn to the analysis of the solutions of the evolution equation{
ut +H(Du)− ` = 0 in RN × [0,+∞[
u(x, 0) = 0 in RN

where, as before, H : RN → R is continuous, ` : RN → R is continuous and ZN−periodic.

Lemma 2.4 Under the above assumptions, w := u/t is periodic in x, bounded and uni-
formly continuous in x for any t ≥ 1.

Proof : By comparison principle, |u(x, t)| ≤ t‖`‖∞. So w is bounded for t ≥ 1. Let
ω be a modulus of continuity of `. Then, for any z ∈ RN , (x, t)→ u(x+ z, t) +ω(z)(1 + t)
is a super-solution of (7). So u(x, t) ≤ u(x+ z, t) +ω(z)(1 + t), which proves that u(·, t)/t
has ω as a modulus of continuity with respect to x for any t ≥ 1. �

3 Rigidity of equation H∞(Dw) = 0

From now on we work in the plane. We denote by (x1, x2) or (p1, p2) a generic element of
R2. The aim of this section is to investigate the continuous periodic solutions of equation
H∞(Dw) = 0. In order to simplify the notations, we denote by H the hamiltonians of
this section. Our assumptions on H : R2 → R are:

H is locally Lipschitz continuous, k−positively homogeneous, for some k ≥ 1. (15)

Lemma 3.1 Let H : R2 → R satisfying (15). Let w be a locally Lipschitz continuous
viscosity solution of H(Dw) = 0 in R2 and x̄ be a point of differentiability of w with
Dw(x̄) 6= (0, 0). If DH(Dw(x̄)) exists, then

w ( x̄− tDH(Dw(x̄) ) = w(x̄) ∀t ≥ 0 .

Remarks :
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1. Surprizingly equality w(x̄+ tDH(Dw(x̄)) = w(x̄) ∀t ≥ 0 does not hold in general.
For instance, if H(p1, p2) = −|p1| + |p2|, then w(x1, x2) = max{x1 + x2, x2 − x1} is
a viscosity solution to H(Dw) = 0 in R2 and (1, 1) is a point of differentiability of
w with Dw(1, 1) = (1, 1) and DH(Dw(x̄)) = (−1, 1). However

w((1, 1) + tDH(Dw(x̄)) = max{2, 2t} > 2 = w(1, 1) ∀t > 1 .

2. The result also holds if w is a solution of H(Dw) = 0 in an open set O ⊂ R2. In this
case, we have w(x̄−tDH(Dw(x̄)) = w(x̄) for any t > 0 such that x̄−sDH(Dw(x̄) ∈
O for all s ∈ [0, t]. The proof is exactly the same.

Proof of Lemma 3.1 : Replacing H by H̃(p) = |p|H(p/|p|) if necessary, we can
assume that H is 1−positively homogeneous. Moreover, H is then globally Lipschitz
continuous. Let (e1, e2) be the canonical basis of R2 and let us set p̄ = Du(x̄) and
ξ = DH(Dw(x̄)). Without loss of generality we can also suppose that u(x̄) = 0 and
p̄ = e1. Since H is positively homogeneous, we note for later use that p̄.ξ = H(p̄) = 0.

Step 1 : We claim that, for any ε > 0 small enough there is some convex and positively
homogeneous map H+

ε : R2 → R such that

H ≤ H+
ε , H+

ε (p̄) = 0, ∂H+
ε (p̄) ⊂ Bε(ξ) and 0 /∈ ∂H+

ε (0) . (16)

Proof of step 1 : Since H is differentiable at p̄, for any ε > 0 we can find η > 0 such
that

|H(p)− ξ.(p− p̄)| ≤ ε|p− p̄| ∀p ∈ Bη(p̄) . (17)

Let us denote by Cη the convex cone {p = (p1, p2) ∈ R2 | |p2| ≤ ηp1}. By homogeneity of
H and using the fact that ξ.p̄ = 0 and p̄ = e1, (17) leads to

H(p) ≤ ξ.p+ ε|p2| ∀p = (p1, p2) ∈ Cη .

Then, since H is Lipschitz continuous, we can choose a constant M such that H ≤ H+
ε

where
H+
ε (p) = ξ.p+ ε|p2|+MdCη(p) ∀p ∈ R2 ,

where dCη(p) denotes the distance from p to Cη. We note that H+
ε is convex and positively

homogeneous. Moreover, H+
ε (p̄) = 0 and ∂H+

ε (p̄) ⊂ Bε(ξ) by construction. Finally, we
note that, if we had 0 ∈ ∂H+

ε (0), then this would imply that, for any h > 0 sufficiently
small,

0 = 0.(p̄− hξ) ≤ H+
ε (p̄− hξ) = −h|ξ|2 + εh|ξ| < 0 ,

a contradiction if we choose ε > 0 small. So 0 /∈ ∂H+
ε (0).

Step 2 : Let us fix δ > 0 small and let us denote by ȳδ and z̄δ a projection of x̄ onto
the sets {w ≤ −δ} and {w ≥ δ}. Since w is differentiable at x̄ with p̄ = Dw(x̄) 6= 0, we
have

lim
δ→0+

x̄− ȳδ
δ

= lim
δ→0+

z̄δ − x̄
δ

=
p̄

|p̄|2
= p̄ . (18)
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In particular, for δ > 0 sufficiently small, we have

− δ < w(z) < δ ∀z ∈]ȳδ, z̄δ[ . (19)

We claim that
(ȳδ − x̄).ξ ≤ 0 while (z̄δ − x̄).ξ ≥ 0 . (20)

Proof of claim (20) : Let 1{w>−δ} denote the indicatrix function of the set {w > −δ}.
From classical stability result the map 1{w>−δ} is a super-solution of H(Dw) = 0. For
δ > 0 small, the map

z(x) = −δ +
(
δ2 + |x̄− ȳδ|2 − |x̄− x|2

) 1
2

satisfies:
z(x) ≤ |x̄− ȳδ| ≤ 1 = 1{w>−δ}(x) if |x̄− x| < |x̄− ȳδ|

by definition of yδ and

z(x) ≤ 0 ≤ 1{w>−δ}(x) if |x̄− x| ≥ |x̄− ȳδ| .

Since moreover z(ȳδ) = 0 = 1{w>−δ}(ȳδ), we have by definition of supersolutions:

H(Dz(ȳδ)) = H

(
x̄− ȳδ
δ

)
≥ 0 .

Now we use the fact that we are in dimension 2, that H(p̄) = 0, ξ = DH(p̄) 6= 0,
(x̄ − ȳδ)/δ → p̄ and that H is homogeneous, to get that (ȳδ − x̄).ξ ≤ 0. The other in-
equality of (20) can be proved in a symmetric way.

To proceed further we need the following Lemma, whose proof is postponed:

Lemma 3.2 Let G : RN → R be a convex positively homogeneous map and w be a
continuous super-solution of G(Dw) = 0. Then, for any x0 ∈ RN , there is an absolutely
continuous map x : [0,+∞)→ RN such that

x′(t) ∈ −∂G(x(t)) for almost all t ≥ 0 and t→ w(x(t)) is nonincreasing on [0,+∞).

Step 3 : Let H+
ε : R2 → R2 be the convex, positively homogeneous map defined in

step 1. Since H ≤ H+
ε , w is a supersolution of H+

ε (Dw) = 0. From Lemma 3.2 there is
some absolutely continuous map yδ : [0,+∞)→ R2 starting from ȳδ with

y′δ(t) ∈ −∂H+
ε (x(t)) for almost all t ≥ 0 and t→ w(yδ(t)) is nonincreasing on [0,+∞).

Let us fix T > 0 and let Qδ be the closed quadrilateral with vertices ȳδ, z̄δ, z̄δ − Tξ,
ȳδ − Tξ. We set

θ−δ = inf{t ≥ 0 | yδ(t) /∈ Qδ} .

Since 0 /∈ ∂H+
ε (0), the separation theorem states that there is some η > 0 and there is some

direction ζ ∈ R2\{0} such that y′δ(t).ζ ≥ η for almost all t ≥ 0. Thus θ−δ is well defined
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and finite because Qδ is bounded. We claim that yδ(θ
−
δ ) ∈ [z̄δ, z̄δ−Tξ]∪ [z̄δ−Tξ, ȳδ−Tξ].

Proof of the claim : By construction we have w(yδ(t)) ≤ −δ for any t ≥ 0. From (19)
this implies that yδ(θ

−
δ ) /∈]ȳδ, z̄δ]. Since y′δ(t) ∈ −∂H+

ε (x(t)) a.e., we have

y′δ(t).p̄ ≥ −H+
ε (p̄) = 0 a.e.

so that (yδ(t)− ȳδ).p̄ ≥ 0 for any t ≥ 0. Thus yδ(θ
−
δ ) /∈]ȳδ − Tξ, ȳδ[.

It remains to show that yδ(θ
−
δ ) 6= ȳδ. For this it is enough to prove that, if yδ(θ) = ȳδ

for some θ ≥ 0, then there is some σ > 0 such that yδ(θ + s) ∈ Qδ for any s ∈ [0, σ].
Let us fix θ ≥ 0 such that yδ(θ) = ȳδ. Since the open ball B0(x̄, |ȳδ − x̄|) is contained in
{w > −δ}, we have yδ(t) /∈ B0(x̄, |ȳδ − x̄|) for any t ≥ 0. We now consider two cases. If
(ȳδ − x̄).ξ < 0, then there is some η > 0 such that

{z ∈ B(ȳδ, η) | z /∈ B0(x̄, |ȳδ − x̄|) and (z − ȳδ).p̄ ≥ 0} ⊂ Qδ .

Since, for s > 0 small, the point yδ(θ + s) belongs to the set in the left-hand side,
we have yδ(θ + s) ∈ Qδ for any s ∈ [0, σ] for some σ > 0. Let us now suppose that
(ȳδ − x̄).ξ = 0. This implies that ȳδ − x̄ = −|ȳδ − x̄|p̄. Let z be an accumulation point
of (yδ(t)− ȳδ)/(t− θ) as t→ θ+. Then z ∈ −∂H+

ε (0). In particular z.p̄ ≥ −H+
δ (p̄) = 0 .

Since yδ(t) /∈ B0(x̄, |ȳδ − x̄|) for any t ≥ 0, we also have

0 ≤ (ȳδ − x̄).z = −|ȳδ − x̄|p̄.z .

Hence z.p̄ = 0 and z = λξ for some λ ∈ R. Since ∂H+
ε (p̄) ⊂ Bε(ξ) we can find η > 0

such that ∂H+
ε (p̄− hξ) ⊂ B2ε(ξ) for any h ∈ [0, η]. So, for any h ∈ (0, η], we have

z.(p̄− hξ) ≥ −H+(p̄− hξ) ≥ −H+
ε (p̄) + (p̄− (p̄− hξ)).qh

for some qh ∈ ∂H+
ε (p̄+ hξ) ⊂ B2ε(ξ). Thus

−λh|ξ|2 = z.(p̄− hξ) ≥ hξ.qh ∀h ∈ (0, η] ,

which entails that λ ≤ −|ξ|2 + 2ε|ξ| < 0. Therefore we have proved that any limit point
z of (yδ(t) − ȳδ)/(t − θ) as t → θ+ is of the form z = λξ where λ < 0. The definition
of Qδ then easily implies that there is some σ > 0 such that yδ(θ+s) ∈ Qδ for any s ∈ [0, σ].

Step 4 : We now note that −w is a solution to −H(−Dw) = 0. Arguing as in step 3
with −w, −H(−·) and z̄δ instead of w, H and ȳδ, we can find some absolutely continuous
arc zδ : [0,+∞) → R2 starting from z̄δ such that w(zδ(t)) ≥ δ for any t ≥ 0 and such
that, if we set

θ+
δ = inf{t ≥ 0 | zδ(t) /∈ Qδ} ,

then θ+
δ is finite and zδ(θ

+
δ ) ∈ [ȳδ, ȳδ − Tξ] ∪ [z̄δ − Tξ, ȳδ − Tξ]. Since w(yδ(t)) ≤ −δ

and w(zδ(t)) ≥ δ for any t ≥ 0, yδ([0, θ
−
δ ]) ∩ zδ([0, θ+

δ ]) = ∅. Since we are in the plane,
this implies that yδ(θ

−
δ ) ∈ [z̄δ − Tξ, ȳδ − Tξ] and zδ(θ

+
δ ) ∈ [z̄δ − Tξ, ȳδ − Tξ]. Letting

δ → 0+, the maps yδ and zδ converge, up to subquence, to some absolutely continuous
maps y and z, while θ−δ → θ− and θ+

δ → θ+ with y(t) ∈ [x̄, x̄− Tξ] for any t ∈ [0, θ−] and
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y(θ−) = x̄−Tξ, while z(t) ∈ [x̄, x̄−Tξ] for any t ∈ [0, θ+] and z(θ+) = x̄−Tξ. Moreover,
w(y(t)) ≤ w(x̄) for any t ∈ [0, θ−] while w(z(t)) ≥ w(x̄) for any t ∈ [0, θ+]. Therefore
w(x̄− tξ) = w(x̄) for any t ∈ [0, T ]. This completes the proof since T is arbitrary. �

Proof of Lemma 3.2 : Since G is defined on RN , convex and positively homo-
geneous, ∂G(0) is a convex compact subset of RN . Let z : RN → R be the solution
to {

zt +G(Dz) = 0 in RN × (0,+∞)
z(·, 0) = w in RN

Since w satisfies G(Dw) ≥ 0, we have w(x) ≥ z(x, t) for any (x, t). From Lax representa-
tion formula we get

w(x) ≥ z(x, t) = min
(x−y)∈t∂G(0)

w(y) ∀(x, t) ∈ RN × (0,+∞) .

In particular we have proved that, for any x ∈ RN and any τ > 0, there is some y ∈ RN

such that (x− y)/τ ∈ ∂G(0) and w(x) ≥ w(y).
By induction, we can then show that there is a sequence (yn)n such that y0 = x0,

yn+1 ∈ yn − τ∂G(0) and w(yn+1) ≤ w(yn) for any n ∈ N. Let xτ : [0,+∞) be an affine
interpolation of (yn) such that xτ (nτ) = yn for any n ∈ N. Note that x′τ (t) ∈ −∂G(0)
for almost all t ≥ 0. In particular the familly xτ is equi-Lipschitz continuous and a
subsequence converge to some x : [0,+∞)→ RN such that x(0) = x0, x′(t) ∈ −∂G(0) for
almost every t ≥ 0 and w(x(t)) ≤ w(x(s)) whenever t ≥ s. �

As a consequence of Lemma 3.1, we get the following rigidity result:

Theorem 3.3 Let H : R2 → R satisfy (15) and such that

∀p̄ ∈ R2\{0} with H(p̄) = 0, DH(p̄) exists and is nonzero. (21)

Then equation
H(Dw) = 0 in R2 (22)

admits a non constant, Lipschitz continuous, Z2−periodic solution if and only if there is
some p̄ = (p̄1, p̄2) ∈ R2\{0} such that H(p̄) = H(−p̄) = 0 and such that p̄2 6= 0 and
p̄1/p̄2 ∈ Q∗.

In this case, any continuous, periodic solution w of (22) is one-dimensional: namely,
there is some map w̄ : R→ R and some p̄ ∈ R2\{0} with H(p̄) = H(−p̄) = 0, p̄2 6= 0 and
p̄1/p̄2 ∈ Q∗ such that

w(x) = w̄(x.p̄) ∀x ∈ R2 .

For instance, if H(p) = −|p1| + α|p2| for some α > 0, then equation (22) admits a
non constant, Z2−periodic Lipschitz continuous solution if and only if α ∈ Q.

Proof of Theorem 3.3 : Let w be a non constant, Lipschitz continuous and
periodic solution of (22). Then there is some point of differentiability x̄ ∈ R2 of w such
that p̄ := Dw(x̄) 6= 0. From Lemma 3.1, we have

w(x̄− tξ) = w(x̄) ∀t ≥ 0 (23)
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where ξ = DH(Dw(x̄)). Let us consider the set

E = {x ∈ R2/Z2 | ∃tn → +∞, x̄− tnξ → x in R2/Z2} .

Then E is a closed subset of R2/Z2 and w = w(x̄) on E. Moreover E satisfies

x− tξ ∈ E ∀x ∈ E, ∀t ∈ R .

It is known that a set of the form {x− tξ | t ∈ R} is dense in R2/Z2 if and only if ξ has
rationally independant coordonates. In this case, w has to be constant, which contradicts
of assumption. So the pair (ξ1, ξ2) is not rationally independant, which amounts to saying
that ξ2 6= 0 and ξ1/ξ2 ∈ Q∗. Since p̄.ξ = 0 and p̄ 6= 0, this also implies that p̄2 6= 0 and
p̄1/p̄2 ∈ Q∗.

We now claim that w is one-dimensional. Indeed let x̄′ be another point of differen-
tiability of w such that w(x̄′) 6= w(x̄) and p̄′ = Dw(x̄′) 6= 0. Let ξ′ = DH(p̄′). According
to the previous discussion, we have ξ′2 6= 0 and ξ′1/ξ

′
2 ∈ Q∗. Let

E ′ = {x ∈ R2/Z2 | ∃tn → +∞, x̄′ − tnξ′ → x in R2/Z2} .

As before we have w = w(x̄′) in E ′. From the particular form of ξ and ξ′ we also have

E = x̄+ Rξ and E ′ = x̄′ + Rξ′ .

Note that E∩E ′ = ∅ because w = w(x̄) on E and w = w(x̄′) on E ′ and w(x̄) 6= w(x̄′). So
ξ and ξ′ are parallel, which implies that p̄ and p̄′ are also parallel: indeed we have ξ.p̄ = 0
and ξ′.p̄′ = 0 and we are in dimension 2. This shows that any level-set of w is invariant
by the flow x→ x+ tξ, which implies that w is one-dimensional: there is some w̄ : R→ R
such that w(x) = w̄(p̄.x) for any x.

We now check that H(−p̄) = 0. Indeed, otherwise, one has H(−λp̄) 6= 0 for any λ > 0
because H is homogeneous. Since H(Dw) = H(w̄′p̄) = 0, this implies that, for almost all
s ∈ R, w̄′(s) ≥ 0. Hence w̄ is non nondecreasing, which contradicts the assumption that
w is periodic and non constant.

Conversely, let us assume that there exists p̄ = (p̄1, p̄2) ∈ R2\{0} such that H(p̄) =
H(−p̄) = 0, p̄2 6= 0 and p̄1/p̄2 ∈ Q∗. Let (a, b) ∈ Z∗ × N∗ with a/b = p̄1/p̄2. Then

w(x) = sin((a, b).x)

is a periodic, non constant Lipschitz continuous solution of H(Dw) = 0 because w is
smooth and

H(Dw(x)) =

(
b

p̄2

)k
H
(

cos((a, b).x)p̄
)

= 0 ∀x ∈ R2 .

�
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4 Ergodicity

In this section we investigate conditions under which equations (7) and (8) have an ergodic
behavior. Recall that u = u(x, t) is the solution of the evolution equation (7) while, for
any λ > 0, vλ = vλ(x) is the solution of (8).

Let H : R2 → R be locally Lipschitz continuous such that there is some k ≥ 1 and
some k−positively homogeneous, locally Lipschitz continuous Hamiltonian H∞ : R2 → R
with

lim
s→0+

skH(p/s) = H∞(p) locally uniformly in p.

We also assume that H∞ satifies

∀p̄ ∈ R2\{0} with H∞(p̄) = 0, DH∞(p̄) exists and is nonzero. (24)

In view of Theorem 3.3 we introduce the notation:

P =
{
p = (p1, p2) ∈ R2 | |p| = 1, H∞(p) = H∞(−p) = 0, p2 6= 0 and p1/p2 ∈ Q∗

}
.
(25)

Then equation H∞(Dw) = 0 admits a non constant, Lipschitz continuous, Z2−periodic
solution if and only if P 6= ∅. In particular, if P = ∅, then combining Lemma 2.3 and
Theorem 3.3 readily entails the convergence of the (λvλ) towards a constant as λ → 0.
Hence condition P = ∅ can be understood as a non-resonnance condition.

Very surprizingly, ergodicity actually holds under a much weaker assumption. Namely:

Theorem 4.1 Assume that either P = ∅ or that

∀p ∈ P , lim
s→0+

∣∣∣H (p
s

)∣∣∣ = +∞ (26)

Then the (λvλ) and the u(t, ·)/t converge to the same constant as λ→ 0 and T → +∞.

For instance, if H∞ is some k−positively homogeneous Hamitonian (for some k > 1)
satisfying (24) and H(p) = H∞(p + a) where DH∞(p).a 6= 0 for any p ∈ P , then (26)
holds, because∣∣∣ H (p

s

) ∣∣∣ = (1/s)k | H∞ (p+ sa) | = (1/s)k |H∞(p) + sDH∞(p).a+ o(s)|
= (1/s)k−1 |DH∞(p).a+ o(1)| → +∞ as s→ 0+.

Proof of Theorem 4.1 : We first analyse the behaviour of the (λvλ). For this we
assume that ` : R2 → R is Lipschitz continuous. This assumption is removed later.

Let w be the uniform limit of some sequence (λnvλn) where λn → 0. Let us assume
that w is not constant. Since the λvλ are uniformly Lipschitz continuous and Z2−periodic,
so is w. Since, from Lemma 2.2, w is a solution of H∞(Dw) = 0, Theorem 3.3 states that
there is some p̄ ∈ P and some continuous map w̄ : R → R such that w(x) = w̄(p̄.x) for
any x ∈ R2. To fix the ideas, let us assume for instance that

lim
s→0+

H
( p̄
s

)
= +∞ .
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We claim that, for any smooth test function ϕ : R → R such that w̄ − ϕ has a strict
local maximum at some point z̄, we have ϕ′(z̄) ≤ 0. Indeed assume on the contrary that
ϕ′(z̄) > 0. From standard perturbation arguments, there is a sequence (xn) such that
λnvλn − ϕ(< p̄, · >) has a maximum at xn and xn.p̄ → z̄. Then, setting zn = xn.p̄, we
have

ϕ(zn) +H

(
1

λn
ϕ′(zn)p̄

)
− `(xn) ≤ 0 .

Since ϕ′(zn)→ ϕ′(z̄) > 0, our assumption states that

lim
n
H

(
1

λn
ϕ′(zn)p̄

)
= +∞ ,

which leads to a contradiction since ϕ(zn)→ ϕ(z̄) and ` is bounded.
So for any smooth test function ϕ : R → R such that w̄ − ϕ has a strict local max-

imum at some point z̄, we have ϕ′(z̄) ≤ 0. This implies that w̄ is nonincreasing. But
the function w(x) = w̄(p̄.x) is Z2−periodic. Hence w is constant. Thanks to Lemma 2.3
we can now complete the proof of the convergence of the (λvλ) towards a constant in the
case where ` is Lipschitz continuous.

If ` is only continuous, we proceed by approximation: Let (`k) be a sequence of smooth
periodic functions converging to ` as k → +∞. Let vkλ be the unique bounded solution to

λvkλ +H(Dwkλ)− `k = 0 in R2 .

Then from comparison principle we have:

‖λvkλ − λvλ‖∞ ≤ ‖`k − `‖∞ ∀k ≥ 0, ∀λ > 0 . (27)

Since `k is smooth, we already know that the (λvkλ) converge to a constant ck as λ→ 0+.
From (27) we easily see that (ck) is a Cauchy sequence and hence converges to some c ∈ R.
Since

‖c− λvλ‖∞ ≤ |c− ck|+ ‖ck − λvkλ‖∞ + ‖λvkλ − λvλ‖∞ ,

inequality (27) shows that the (λvλ) converge to c as λ→ 0+.

We now consider the convergence of the u(t, ·)/t. Let us denote by c ∈ R the limit of
the λvλ. The proof is then standard: let us fix ε > 0 and let λ sufficiently small so that
‖λvλ − c‖∞ ≤ ε. Let

Z(x, t) = vλ + (c− ε)t− ‖vλ‖∞ .

Then Z is a sub-solution of (7) because Z(x, 0) ≤ 0 and

Zt +H(DZ)− ` = c− ε+H(Dvλ)− ` = c− ε− λvλ ≤ 0 .

By comparison, we have u(x, t) ≥ Z(x, t) for any (x, t) ∈ R2 × [0,+∞). Thus

lim inf
t→+∞

min
x∈R2

u(x, t)

t
≥ lim inf

t→+∞
min
x∈R2

Z(x, t)

t
= c− ε .

13



In the same way one can show that

lim sup
t→+∞

max
x∈R2

u(x, t)

t
≤ c− ε ,

which completes the proof since ε is arbitrary. �

Remark 4.2 In fact we have proved the following result: if there is a sequence λn → 0+,
p̄ ∈ P and a nonconstant, periodic map w(x) = w̄(p̄.x) such that the sequence (λnvλn)
uniformly converges to w, then

lim inf
s→0+

∣∣∣H ( p̄
s

)∣∣∣ < +∞ and lim inf
s→0+

∣∣∣∣H (−p̄s
)∣∣∣∣ < +∞ .

Application to homogenization : Theorem 4.1 can be applied to the homoge-
nization of HJ equations of the form{

zεt +H(Dzε(x))− `(x/ε) = 0 in R2 × (0, T )
zε(x, 0) = z0(x) in R2 (28)

where H and ` are as above.

Corollary 4.3 Let H : R2 → R be a Lipschitz continuous map. Let us assume that (24)
holds with k = 1 and that P = ∅, where P is defined by (25). Then there is a Lipschitz
continuous Hamiltonian h : R2 → R such that, for any bounded uniformly continuous
map z0 : R2 → R, the solution zε to (28) uniformly converges to the solution z of{

zt + h(Dz(x)) = 0 in R2 × (0, T )
z(x, 0) = z0(x) in R2

Remark : We do not known if the result holds true when H is only locally Lipschitz
continuous.

Proof : For any p ∈ R2, let vpλ be the unique continuous Z2−periodic solution of

λvpλ +H(Dvpλ + p)− ` = 0 in R2 .

From Theorem 4.1, we know that λvpλ uniformly converges to some constant that we
denote −h(p). Since H is Lipschitz continuous, then so is h because, for any p1, p2 ∈ R2,
we have by comparison principle:

‖λvp1λ − λv
p2
λ ‖∞ ≤ Lip(H)|p1 − p2| .

The rest of the proof is standard. �
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5 Case of resonnance

Let again u = u(x, t) and vλ = vλ(x) denote the solution to (7) and (8) respectively. In
this section we investigate the existence of a limit for u/t and λvλ in case of resonnance.

For this we assume that H : R2 → R is locally Lipschitz continuous and that there
is some 1−positively homogeneous, Lipschitz continuous Hamiltonian H∞ : R2 → R such
that

lim
s→0+

s H(p/s) = H∞(p) locally uniformly in p.

We also assume that H∞ satisfies

∀p̄ ∈ R2\{0} with H∞(p̄) = 0, DH∞(p̄) exists and is nonzero. (29)

We still use the notation:

P =
{
p = (p1, p2) ∈ R2 | |p| = 1, H∞(p) = H∞(−p) = 0, p2 6= 0 and p1/p2 ∈ Q∗

}
and we denote by P0 the subset of p ∈ P such that

lim inf
s→0+

∣∣∣H (p
s

)∣∣∣ < +∞ and lim inf
s→0+

∣∣∣∣H (−ps
)∣∣∣∣ < +∞ .

We have seen in Theorem 4.1 that, if P0 = ∅, then the (u/t) and (λvλ) converge to a
constant. In order to investigate the resonnant case, we assume that P0 6= ∅ and that,
for any p̄ ∈ P0, there are α(p̄) ∈ R2\{0} and β(p̄) ∈ R such that, for any M > 0, the
convergence

lim
s→0+

H

(
θp̄

s
+ b

)
= α(p̄).b+ β(p̄) (30)

holds uniformly with respect to θ ≥ 1/M and b ∈ R2 with |b| ≤ M . We note that
α(p̄).p̄ = 0. In particular, since p̄ ∈ P and α(p̄) 6= 0, we have α(p̄) = (α1, α2) with α2 6= 0
and α1/α2 ∈ Q∗. Hence there is some T (p̄) > 0 such that T (p̄)α(p̄) ∈ Z2.

Example : Let us assume that H∞ : R2 → R is positively homogeneous, satisfies
(29) and that P 6= ∅. Let H(p) = H∞(p + a) for some a ∈ R2. Then (30) holds because
P0 = P and

H

(
θp̄

s
+ b

)
=

θ

s
H∞

(
p̄+

s

θ
(a+ b)

)
=

θ

s

(
H∞(p̄) +

s

θ
DH∞(p̄).(a+ b) + o(

s

θ
)
)

= α(p̄).b+ β(p̄) + o(1)

where α(p̄) = DH∞(p̄) 6= 0 and β(p̄) = DH∞(p̄).a.

Our main result in the case of resonnance is the following:

Theorem 5.1 Under the above assumptions, there is a continuous Z2−periodic function
w : R2 → R such that

w(x) = lim
t→+∞

u(x, t)

t
= lim

λ→0+
vλ(x) uniformly w.r.t. x ∈ R2. (31)
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In order to describe the limit function, we will say that a map w̄ : R→ R has a point
of increase at s̄ ∈ R if there is a sequence sn → s̄ and a sequence hn → 0+ such that
w̄(sn+hn) > w̄(sn). The map w̄ has a point of decrease at s̄ if −w̄ has a point of increase
at s̄.

Proposition 5.2 Let w be defined by (31). There is some p̄ ∈ P0 and some continuous
map w̄ : R→ R such that

w(x) = w̄(p̄.x) ∀x ∈ R2 .

Moreover, we have at any point of increase s of w:

w̄(s) =
1

T (p̄)

∫ T (p̄)

0

`(sp̄+ tα(p̄))ds− β(p̄) ,

while at any point of decrease s we have:

w̄(s) =
1

T (p̄)

∫ T (p̄)

0

`(sp̄+ tα(p̄))ds− β(−p̄)

The proofs of Theorem 5.1 and of Proposition 5.2 require several steps. From now on
we assume that ` is a smooth function. This restriction is removed at the end of the proof.
Recall that wλ = λvλ. LetW be the set of cluster points in the uniform topology of wλ as
λ→ 0. The key step in the proof amounts to show that W consists in a singleton. From
Lemma 2.2 we know that H∞(Dw) = 0 for any w ∈ W .

Lemma 5.3 There is some p̄ ∈ P0 such that, for any w ∈ W, w(x) = w̄(p̄.x) for some
w̄ : R→ R.

Proof : IfW contains a constant function w̄, then Lemma 2.3 states thatW = {w̄},
and the result is obvious. Otherwise, for any p̄ ∈ P0, let Wp̄ the set of w ∈ W such that
w(x) = w̄(p̄.x) for some w̄ : R→ R. Combining Theorem 3.3 and Remark 4.2, we have⋃

p̄∈P0

Wp̄ =W .

Moreover theWp̄ are closed inW . Since we work in the plane, for any p̄ 6= p̄′ ∈ P0, either
p̄ = −p̄′, in which caseWp̄ =Wp̄′ , or the setWp̄∩Wp̄′ only consists of constant functions.
So we actually have either Wp̄ = Wp̄′ or Wp̄ ∩ Wp̄′ = ∅. Since the set W is connected,
this implies that Wp̄ =W for some p̄ ∈ P0. �

From now on we fix p̄ as in Lemma 5.3. In order to simplify the notations, we set
α± = α(±p̄), T± = T (±p̄) and β± = β(±p̄). We note that, since α+.p̄ = α−.p̄ = 0, the
vectors α+ and α− are in fact proportionnal. Finally we set α̂± = α±/|α±|. Recall that
|p̄| = 1.
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The first step of the proof consists in building special sub- and super-solutions of the
Hamilton-Jacobi equation (8). Let us set

c̄(s) =
1

T+

∫ T+

0

`(sp̄+ tα+)dt ∀s ∈ R , (32)

χ±(x) =

∫ α̂±.x/|α±|

0

`((p̄.x)p̄+ tα±)dt− α̂±.x

|α±|T±
c̄(p̄.x) ∀x ∈ R2 . (33)

We note that c̄(s) is the average of ` on the set p̄.x = s.

Lemma 5.4 The χ± are smooth and the maps x→ c̄(p̄.x) and χ± are mZ2−periodic for
some m ∈ N∗. Moreover,

α±.Dχ±(x) = `(x)− c̄(p̄.x) ∀x ∈ R2 . (34)

Proof : By definition of T+, (a, b) := T+α+ ∈ Z2. Since α+.p̄ = 0, we have

p̄2 = −p̄1a/b, and, since |p| = 1, p̄1 = ±(1 + (a/b)2)
1
2 . We also note that α̂+/|α+| =

T+(a, b)/(a2 + b2). Setting m = b4(a2 + b2) ∈ N∗ we get

(p̄.k)p̄ ∈ Z2 and
α̂+.k

|α+|
∈ T+Z ∀k ∈ mZ2 .

This proves the mZ2−periodicity of x → c̄(p̄.x) and of χ+. The periodicity of χ− can
be established with similar arguments (changing m if necessary), and assertion (34) is
straightfoward. �

Lemma 5.5 Let ε ∈ {−1, 1} and ϕ : [c, d] → R be a smooth function such that εϕ′ > 0
and ϕ ≤ c̄ − β± in [c, d]. Then, for any η > 0 there is some λ̄ > 0 such that, for any
λ ∈ (0, λ̄), the map

x→ 1

λ
(ϕ(p̄.x)− β± − η) + χε(x)− ‖χε‖∞

is a sub-solution with state-constraints of (8) in the set {x ∈ R2 | c ≤ p̄.x < d} if ε = 1
and in the set {x ∈ R2 | c < p̄.x ≤ d} if ε = −1.

Proof of Lemma 5.5: Let us assume for instance that ε = −1 and that ϕ : [c, d]→ R
is a smooth function such that ϕ′ < 0 and ϕ ≤ c̄− β− in [c, d]. For any λ > 0, let us set

ζλ(x) =
1

λ
(ϕ(p̄.x)− β± − η) + χ−(x)− ‖χ−(x)‖∞ ∀x ∈ R2 .

Let M > 0 be such that

‖χ−(x)‖∞ ≤M and ϕ′(t) ≤ − 1

M
∀t ∈ [c, d] .
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From assumption (30) we can find λ̄ > 0 such that

H

(
−θp̄
λ

+ b

)
≤ α−.b+ β− + η ∀|b| ≤M, θ ≥ 1

M
, λ ∈ (0, λ̄) .

Then for any λ ∈ (0, λ̄) and at any point x ∈ R2 with c < p̄.x < d, we have

λζλ +H (Dζλ)− ` = ϕ− β− − η + λ(χ− − ‖χ−‖∞) +H

(
φ′

λ
p̄+Dχ−

)
− `

≤ ϕ− β− − η +
(
α−.Dχ− + β− + η

)
− `

≤ ϕ− β− − η +
(
`− c̄+ β− + η

)
− ` ≤ 0

where we have used the definition of λ̄, (34) and the fact that φ̄ ≤ c̄− β− respectively.

Let now λ ∈ (0, λ̄), x̄ ∈ R2 such that p̄.x̄ = d and ψ be a smooth test function such
that ζλ − ψ has a local maximum at x̄ on the set {c < p̄.x ≤ d}. Then there is some
θλ ≥ 0 such that

D(ζλ − ψ)(x̄) = θλp̄ .

Arguing as above, we get

λζλ +H (Dψ)− ` = ϕ− β− − η + λ(χ− − ‖χ−‖∞) +H

(
(
φ′

λ
− θλ)p̄+Dχ−

)
− `

≤ ϕ− β− − η +
(
α−.Dχ− + β− + η

)
− `

≤ ϕ− β− − η +
(
`− c̄+ β− + η

)
− ` ≤ 0

�

Lemma 5.6 Let w ∈ W, w̄ : R → R be such that w(x) = w̄(p̄.x) and ψ : R → R be
a smooth test function such that ψ ≤ w̄ (resp. ψ ≥ w̄) with an equality at s̄ ∈ R. If
±ψ′(s̄) > 0, then

w̄(s̄) ≥ c̄(s̄)− β± (resp. w̄(s̄) ≤ c̄(s̄)− β±) ,

where c̄ is defined by (32).

Proof of Lemma 5.6: Let λn → 0 be such that (λnvn := λnvλn) uniformly converges
to w. To fix the ideas, we assume that there is some δ ∈ (0, 1/2) such that ψ(t) < w̄(t)
for t ∈ [s̄− δ, s̄+ δ]\{s̄}, ψ(s̄) = w̄(s̄) and ψ′(t) > 0 for t ∈ [s̄− δ, s̄+ δ].

Let χ+ be defined by (33). For n large enough, the function

ζn(x) = vn(x)− (
1

λn
ψ(p̄.x) + χ+(x))

is mZ2−periodic for some m ∈ N∗ in the set {|p̄.x− s̄| ≤ δ}. So ζn has a maximum point
in {|p̄.x − s̄| ≤ δ} at a point xn such that |α+.xn| ≤ m. In particular the sequence (xn)
is bounded. Since the function χ+ is also bounded, (xn) converges, up to a subsequence,
to a maximum point of x→ w(x)− ψ(p̄.x) in {|p̄.x− s̄| ≤ δ}. Hence (p̄.xn) converges to
s̄ and xn is an interior maximum point of ζn for any n large enough.
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Since vn is the solution of (8) we have, for n large enough,

λnvn(xn) +H

(
ψ′(p̄.xn)

λn
p̄+Dχ+(xn)

)
− `(xn) ≤ 0 .

Arguing as in the proof of Lemma 5.5, for any η > 0 we have, for n large enough:

λnvn(xn)− c̄(p̄.xn) + β+ − η ≤ 0 .

Letting n→ +∞ and then η → 0+ gives the desired result. �

Corollary 5.7 Let w ∈ W and w̄ be such that w(x) = w̄(p̄.x). If w̄ has a point of
increase (resp. decrease) at s̄, then

w̄(s̄) = c̄(s̄)− β+ (resp. w̄(s̄) = c̄(s̄)− β−) ,

where c̄ is defined by (32). In particular, w̄ lies in the intersection of the range of s →
c̄(s)− β+ and of the range of s→ c̄(s)− β−.

Proof : Since w̄ has a point of increase at s̄, there are sn → s̄ and hn → 0+ such that
w̄(sn + hn) > w̄(sn). Hence one can find some smooth functions φn and ψn and points
an, bn ∈ (sn, sn + hn) such that

• φn ≥ w̄ on (sn, sn + hn) with an equality at an and φ′n(an) > 0,

• ψn ≤ w̄ on (sn, sn + hn) with an equality at bn and ψ′n(bn) > 0.

From Lemma 5.6 we have

w̄(an) ≥ c̄(an)− β+ and w̄(bn) ≤ c̄(bn)− β+ .

Letting n→ +∞ gives the result. �

Let E be a closed subset of R2 and η > 0. We denote by E + ηB the set of points
x ∈ R2 such that dE(x) ≤ η, where dE(x) denotes distance from x to E. Recall that the
integer m ∈ N∗ is given by Lemma 5.4.

Lemma 5.8 Let w ∈ W and λn → 0 be such that (λnvλn) uniformly converges to w
as n → +∞. Then for any θ ∈ (minw,maxw), η > 0 sufficiently small and n large
enough, there is a Lipschitz continuous, mZ2−periodic function ṽλn which is a state-
constraint viscosity sub-solution of (8) in {w ≥ θ} + ηB and such that λnṽλn ≥ θ − η in
{w ≥ θ}+ ηB.

Proof : Let w̄ : R → R be such that w(x) = w̄(p̄.x) and let θ ∈ (minw,maxw).
From Corollary 5.7 θ lies in the intersectio of the ranges of c̄− β+ and of c̄− β−. Hence,
perturbing slightly θ if necessary, we can assume without loss of generality that θ is a non
critical value of c̄−β+ and of c̄−β−. Let E+ = {w ≥ θ}. Since w(x) = w̄(p̄.x) is periodic
and p̄ ∈ P , the set E+ is of the form

E+ = {x ∈ R2 | p̄.x ∈ I+}
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where I+ is a closed, periodic subset of R (the period is not 1 in general). From Corollary
5.7, w(x) = θ ∈ {c̄(x)− β+, c̄(x)− β−} for any x ∈ ∂E+. The value θ being non critical
for c̄− β+ and for c̄− β−, the sets (c̄− β+)−1(θ) and (c̄− β−)−1(θ) are locally finite and
thus the set I+ consists locally in a finite number of closed, disjoint intervals. Let [a, b]
be such an interval. Then c̄′(a) 6= 0 and c̄′(b) 6= 0. From Corollary 5.7 again, we can find
η ∈ (0, 1) such that

• w̄(s) = c̄(s)− β+ and c̄′(s) > 0 if s ∈ [a− 2η, a]

• w̄(s) = c̄(s)− β− and c̄′(s) < 0 if s ∈ [b, b+ 2η]

We also choose σ > 0 so small that, if we set

ϕb(s) := c̄(s)− σ(b+ η − s)2 and ϕa(s) = c̄(s)− σ(s− a+ η)2 ,

then ϕ′b < 0 on [b, b+ 2η] and ϕ′a > 0 on [a− 2η, a]. Then Lemma 5.5 states that, for any
n sufficiently large,

ξnb (x) :=
1

λn
(ϕb(p̄.x)− β− − η) + χ−(x)− ‖χ−‖∞

is a state-constraint sub-solution in {b < x− y ≤ b+ η} while

ξna (x) =
1

λn
(ϕa(p̄.x)− β+ − η) + χ+(x)− ‖χ+‖∞

is a state-constraint sub-solution in {a− η ≤ x− y < a}. Let us finaly set

ṽλn(x) =


max{vλn(x)− η+ση4

λn
, ξnb (x)} if b < p̄.x ≤ b+ η

max{vλn(x)− η+ση4

λn
, ξna (x)} if a− η ≤ p̄.x < a

vλn(x)− η+ση4

λn
if a ≤ p̄.x ≤ b

We note that, if p̄.x = b+ η, then

lim
n→+∞

λn(vλn(x)− η + ση4

λn
) = c̄(b+η)−β−−η−ση4 and lim

n→+∞
λnξ

n
b (x) = c̄(b+η)−β−−η ,

while, if p̄.x = b, then

lim
n→+∞

λn(vλn(x)− η + ση4

λn
) = c̄(b)−β−−η−ση4 and lim

n→+∞
λnξ

n
b (x) = c̄(b)−β+−η−ση2 .

Since η ∈ (0, 1), for n large enough we have

ṽλn(x) = vλn(x)− (η + ση4)/λn for p̄.x close to b

and
ṽλn(x) = ξnb (x) for p̄.x close to b+ σ

Therefore ṽλn is a Lipschitz continuous state-constraint sub-solution of (8) in {a < p̄.x ≤
b+η} if n is large enough. Arguing in the same way we can show that ṽλn is a sub-solution
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of (8) with state-constraints in {a − η ≤ p̄.x < b} if n is large enough. Doing the same
construction on each connected component of I+ then completes the proof thanks to the
periodicity of I+. �

Proof of the existence of a limit of the (vλ) for smooth `’s : Let us fix w ∈ W
and let λn → 0 be such that λnvλn → w̄ uniformly. Let m ∈ N∗ be defined by Lemma
5.4, θ ∈ (min w̄,max w̄) and let η > 0 be sufficiently small. From Lemma 5.8, for n large
enough one can find some Lipschitz continuous, mZ2−periodic function ṽλn which is a
sub-solution with state-constraints in the set K := {w ≥ θ}+ηB of (8) and which is such
that ṽλn ≥ θ − η in {w ≥ θ}+ ηB. Let us fix such a n.

For σ, µ > 0 let us consider a minimum point (xµ,σ, x
′
µ,σ) on the set R2 × K of the

function

Φσ(x, x′) = vµ(x)− ṽλn(x′)− 1

2σ
|x− x′|2 .

Since vµ and ṽλn are mZ2−periodic, we can assume that (xµ,σ) and (x′µ,σ) are bounded
and converge up to some subsequence to some xµ as σ → 0. Then xµ is a minimum point
of vµ − ṽλn on K:

min
x∈K

(vµ − ṽλn)(x) = (vµ − ṽλn)(xµ) . (35)

Since vµ is a solution of (8) and ṽλn is a subsolution with state constraints in K of (8) we
have

µvµ(xµ,σ) +H

(
1

σ
(xµ,σ − x′µ,σ)

)
− `(xµ,σ) ≥ 0

while

λnṽλn(x′µ,σ) +H

(
1

σ
(xµ,σ − x′µ,σ)

)
− `(x′µ,σ) ≤ 0

where ∣∣xµ,σ − x′µ,σ∣∣ ≤ 2 (‖vµ‖∞ + ‖ṽλn‖∞)
1
2
√
σ .

This implies that

µvµ(xµ,σ)− λnṽλn(x′µ,σ) ≥ −2Lip(`) (‖vµ‖∞ + ‖ṽλn‖∞)
1
2
√
σ .

Letting σ → 0 and using the definition ṽλn leads to

µvµ(xµ) ≥ λnṽλn(xµ) ≥ θ − η . (36)

Let now w′ ∈ W and µp → 0 be such that µpvµp → w′ uniformly. Then

min
K

w′ = lim
p

min
K

µpvµp ≥ lim inf
p

min
K

µp(vµp − ṽλn) = lim inf
p

µp(vµp − ṽλn)(xµp) ,

where the last equality comes from (35). Note that, from (36), we have

lim inf
p

µp(vµp − ṽλn)(xµp) ≥ θ − η − lim sup
p

µpṽλn(xµp) = θ − η .

So minK w
′ ≥ θ − η . Letting ε→ 0 then gives

w′ ≥ θ in {w ≥ θ} ∀θ ∈ (minw,maxw) . (37)
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Hence we have established that w′ ≥ w. Reversing the roles of w and w′ finally shows
w = w′, i.e., that W is a singleton. �

Proof of the existence of a limit of the (vλ) for general `’s : We proceed by
approximation. Let (`k) be a sequence of smooth periodic functions converging to ` as
k → +∞. Let wkλ be the unique bounded solution to

λwkλ +H
(
Dwkλ

)
− `k = 0 in R2 .

Then from the comparison principle we have:

‖wkλ − wλ‖∞ ≤ ‖`k − `‖∞ ∀k ≥ 0, ∀λ > 0 . (38)

Since `k is smooth, we already know that wkλ converges to a limit wk as λ → 0+. From
(38) we easily see that (wk) is a Cauchy sequence. Hence (wk) uniformly converges to
some continuous periodic function w. Since

‖w − wλ‖∞ ≤ ‖w − wk‖∞ + ‖wk − wkλ‖∞ + ‖wkλ − wλ‖∞ ,

inequality (38) shows that wλ converges to w as λ→ 0+.
Let us now assume that w is not constant. Then wk is not constant for k large

enough. Since the `k are smooth there is some p̄k ∈ P0 and some w̄k : R → R such that
wk(x) = w̄k(p̄k.x). From assumption (29) the set P0 is finite. So we can as well assume
that p̄k is constant: p̄k = p̄ for all k ≥ 0 where p̄ ∈ P0. We note that w̄k uniformly
converges to w̄.

Let now s̄ be a point of increase of w̄: there exists a sequence sn → s and a sequence
hn → 0+ such that w̄(sn + hn) > w̄(sn). Let us fix n. Then for k large enough, w̄k(sn +
hn) > w̄k(sn). This means that there is a point of increase tnk ∈ (sn, sn + hn) for w̄k.
Hence, from Corollary 5.7

w̄k(tnk) =
1

T (p̄)

∫ T (p̄)

0

`k(tnkp̄+ tα(p̄))dt− β(p̄) .

(indeed the quantities T (p̄), α(p̄), β(p̄) only depend on H and p̄, which are fixed here).
Letting first tnk → tn ∈ [sn, sn + hn] up to a subsequence as k → +∞, and then tn → s̄
gives the desired equality:

w̄(s̄) =
1

T (p̄)

∫ T (p̄)

0

`(s̄p̄+ tα(p̄))dt− β(p̄) .

The proof of the symmetric equality in the case of decrease can be obtained in the same
way. �

Proof of the existence of a limit of the (u(·, t)/t) : We again assume that ` is
a smooth function: this restriction can be removed exactly as for the (vλ). Let w be the
limit of the (λvλ) and p̄ ∈ P0 and w̄ : R→ R be such that w(x) = w̄(p̄.x) for any x ∈ R2.

We first note that

min
x
w(x) ≤ lim inf

t→+∞
min
x

u(x, t)

t
≤≤ lim sup

t→+∞
min
x

u(x, t)

t
≤≤ max

x
w(x) . (39)
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Indeed, let η > 0 and λ small enough such that λvλ ≤ maxw + η. Then the map

Z(x, t) = t(maxw + η) + vλ + ‖vλ‖∞

is a supersolution of (8). By comparison we get

lim sup
t→+∞

max
x

u(x, t)

t
≤ lim sup

t→+∞
max
x

Z(x, t)

t
= maxw + η .

Whence the right-hand side of (39) since η is arbitrary. The left-hand side can be proved
by symetric arguments.

Let now θ ∈ (minw,maxw). From Lemma 5.8, for any η > 0 and for any λ > 0 small
enough, there is some Lipschitz continuous, periodic function ṽλ which is state-constraint
sub-solution of (8) in K := {w ≥ θ}+ ηB and which is such that ṽλ ≥ θ − η in K.

As in the proof of Theorem 4.1 one can check that

Z(x, t) = t(θ − η) + ṽλ(x)− ‖ṽλ‖∞

is a state-constraint sub-solution of (7) in K × (0,+∞). By comparison we get

u(x, t) ≥ Z(x, t) ∀(x, t) ∈ K × [0,+∞) .

This implies that

lim inf
t→+∞

u(x, t)

t
≥ θ − η in K .

Since η is arbitrary, we have

lim inf
t→+∞

u(x, t)

t
≥ θ in {w ≥ θ} ∀θ ∈ (minw,maxw) . (40)

In the same way, working with −u instead of u, we can prove that

lim sup
t→+∞

u(x, t)

t
≤ θ in {w ≤ θ} ∀θ ∈ (minw,maxw) . (41)

Combining (39), (40) and (41) finally gives the equality

lim
t→+∞

u(x, t)

t
= w(x) ∀x ∈ R2 .

�

6 Conclusion and open problems

In this paper we have addressed two questions: the first one is the existence of an ergodic
limit for Hamilton-Jacobi equations wih non convex Hamiltonians; the second one is
related to the existence of a (nonconstant) limit for the solutions of (7) and (8). Although
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our results shed some new light on these problems, we are very far from having a complete
picture and many very intriguing questions remain open.

First the analysis in higher dimension has to be invented: we suspect that our rigidity
result (Lemma 3.1) still holds for N ≥ 3. However the consequence of such a result on
the ergodic problem is not clear.

Second, even in dimension 2, our analysis is not complete:

• when P = ∅, we have no characterization of the limit constant c. In particular, we
do not know if one can associate to the constant c a cell-problem of the form (5).

• We are able to treat the resonnant case only under a global Lipschitz continuity
assumption on H: for instance we cannot deal with H(p1, p2) = −p2

1 + p2
2.

• Even when we know in the resonnant case that there exist a limit and that this
limit is of the form w = w̄(p̄.x) for some p̄ ∈ P , we do not know how this vector
p̄ is related to the function `. For instance, when H(p1, p2) = −|p1 + |p2|, then
P = {±1,±1}; is there a criterium on ` to explain that the limit is of the form
w̄(x− y) or of the form ¯̀(x+ y)?

• Finally, although we can compute explicitely the limit function w̄ at points s where
w̄ has a point of increase or of decrease, we do not know how to compute w̄ at points
where w̄ is locally constant. In particular what are the maxima and minima of w̄?
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