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Iterated destabilizing modifications for vector bundles with

connection

Carlos Simpson

Abstract. Given a vector bundle with integrable connection (V,∇) on a
curve, if V is not itself semistable as a vector bundle then we can iterate a
construction involving modification by the destabilizing subobject to obtain a
Hodge-like filtration F p which satisfies Griffiths transversality. The associated
graded Higgs bundle is the limit of (V, t∇) under the de Rham to Dolbeault
degeneration. We get a stratification of the moduli space of connections, with
as minimal stratum the space of opers. The strata have fibrations whose fibers
are Lagrangian subspaces of the moduli space.

1. Introduction

Suppose X is a smooth projective curve over C. Starting with a rank r vector
bundle with integrable holomorphic connection (V,∇), if V is semistable as a vector
bundle, we get a point in the moduli space U(X, r) of semistable vector bundles of
rank r and degree 0 on X .

Let MDR(X, r) denote the moduli space of vector bundles with integrable con-
nection of rank r. The open subset G0 where the underlying vector bundle is itself
semistable thus has a fibration

MDR(X, r) ⊃ G0 → U(X, r).

The fiber over a point [V ] ∈ U(X, r) (say a stable bundle) is the space of connec-
tions on V , hence it is a principal homogeneous space on H0(End(V ) ⊗ Ω1

X) ∼=
H1(End(V ))∗ = T ∗

V U(X, r). So, the above fibration is a twisted form of the cotan-
gent bundle T ∗

V U(X, r) → U(X, r). At points where the bundle V is not semistable,
we will extend G0 to a stratification of MDR(X, r) by locally closed subsets Gα.

If V is not semistable, let H ⊂ V be the maximal destabilizing subsheaf. Recall
that H is a subsheaf whose slope µ(H) = deg(H)/rk(H) is maximal, and among
such subsheaves H has maximal rank. It is unique, and is a strict subbundle so the
quotient V/H is also a bundle.

The connection induces an algebraic map

θ = ∇ : H → (V/H) ⊗ Ω1
X .
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2 C. SIMPSON

Define a Higgs bundle (E, θ) by setting E1 := H, E0 := V/H , E := E0 ⊕E1, and θ
is the above map. It is a “system of Hodge bundles”, that is a Higgs bundle fixed
by the C∗ action.

If (E, θ) is a semistable Higgs bundle, the process stops. If not, we can continue
by again choosing H ⊂ (E, θ) the maximal destabilizing sub-Higgs-bundle, then
using H to further modify the filtration according to the formula (3.2) below. The
proof of our first main Theorem 2.5 consists in showing that this recursive process
stops at a Griffiths-transverse filtration of (V,∇) such that the associated graded
Higgs bundle is semistable.

Classically filtered objects (V,∇, F ·) arose from variations of Hodge structure.
In case an irreducible connection supports a VHS, our iterative procedure constructs
the Hodge filtration F · starting from (V,∇).

In terms of the nonabelian Hodge filtration [49] MHod → A
1 the above process

gives a way of calculating the limit point limt→0(tλ, V, t∇); the limit is a point in
one of the connected components of the fixed point set of the Gm action on the
moduli space of Higgs bundles MH. Looking at where the limit lands gives the
stratification by Gα ⊂ MDR. Existence of the limit is a generalization to MDR of
properness of the Hitchin map for MH. The interpretation in terms of Griffiths-
transverse filtrations was pointed out briefly in [49].

In the present paper, after describing the explicit and geometric construction of
the limit point by iterating the destabilizing modification construction, we consider
various aspects of the resulting stratification. For example, we conjecture that the
stratification is nested, i.e. smaller strata are contained in the closures of bigger
ones. This can be shown for bundles of rank 2. A calculation in deformation theory
shows that the set Lq ⊂ MDR of points (V,∇) such that limt→0(V, t∇) = q, is
a lagrangian subspace for the natural symplectic form. We conjecture that these
subspaces are closed and form a nice foliation 7.4. We mention in §6 that the same
theory works for the parabolic or orbifold cases, and point out a new phenomenon
there: the biggest open generic stratum no longer necessarily corresponds to unitary
bundles. The Hodge type of the generic stratum varies with the choice of parabolic
weights, with constancy over polytopes. At the end of the paper we do some
theoretical work (which was missing from [49]) necessary for proving the existence
of limit points in the case of principal bundles. All along the way, we try to identify
natural questions for further study.

It is a great pleasure to dedicate this paper to Professor Ramanan. I would like
to thank him for the numerous conversations we have had over the years, starting
from my time as a graduate student, in which he explained his insightful points of
view on everything connected to vector bundles. These ideas are infused throughout
the paper.

I would also like to thank Daniel Bertrand, Philip Boalch, David Dumas, Jaya
Iyer, Ludmil Katzarkov, Bruno Klingler, Vladimir Kostov, Anatoly Libgober, Ania
Otwinowska, Tony Pantev, Claude Sabbah, and Szilard Szabo for interesting com-
munications related to the subjects of this paper.

2. Griffiths transverse filtrations

Suppose X is a smooth projective curve, and V is a vector bundle with inte-
grable holomorphic connection ∇ : V → V ⊗OX

Ω1
X . A Griffiths transverse filtration
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is a decreasing filtration of V by strict subbundles

V = F 0 ⊃ F 1 ⊃ F 2 · · · ⊃ F k = 0

which satisfies the Griffiths transversality condition

∇ : F p → F p−1 ⊗OX
Ω1

X .

In this case put E := GrF (V ) :=
⊕

p Ep with Ep := F p/F p+1. Define the OX -
linear map

θ : Ep → Ep−1 ⊗OX
Ω1

X

using ∇. Precisely, if e is a section of Ep, lift it to a section f of F p and note
that by the transversality condition, ∇f is a section of F p−1 ⊗OX

Ω1
X . Define

θ(e) to be the projection of ∇(f) into Ep−1 ⊗OX
Ω1

X . Again by the transversality
condition, θ(e) is independent of the choice of lifting f . If a is a section of OX then
∇(af) = a∇(f)+ f ⊗ da but the second term projects to zero in Ep−1 ⊗OX

Ω1
X , so

θ(ae) = aθ(e), that is θ is OX -linear.
We call (E, θ) the associated-graded Higgs bundle corresponding to (V,∇, F ·).
Griffiths-transverse filtrations are the first main piece of structure of variations

of Hodge structure, and in that context the map θ is known as the “Kodaira-Spencer
map”. This kind of filtration of a bundle with connection was generalized to the
notion of “good filtration” for D-modules, and has appeared in many places.

A complex variation of Hodge structure consists of a (V,∇, F ·) such that fur-
thermore there exists a ∇-flat hermitian complex form which is nondegenerate on
each piece of the filtration, and with a certain alternating positivity property (if we
split the filtration by an orthogonal decomposition, then the form should have sign
(−1)p on the piece splitting F p/F p+1). For a VHS, the associated-graded Higgs
bundle (E, θ) is semistable.

The historical variation of Hodge structure picture is motivation for considering
the filtrations and Kodaira-Spencer maps, however we don’t use the polarization
which is not a complex holomorphic object. Instead, we concentrate on the semista-
bility condition.

Definition 2.1. We say that (V,∇, F ·) is gr-semistable if the associated-graded
Higgs bundle (E, θ) is semistable as a Higgs bundle.

The Higgs bundle (E, θ) is a fixed point of the C∗ action, which is equivalent
to saying that we have a structure of system of Hodge bundles, i.e. a decomposition
E =

⊕
p Ep with θ : Ep → Ep−1 ⊗OX

Ω1
X .

Remark 2.2. If (E, θ) is a system of Hodge bundles, then it is semistable as
a Higgs bundle if and only if it is semistable as a system of Hodge bundles. In
particular, if it is not a semistable Higgs bundle then the maximal destabilizing
subobject H ⊂ E is itself a system of Hodge bundles, that is H =

⊕
Hp with

Hp := H ∩ Ep.

Indeed, if (E, θ) is not semistable, it is easy to see by uniqueness of the maximal
destabilizing subsheaf that H must be preserved by the C∗ action.

These objects have appeared in geometric Langlands theory under the name
“opers”:

Example 2.3. An oper is a vector bundle with integrable connection and Grif-
fiths transverse filtration (V,∇, F ·) such that F · is a full flag, i.e. Ep = Grp

F (V )
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are line bundles, and

θ : Ep ∼=
→ Ep−1 ⊗OX

Ω1
X

are isomorphisms.

If g ≥ 1 then an oper is gr-semistable. This motivates the following definition
and terminology.

Definition 2.4. A partial oper is a vector bundle with integrable connection
and Griffiths-transverse filtration (V,∇, F ·) which is gr-semistable.

Every integrable connection supports at least one partial oper structure.

Theorem 2.5. Suppose (V,∇) is a vector bundle with integrable connection on
a smooth projective curve X. Then there exists a gr-semistable Griffiths-transverse
filtration giving a partial oper structure (V,∇, F ·).

The proof will be given in §3 below.
In general the filtration F · in the previous theorem, is not unique, see Propo-

sition 4.3. The associated-graded Higgs bundle (E = Gr·F (V ), θ) is unique up to
S-equivalence, as follows from the interpretation in terms of the nonabelian Hodge
filtration, §4.

Given the S-equivalence class, it makes sense to say whether (E, θ) is stable or
not. Proposition 4.3 shows that the filtration F · is unique up to shifting indices, if
and only if (E, θ) is stable.

In §6, the nonuniqueness of the filtration is related to a wall-crossing phenom-
enon in the parabolic case.

3. Construction of a gr-semistable filtration

If (E =
⊕

Ep, θ) is a system of Hodge bundles, for any k let E[k] denote the
system of Hodge bundles with Hodge index shifted, so that

(E[k])p := Ep−k.

Let (V,∇) be fixed. Suppose we are given a Griffiths-transverse filtration F ·

such that (GrF (V ), θ) is not a semistable Higgs bundle. Choose H to be the max-
imal destabilizing subobject, which is a sub-system of Hodge bundles of GrF (V ).
Thus

H =
⊕

Hp, Hp ⊂ Grp
F (V ) = F pV/F p+1V.

Note that the Hp are strict subbundles here. We can consider

Hp−1 ⊂ V/F pV

which is again a strict subbundle.
Define a new filtration G· of V by

(3.1) Gp := ker

(
V →

V/F pV

Hp−1

)
.

The condition θ(Hp) ⊂ Hp−1 ⊗OX
Ω1

X means that the new filtration G· is again
Griffiths-transverse. We have exact sequences

0 → Grp
F (V )/Hp → Grp

G(V ) → Hp−1 → 0
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which, added all together, can be written as an exact sequence of systems of Hodge
bundles

(3.2) 0 → GrF (V )/H → GrG(V ) → H [1] → 0.

We would like to show that the process of starting with a filtration F · and
replacing it with the modified filtration G· stops after a finite number of steps, at
a gr-semistable filtration. As long as the result is still not gr-semistable, we can
choose a maximal destabilizing subobject and continue. To show that the process
stops, we will define a collection of invariants which decrease in lexicographic order.

For a system of Hodge bundles E, let β(E) denote the slope of the maximal
destabilizing subobject. Let ρ(E) denote the rank of the maximal destabilizing
subobject. Define the center of gravity to be

ζ(E) :=

∑
rk(Ep) · p

rk(E)
.

This measures the average location of the Hodge indexing. In particular, suppose
U = E[k]. Then Up = Ep−k so

ζ(U) =

∑
prk(Up)

rk(U)
=

∑
prk(Ep−k)

rk(E)
=

∑
(p + k)rk(Ep)

rk(E)
= ζ(E) + k.

This gives the formula

(3.3) ζ(E[k]) = ζ(E) + k.

Now for any non-semistable system of Hodge bundles E, let H denote the maximal
destabilizing subobject and put

γ(E) := ζ(E/H) − ζ(H).

This normalizes things so that γ(E[k]) = γ(E).
Denote βF := β(GrF (V ), θ), ρF := ρ(GrF (V ), θ), and γF := γ(GrF (V ), θ).

Lemma 3.1. In the process F · 7→ G· described above, and assuming that G·

is also not gr-semistable, then the triple of invariants (β, ρ, γ) decreases strictly
in the lexicographic ordering. In other words, (βG, ρG, γG) is strictly smaller than
(βF , ρF , γF ).

Proof. Use the exact sequence (3.2) and the formula (3.3). �

In order to show that the γ(E) remain bounded, observe the following.

Lemma 3.2. If (V,∇) is an irreducible connection, and F · is a Griffiths-
transverse filtration, then there are no gaps in the Ep = Grp

F (V ), that is there

are no p′ < p < p′′ such that Ep = 0 but Ep′

6= 0 and Ep′′

6= 0.

Proof. If there were such a gap, then by Griffiths transversality the piece F p =
F p+1 would be a nontrivial subbundle preserved by the connection, contradicting
irreducibility of (V,∇). �

Lemma 3.3. Suppose (V,∇) is an irreducible connection. For all E = GrF (V )
coming from non-gr-semistable Griffiths-transverse filtrations of our fixed (V,∇),
each of the invariants β(E), ρ(E) and γ(E) can take on only finitely many values.

Proof. For the slope and rank this is clear. For γ(E) it follows from Lemma
3.2. �
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Proof of Theorem 2.5 Assume first of all that (V,∇) is irreducible. Under the
operation F · 7→ G·, the triple of invariants (β, ρ, γ) (which takes only finitely many
values by Lemma 3.3) decreases strictly in the lexicographic ordering by Lemma
3.1 until we get to a gr-semistable filtration.

For a general (V,∇), glue together the filtrations provided by the previous
paragraph on the semisimple subquotients of its Jordan-Hölder filtration. This can
be done after possibly shifting the indexing of the filtrations. �

It is an interesting question to understand what would happen if we tried to
do the above procedure in the case dim(X) ≥ 2 where the destabilizing subobjects
could be torsion-free sheaves but not reflexive.

4. Interpretation in terms of the nonabelian Hodge filtration

Consider the “nonabelian Hodge filtration” moduli space

MHod(X, r) = {(λ, V,∇), ∇ : V → V ⊗ Ω1
X , ∇(ae) = a∇(e) + λd(a)e}

with its map λ : MHod(X, r) → A1, such that:
—λ−1(0) = MH is the Hitchin moduli space of semistable Higgs bundles of rank r
and degree 0; and
—λ−1(1) = MDR is the moduli space of integrable connections of rank r.

The group Gm acts on MHod over its action on A1, via the formula t·(λ, V,∇) =
(tλ, V, t∇). Therefore all of the fixed points have to lie over λ = 0, that is they are
in MH . We can write

(MH)Gm =
⋃

α

Pα

as a union of connected pieces.

Lemma 4.1. For any y ∈ MHod, the limit limt→0 t · y exists, and is in one of
the Pα.

Proof. An abstract proof was given in [49]. For λ(y) 6= 0 in which case we
may assume λ(y) = 1 i.e. y ∈ MDR, the convergence can also be viewed as a
corollary of Theorem 2.5. Indeed, y corresponds to a vector bundle with integrable
connection (V,∇) and if we choose a gr-semistable Griffiths-transverse filtration F ·

then the limit can be calculated as

lim
λ→0

(V, λ∇) = (GrF (V ), θ).

This can be seen as follows. The Rees construction gives a locally free sheaf

ξ(V, F ) :=
∑

λ−pF pV ⊗OX×A1 ⊂ V ⊗OX×Gm
.

over X×A1 and by Griffiths transversality the product λ∇ extends to a λ-connection
on ξ(V, F ) in the X-direction (here λ denotes the coordinate on A1). This family
provides a morphism A

1 → MHod compatible with the Gm-action and having limit
point

(ξ(V, F ), λ∇)|λ=0 = (GrF (V ), θ).

If λ(y) = 0 i.e. y ∈ MH then a construction similar to that of Theorem 2.5 gives
a calculation of the limit. Alternatively, on the moduli space of Higgs bundles it is
easy to see from the properness of the Hitchin map [26] that the limit exists. �

We next note that the limit is unique.
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Corollary 4.2. If F · and G· are two gr-semistable filtrations for the same
(V,∇) then the Higgs bundles (GrF (V ), θF ) and (GrG(V ), θG) are S-equivalent,
that is the associated-graded polystable objects corresponding to their Jordan-Hölder
filtrations, are isomorphic.

Proof. The moduli space is a separated scheme whose points correspond to
S-equivalence classes of objects. �

Now, given that the limiting Higgs bundle is unique, we can use it to measure
whether the partial oper structure will be unique or not:

Proposition 4.3. Suppose (V,∇) is a vector bundle with integrable connection
and let (E, θ) be the unique polystable Higgs bundle in the S-equivalence class of
the limit. Then the gr-semistable Griffiths transverse filtration for (V,∇) is unique
up to translation of indices, if and only if (E, θ) is stable.

Proof. If the limiting Higgs bundle is stable, apply semicontinuity theory to
the Rees families (ξ(V, F ), λ∇) and (ξ(V, G), λ∇) on X × A1 (see 4.1). The Hom
between these is a rank one locally free sheaf over A1 with action of Gm, and this
relative Hom commutes with base change. After appropriately shifting one of the
filtrations we get a Gm-invariant section which translates back to equality of the
filtrations.

On the other hand, if the limiting Higgs bundle is not stable, we can choose
a sub-system of Hodge bundles and apply the construction (3.1) to change the
filtration. The exact sequence (3.2) shows that the new filtration is different from
the old. �

5. The oper stratification

As is generally the case for a Gm-action, the map y 7→ limt→0 t · y is a con-
structible map from MHod to the fixed point set

⋃
α Pα.

Proposition 5.1. For any α, the subset Gα ⊂ MDR(X, r) consisting of all
points y such that limt→0 t · y ∈ Pα is locally closed. These partition the moduli
space into the oper stratification

MDR(X, r) =
⋃

α

Gα.

Furthermore, for any point p ∈ Pα (which corresponds to an S-equivalence class of
systems of Hodge bundles), the set Lp ⊂ MDR(X, r) of points y with limt→0 t ·y = p,
is a locally closed subscheme (given its reduced subscheme structure).

Proof. This is the classical Bialynicki-Birula theory: the moduli space can
be embedded Gm-equivariantly in PN with a linear action; the stratification and
fibrations are induced by those of PN but with refinement of the Pα into connected
components. �

For the moduli of Higgs bundles we have a similar stratification with strata

denoted G̃α ⊂ MH(X, r) again defined as the sets of points such that limt→0 t · y ∈
Pα.
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5.1. Opers. The uniformizing Higgs bundles [26] are of the form E = E1 ⊕
E0 = L ⊕ L′ a direct sum of two line bundles with E0 = L′ ∼= L ⊗ K−1, such that
θ : E1 → E0 ⊗Ω1

X is an isomorphism. The space of these is connected, determined
by the choice of L ∈ Picg−1(X). For bundles of rank r we can let Pα be the space
of symmetric powers Symr−1(E). These systems of Hodge bundles are rigid up to
tensoring with a line bundle: the determinant map Pα → Pic0(X) is finite.

The classical moduli space of GL(r)-opers [4] [18] is the subset Gα defined in
Proposition 5.1 corresponding to the space Pα of symmetric powers of uniformizing
Higgs bundles.

The stratum of classical opers Gα is closed, because the corresponding stratum

G̃α is closed in MH. It also has minimal dimension among the strata, as can be
seen from Lemma 7.3 below. We conjecture that it is the unique closed stratum
and the unique stratum of minimal dimension. These are easy to see in the case of
rank 2, see §7.3.

5.2. Variations of Hodge structure. If (V,∇, F ·, 〈·, ·〉) is a polarized com-
plex VHS then the underlying filtration F · (which is Griffiths-transverse by defini-
tion) is gr-semistable. The Higgs bundle (GrF (V ), θ) is the one which corresponds
to (V,∇) by the nonabelian Hodge correspondence. This implies that if (V,∇) is a
VHS with irreducible monodromy representation then it is gr-stable. In this case
the filtration F · is unique and the process of iterating the destabilizing modification
described in §3 provides a construction of the Hodge filtration starting from just
the bundle with its connection (V,∇).

For any stratum Gα as in Proposition 5.1, let GVHS
α ⊂ MDR(X, r) be the real

analytic moduli space of polarized complex variations of Hodge structure whose
underlying filtered bundle is in Gα. We have a diagram of real analytic varieties

GVHS
α

real
→֒ Gα

∼= ց ւ
Pα

.

Under the nonabelian Hodge identification ν : MDR(X, r) ∼= MH(X, r) the space
GVHS

α of variations of Hodge structure is equal to Pα and the diagonal isomorphism
in the above diagram is the identity when viewed in this way.

The other points of Gα don’t necessarily correspond to points of G̃α under the
nonabelian Hodge identification ν, and indeed it seems reasonable to conjecture
that

(5.1) GVHS
α = Gα ∩ ν−1(G̃α).

In a similar vein, let MB(X, r)R denote the real subspace of representations
which go into some possibly indefinite unitary group U(p, q).

Lemma 5.2. Restricting to the subset of smooth points, GVHS
α is a connected

component of Gα ∩ MB(X, r)R.

The proof will be given in §7.1 below.
On the other hand, it is easy to see that there are other connected components

too, for example when p, q > 0 a general representation π1 → U(p, q) will still
correspond to a stable vector bundle, so it gives a point in G0 ∩ MB(X, r)R which
is not a unitary representation. These points probably correspond to twistor-like
sections of Hitchin’s twistor space, but which don’t correspond to preferred sections.
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It is an interesting question to understand how to distinguish GVHS
α among the

connected components of Gα ∩ MB(X, r)R.

5.3. Families of VHS. We now explain one possible motivation for looking
at the stratification by the Gα, related to Lemma 5.2.

Suppose given a smooth projective family of curves f : X → Y over a base
which is allowed to be quasiprojective. Let Xy := f−1(y) be the fiber over a point
y ∈ Y . Then π1(Y, y) acts on MB(Xy, r). The fixed points are the representa-
tions which come from global representations on the total space X of the fibration
(approximately, up to considerations involving the center of the group and so on).
In the de Rham point of view there is a “connection” on the relative de Rham
moduli space MDR(X/Y, r) → Y . This can be called the “nonabelian Gauss-Manin
connection” but is also known as the system of “isomonodromic deformation” equa-
tions, or Painlevé VI for the universal family of 4-pointed P1’s. The fixed points of
the above action on the Betti space correspond to global horizontal sections of the
n.a.GM connection. These have been studied by many authors.

The global horizontal sections will often be rigid (hence VHS’s) and in any case
can be deformed, as horizontal sections, to VHS’s. Let ρ(y) ∈ MB(Xy, r) denote a
global horizontal section which is globally a VHS; then we will have

ρ(y) ∈ GVHS
α (Xy)

for all y in a neighborhood of an initial point y0. The combinatorial data corre-
sponding to the stratum α will be invariant as y moves; let’s assume that we can
say that the index sets of our stratifications remain locally constant as a function of
y, and that ρ(y) stays in the “same stratum”—although that would require further
proof. Then we have, in particular, ρ(y) ∈ Gα(y). The stratum Gα(y) will not
be fully invariant by the n.a.GM connection [24], so ρ(y) has to lie in the subset
of points which, when displaced by the n.a.GM connection, remain in the same
(i.e. corresponding) stratum. We get a system of equations constraining the point
ρ(y). One can hope that in certain special cases, these equations have only isolated
points as solutions in each fiber Gα(y). A program for finding examples of global
horizontal sections ρ would be to look for these isolated points and then verify if
the family of such points is horizontal.

5.4. The open stratum. At the other end of the range of possible dimensions
of strata, is the unique open stratum G0 in each component of the moduli space.
When X is a smooth compact curve of genus ≥ 2, the open stratum consists of
connections of the form (V, ∂ + A) where V is a polystable vector bundle, ∂ is
the unique flat unitary connection, and A ∈ H0(End(V ) ⊗ Ω1

X). The Griffiths-
transverse filtration is trivial, and the corresponding stratum of systems of Hodge
bundles is P0 = U(X, r), the moduli space of semistable vector bundles on X . The

Higgs stratum is just the cotangent bundle G̃0 = T ∗P0 and G0 is a principal T ∗P0-
torsor over P0. The space GVHS

0 is just the space of unitary representations. The
situation becomes more interesting when we look at parabolic bundles or bundles
on an orbifold.

6. The parabolic or orbifold cases

Let (X, {x1, . . . , xk}) be a curve with some marked points, and fix semisimple
unitary conjugacy classes C1, . . . , Ck ⊂ GL(r). We can consider the various moduli
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spaces of representations, Higgs bundles, connections, or λ-connections on U :=
X − {x1, . . . , xk} with logarithmic structure at the points xi and corresponding
monodromies contained in the conjugacy classes Ci respectively. These objects
correspond to parabolic vector bundles with real parabolic weights and λ-connection
∇ respecting the parabolic filtration and inducing the appropriate multiple of the
identity on each graded piece. If in addition the conjugacy classes are assumed to be
of finite order, the parabolic weights should be rational, and our objects may then
be viewed as lying on an orbicurve or Deligne-Mumford stack X ′ with ramification
orders mi corresponding to the common denominators of the weights at xi [6] [12]
[28]. Denote by

MH(X ′; C1, . . . , Ck) ⊂ MHod(X ′; C1, . . . , Ck) ⊃ MDR(X ′; C1, . . . , Ck) etc

the resulting moduli spaces. One could further assume for simplicity that there
exists a global projective etale Galois covering Z → X ′ with Galois group G. The
map Z → X is a ramified Galois covering such that the numbers of branches in
the ramification points above xi are always equal to mi. Local systems or other
objects on X ′ are the same thing as G-equivariant objects on Z. This enables an
easy construction of the moduli stacks and spaces. More general constructions of
moduli spaces of parabolic objects can be found in [53] [52] [39] [34] [29] [27] [14].

The correspondence between Higgs bundles and local systems works in this
case, as can easily be seen by pulling back to the covering Z (although the analysis
can also be done directly). All of the other related structures also work the same
way. For example, there is a proper Hitchin fibration on the space of Higgs bundles,
and similarly the nonabelian Hodge filtration satisfies the positive weight property
saying that limits exist as in Lemma 4.1.

A first classical case appearing already in the paper of Narasimhan and Seshadri
[41] is when there is a single parabolic point x1 and the residual conjugacy class
of the connection is that of the scalar matrix d/r. Orbifold bundles of this type
correspond to usual bundles on X ′ of degree d, which can have projectively flat
connections. This led to moduli spaces in which all semistable points are stable
when (r, d) = 1.

The semistable ⇒ stable phenomenon occurs fairly generally in the orbifold or
parabolic setting. The Cj have to satisfy the equation

∏
det(Cj) = 1. However,

if the eigenvalues of the individual blocks are chosen sufficiently generally, it often
happens that there is no sub-collection of 0 < r′ < r eigenvalues at each point,
such that the product over all points is equal to 1. We call this Kostov’s genericity
condition. It implies that all representations are automatically irreducible, or in
terms of vector bundles with connection or Higgs bundles, semistable objects are
automatically stable.

This situation is particularly relevant for our present discussion:

Lemma 6.1. Suppose the conjugacy classes C1, . . . , Ck satisfy Kostov’s generic-
ity condition, then any vector bundle with connection (V,∇) ∈ MDR(X ′; C1, . . . , Ck)
has a unique partial oper structure, the filtration being unique up to shifting the in-
dices. Also, in this case the moduli stacks M·(X

′; C1, . . . , Ck) are smooth, and they
are Gm-gerbs over the corresponding moduli spaces M·(X

′; C1, . . . , Ck).

Proof. If all semistable objects are automatically stable, then the same is true
for the associated-graded Higgs bundles. Proposition 4.3, which works equally well
in the orbifold case, implies that the filtration is unique up to a shift.
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For the statement about moduli stacks, stable objects admit only scalar au-
tomorphisms, and the GIT construction of the moduli spaces of stable objects
yields etale-locally fine moduli, which is enough to see the gerb statement. For
smoothness, the obstructions land in the trace-free part of H2 which vanishes by
duality. �

Note that when there is a single point and the conjugacy class is scalar multi-
plication by a primitive r-th root of unity, this is Kostov-generic, and we are exactly
in the original situation considered by Narasimhan and Seshadri corresponding to
bundles of degree coprime to the rank.

Corollary 6.2. If the conjugacy classes satisfy Kostov’s genericity condi-
tion, then MHod(X

′; C1, . . . , Ck) is smooth over A1, and the fixed point sets of the

Gm-action Pα are smooth. The projections Gα → Pα and G̃α → Pα are smooth
fibrations topologically equivalent to the normal bundle N eGα/Pα

→ Pα.

Proof. The fixed-point sets are smooth by the theory of Bialynicki-Birula.
Let GHod

α ⊂ MHod(X
′; C1, . . . , Ck) denote the subset of points whose limit lies in

Pα. It is smooth, and the fiber over λ = 0 is the smooth G̃α. By the action of
Gm, the map GHod

α → A1 is smooth everywhere. Let GHod
α,V HS ⊂ GHod

α denote
the subspace of points which correspond to variations of Hodge structure. The
preferred-section trivialization gives

GHod
α,V HS

∼= Pα × A
1

compatibly with the Gm-action.
Let T ⊂ GHod

α be a tubular neighborhood, and denote by T0 the fiber over
λ = 0. We can suppose that ∂T0 is transverse to the vector field defined by the
action of R∗

>0 ⊂ Gm. Consequently, there is ǫ such that ∂T is transverse to this
vector field for any |λ| < 2ǫ.

Choose a trivialization F : ∂T0 × A1 ∼= ∂T compatible with the map to A1.
Then define a map

R : R
∗
>0 × ∂T0 → Gα,

R(t, x) := t · F (x, t−1).

This is a diffeomorphism in the region t > ǫ−1/2. On the other hand, let Tǫ be the
fiber over λ = ǫ and consider the map ǫ−1 : Tǫ → Gα. This glues in with the map R
defined on the region t ≥ ǫ−1 to give a topological trivialization of Gα. Everything
can be done relative to Pα so we get a homeomorphism between Gα → Pα and the

normal bundle of Pα in Gα. The same happens for G̃α → Pα. �

6.1. The Hodge type of the open stratum. The open stratum consists
of variations of Hodge structure of a certain type. This type can change as we
move the conjugacy classes. For example, the set of vectors of conjugacy classes
(C1, . . . , Ck) for k points in P1, for which there exists a unitary representation, is
defined by some inequalities on the logarithms of the eigenvalues [1] [5] [7] [14]
[51].

If we fix a collection of partitions at each point, then the space of unitary
conjugacy classes corresponding to those partitions is a real simplex, and the set
of finite-order conjugacy classes is the set of rational points therein. The set of
non-Kostov-generic points is a union of hyperplanes, so the set of Kostov-generic
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points decomposes into a union of open chambers bounded by pieces of hyperplanes
(in particular, the chambers are polytopes).

Suppose that we know that the varieties M·(X
′; C1, . . . , Ck) are connected—

this is the case, for example, if at least one of the conjugacy classes has distinct
eigenvalues [30]. Then there is a single open stratum. If the genericity condition is
satisfied so all objects are stable, then the partial oper structure at a general point
is unique, and its Hodge type (up to translation) depends only on the conjugacy
classes. Furthermore, given a Kostov-generic collection of unitary conjugacy classes
(C1, . . . , Ck) and a parabolic system of Hodge bundles with these conjugacy classes,
if we perturb slightly the parabolic weights then the object remains stable. This
shows that the Hodge type for the unique open stratum is constant on the Kostov-
generic chambers.

A limit argument should show that if we fix a particular Hodge type {hp,q},
then the set of vectors of conjugacy classes (C1, . . . , Ck) for which the points in
the open stratum admit a partial oper structure with given hp,q, is closed. We
don’t do that proof here, though—let’s just assume it’s true. It certainly holds
for the unitary case h0,0 = r. This closed set is then a closed polytope. For the
unitary case, it is the polytope found and studied by Boden, Hu, Yokogawa [13]
[14], Biswas [7] [8], Agnihotri, Woodward [1], Belkale [5]. The boundary is a union
of pieces of the non-Kostov-generic hyperplanes.

The fact that the Hodge type varies in a way which is locally constant over
polytopes fits into the general philosophy which comes out of the results of Libgober
[33] and Budur [16]. There is a direct relationship in the rigid case: by Katz’s
algorithm the unique point in a rigid moduli space can be expressed motivically,
and the Hodge type is locally constant on polytopes by the theory of [33] [16].

There seems to be a further interesting phenomenon going on at the boundary
of these polytopes: the complex variations of Hodge structure corresponding to the
fixed point limits of points in the open stratum, become automatically reducible.
In the unitary case this is pointed out in several places in the references (see for
example Remark (4) after Theorem 7 on page 75 of [5], or also the last phrase of
Theorem 3.23 of [8]): irreducible unitary representations exist only in the interior
of the polytope. A sketch of proof in general is to say that if there is a stable system
of Hodge bundles with given parabolic structure then the parabolic structure can
be perturbed keeping stability and keeping the same Hodge type (it is the same
argument as was used above at the interior points of the chambers, which is indeed
essentially the same as in the references).

In other words, at the walls between the chambers, points in the open stratum
become gr-semistable but not gr-stable. Now, the non-uniqueness of the partial
oper structure, Proposition 4.3, is exactly what allows the Hodge type to jump.

For generic (C1, . . . , Ck) where the moduli space is smooth, the space of complex
variations of Hodge structure corresponding to the open stratum is a real form of the
Betti moduli space. It is defined algebraically in MB(X ; C1, . . . , Ck) as a connected
component of the space of representations into some U(p, q).

However, at boundary points (C1, . . . , Ck) between the different Hodge poly-
topes this subspace is concentrated on the singular locus of reducible representations
(whereas in most cases there still exist irreducible representations). The open stra-
tum is presented as a cone over a fixed point set inside the singular locus. The
reader will be convinced that this kind of thing can happen by looking at the case
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of the real circle x2 + y2 = t: for t > 0 it is a real form of the complex quadratic
curve, but at t = 0 the real points are just the singularity of two crossing complex
lines. It is an interesting question to understand what the degeneration of the real
form of the smooth space looks like for the case of MB(X ; C1, . . . , Ck).

7. Deformation theory

The deformation theory follows [10] [15] [36] and others. The discussion ex-
tends without further mention to the case where X is an orbifold. Further work
is needed [54] [15] for more general parabolic cases corresponding for example to
non-unitary conjugacy classes of local monodromy operators.

Suppose (V,∇) is an irreducible connection. Consider the complex

End(V ) ⊗ Ω·
X := [End(V )

d
→ End(V ) ⊗ Ω1

X ].

The space of infinitesimal deformations, or the tangent space to the moduli stack
MDR at (V,∇), is

Def(V,∇) = H
1(End(V ) ⊗ Ω·

X).

Given a Griffiths-transverse filtration F · we get a decreasing filtration of the com-
plex End(V ) ⊗ Ω·

X defined by

F p(End(V )) := {ϕ ∈ End(V ), ϕ : F qV → F p+qV },

F p(End(V ) ⊗ Ω1
X) := F p−1(End(V )) ⊗ Ω1

X .

The F p(End(V ) ⊗ Ω·
X) are subcomplexes, so we can take the spectral sequence of

the filtered complex (End(V ) ⊗ Ω·
X , F ·). It induces a filtration F ·Def(V,∇) and

the spectral sequence is

(7.1) H
i(Grp

F (End(V ) ⊗ Ω·
X)) = Ep,i−p

1 ⇒ Grp
F H

i(End(V ) ⊗ Ω·
X).

The obstruction theory is controlled by the H2 of the trace-free part, so if (V,∇)
is irreducible then the deformations are unobstructed, there are no problems with
extra automorphisms, and the moduli space is smooth.

The limiting system of Hodge bundles (GrF (V ), θ) has its own deformation
theory in the world of Higgs bundles. The complex End(GrF (V ))⊗Ω·

X is made as
above, but the differentials using θ are OX -linear maps. The tangent space to the
moduli stack MH at (GrF (V ), θ) is calculated as

Def(GrF (V ), θ) = H
1(End(GrF (V )) ⊗ Ω·

X).

The complex End(GrF (V ))⊗Ω·
X has a direct sum decomposition, and indeed it is

the associated-graded of the previous one:

End(GrF (V )) ⊗ Ω·
X = GrF (End(V ) ⊗ Ω·

X).

This tells us that the E·,·
1 term of the previous spectral sequence corresponds to the

deformation theory of (GrF (V ), θ).

Lemma 7.1. If (GrF (V ), θ) is stable then the spectral sequence (7.1) degenerates
at E1 with

(7.2) Grp
F (Def(V,∇)) = H

1
(
Grp

F (End(V )
θ
→ Grp−1

F (End(V ) ⊗ Ω·
X

)
.
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Let T (Gα/Pα) denote the relative tangent bundle of the fibration Gα → Pα where it
is smooth. Then the two middle subspaces of the filtration at p = 0, 1 are interpreted
in a geometric way as

F 0Def(V,∇) = T (Gα)(V,∇), and F 1Def(V,∇) = T (Gα/Pα)(V,∇).

Proof. Since (GrF (V ), θ) is stable,

H
0(GrF (End(V ) ⊗ Ω·

X)) = C, H
2(GrF (End(V ) ⊗ Ω·

X)) = C

and these are the same as at the limit of the spectral sequence. By invariance
of the Euler characteristic the same must be true for H1 so the spectral sequence
degenerates. The geometric interpretation may be seen by looking at a cocycle
description. �

7.1. At a variation of Hodge structure. Suppose (V,∇) ∈ GVHS
α is an

irreducible complex variation of Hodge structure. Then End(V ) is a real VHS of
weight 0, independent of the scalar choice of polarization on V . The hypercoho-
mology Def(V,∇) = H

1(End(V )⊗Ω·
X) is a real Hodge structure of weight 1, with

the same Hodge filtration as defined above and which we write as

HR ⊂ Def(V,∇) ∼=
⊕

H
k,1−k.

This decomposition splits the Hodge filtration and is naturally isomorphic to the
decomposition (7.2). The real subspace HR is the space of deformations of the
monodromy representation preserving the polarization form, i.e. as a representation
in the real group U(p, q). In other words it is the tangent space to MB(X, r)R in
the notations of Lemma 5.2.
Proof of Lemma 5.2: Both GVHS

α and Gα∩MB(X, r)R have the same tangent spaces
at (V,∇). The tangent space of Gα is the sum F 0 =

⊕
k≥0 Hk,1−k. The intersection

of F 0 with HR is (H1,0 ⊕ H0,1)R which is the tangent space of GVHS
α . �

The symmetry of Hodge numbers extends to other points too:

Corollary 7.2. For any gr-stable point (V,∇), not necessarily a VHS, let F ·

be the unique (up to shift) partial oper structure. Then the induced filtration on the
tangent space of the moduli stack at (V,∇) satisfies

dimGrp
F Def(V,∇) = dimGr1−p

F Def(V,∇).

Proof. Let (V ′,∇′) denote the VHS corresponding to the system of Hodge
bundles (GrF (V ), θ). Note that (GrF (V ′), θ′) ∼= (GrF (V ), θ), so

Grp
F Def(V,∇) ∼= H

1(End(GrF (V )) ⊗ Ω·
X) ∼= Grp

F Def(V ′,∇′).

Therefore we can write Grp
F Def(V,∇) ∼= Hp,1−p(End(V ′)⊗Ω·

X), and these spaces
are associated to a real Hodge structure of weight one, so we get the claimed
symmetry of dimensions. �

In the Hitchin moduli space the tangent space at a point (E, θ) ∈ Pα decom-
poses as a direct sum under the Gm-action, and this decomposition is compatible
with the filtration, so it gives a splitting:

T (MH)(E,θ)
∼=

⊕
Grp

F T (MH)(E,θ)
∼=

⊕
H

p,1−p.

The tangent space to the fixed point set is Gr0
F T (MH)(E,θ) = T (Pα)(E,θ), whereas

the pieces p < 0 may be identified as the “outgoing” directions for the Gm-action.
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If Pα = P0 is the lowest piece corresponding to the open stratum G0 ⊂ M then
there are no outgoing directions, so the terms of Hodge type (p, 1 − p) vanish for
p < 0. By symmetry they vanish for p > 1, which says that Grp

F T (MH)(E,θ) = 0
unless p = 0, 1; the same holds for MDR. Furthermore, the two pieces are dual by
the symplectic form (see below), so we can identify

H
0,1 = Gr0

F T (MH)(E,θ)
∼= T (P0)(E,θ),

H
1,0 = Gr1

F T (MH)(E,θ)
∼= T ∗(P0)(E,θ).

We even have an isomorphism of fibrations

G̃0 T ∗P0

↓ ∼= ↓
P0 P0,

whereas G0 → P0 is a twisted form of the same fibration (it is a torsor). These
observations are elementary and classical when X is a smooth projective curve,
however they also hold in the parabolic or orbifold case when the weights are
generic so that all points are gr-stable.

This includes cases where there are no stable parabolic vector bundles, but the
lowest stratum P0 corresponds to variations of Hodge structure of nontrivial Hodge
type.

7.2. Lagrangian property for the fibers of the projections Gα → Pα.

There is a natural symplectic form on the tangent bundle to the moduli space over
the open subset of stable points, given in cohomological terms as the cup product
∪ : H1 ⊗ H1 → H2 = C.

In the moduli space of connections on a smooth projective curve, the open
stratum G0 fibers over the moduli space P0 of semistable vector bundles. In the

Hitchin moduli space, under the isomorphism G̃0
∼= T ∗P0, the symplectic form is

equal to the standard one [10], in particular the fibers are lagrangian.
It has been noticed by several authors [22] [15] [50] [32] [2] that the fibers of

the projection G0 → P0 (over stable points) are similarly lagrangian subspaces of
the moduli space of connections.

We point out that the lagrangian property extends to the fibers in all strata,
at gr-stable points.

Lemma 7.3. Suppose p = (E, θ) ∈ Pα is a stable system of Hodge bundles.
Then the fiber Lp of the projection Gα → Pα over p is a lagrangian subspace of
MDR.

Proof. Fix a point (V,∇) which is gr-stable, hence also stable itself. By
Lemma 7.1, the tangent space to the fiber of Gα/Pα is the subspace F 1H1 ⊂
Def(V,∇).

In degree two, F 1H2(End(V )⊗Ω·
X) is the full hypercohomology space H2 = C

whereas F 2H2 = 0. On the other hand, the Hodge filtration is compatible with cup
product, so

∪ : F 1
H

1 → F 1
H

1 → F 2
H

2 = 0,

which is to say that F 1H1 ⊂ Def(V,∇) is an isotropic subspace for the symplectic
form. The symmetry property Corollary 7.2 readily implies that F 1H1 has half the
dimension, so it is lagrangian. �
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A natural problem is to understand the relationship between the lagrangian
fibers on different strata.

Question 7.4. Do the lagrangian fibers of the projections fit together into a
smooth lagrangian foliation with closed leaves?

This is of course true within a given stratum Gα; does it remain true as α
varies?

A heuristic argument for why this might be the case is that if a fiber of Gα → Pα

were not closed in MDR, this might lead to a projective curve in MDR which cannot
exist since MB is affine.

A similar closedness or properness property was proven in [50] for the case of
Fuchsian equations.

On the other hand, the analogous statement for MH is not true: the fibers of

G̃α → Pα definitely do sometimes have nontrivial closures in MH, indeed any fiber
contained in the compact nilpotent cone will be non-closed.

If the answer to Question 7.4 is affirmative, it could be useful for the context
of geometric Langlands, where the full moduli stack BunGL(r) might profitably be
replaced by the algebraic space of leaves of the foliation. They share the open
set of semistable bundles. This could help in the ramified case [21]—when there
are no semistable bundles, it would seem logical to consider the lowest stratum P0

parametrizing variations of Hodge structure.

7.3. Nestedness of the stratifications. We are given a stratification or
disjoint decomposition into locally closed subsets M =

∐
α Gα. Say that it is

nested if there is a partial order on the index set such that

Gα − Gα =
∐

β<α

Gβ .

If this is the case, the partial order is defined by the condition

β ≤ α ⇔ Gβ ⊂ Gα.

The arrangement of the strata is the partially ordered index set.

Conjecture 7.5. The stratifications of MDR(X, r) and MH(X, r) defined in
Proposition 5.1 are nested, and the arrangements of their strata are the same via the
identification of each stratum with the corresponding fixed point set in MH(X, r).

The arrangement of the strata in the Hitchin moduli space has been studied
in [9], and for rank 3 the connected components of the fixed point sets have been
classified in [19].

Theorem 7.6. Conjecture 7.5 is true for bundles of rank r = 2 on a smooth
projective curve X of genus g ≥ 2.

Proof. Hitchin [26] identifies explicitly the connected components Pe of the
fixed point set MH(X, 2)Gm . These are indexed by an integer 0 ≤ e ≤ g − 1, where
P0 is the space of semistable vector bundles and for e > 1, Pe is the space of systems
of Hodge bundles which are direct sums of line bundles of degrees e and −e. A
deformation theory argument will show that starting with a point in Pe we can
deform it to a family of λ-connections which project into the next stratum Pe−1.

At e = 0, the space P0 is the moduli space of rank two semistable vector bundles
on X , which is sometimes denoted UX(2), and is known to be an irreducible variety.



DESTABILIZING MODIFICATIONS 17

For e > 0 the space Pe parametrizes Higgs bundles of the form

E = E0 ⊕ E1, θ : E1 → E0 ⊗ Ω1
X ,

where E0 and E1 are line bundles of degrees −e and e respectively. We require
e > 0 because a Higgs bundle of the above form with deg(Ei) = e = 0 would be
semistable but not stable, in the same S-equivalence class as the polystable vector
bundle E0 ⊕ E1 which is a point in P0.

The map θ is a section of the line bundle (E1)∗⊗E0⊗Ω1
X of degree 2g−2−2e, so

e ≤ g−1 and in the case of equality, θ is an isomorphism. Let D be the divisor of θ; it
is an effective divisor of degree 2g−2−2e, and the space of such is Sym2g−2−2e(X).
Given D and E1 ∈ Pice(X) then E is determined by E0 = E1 ⊗ TX ⊗ OX(D).
Thus, Pe

∼= Sym2g−2−2e(X) × Pice(X) which is a smooth irreducible variety. All
points are stable.

The strata of the oper stratification are enumerated as Ge ⊂ MDR(X, 2) for

0 ≤ e ≤ g − 1; the corresponding strata of MH(X, 2) are denoted G̃e. The upper
(smallest) stratum e = g − 1 is the case of classical opers.

To show the nested property, it suffices to show that Ge ⊂ Ge−1 for e ≥ 2. Note
that for e = 1 this is automatic since G0 is an open dense subset so G0 = MDR.
We will consider a point (V,∇) ∈ Ge and deform it to a family (Vt,∇t) ∈ Ge−1 for
t 6= 0, with limit (V,∇) as t → 0.

Having (V,∇, F ·) ∈ Ge means that there is an exact sequence

(7.3) 0 → E1 → V → E0 → 0

with E1 = F 1 and E0 = F 0/F 1. The limit point in Pe is E = E1 ⊕ E0 with
θ := ∇ : E1 → E0 ⊗ Ω1

X . Choose a point p ∈ X and let L := E1(−p). Let
ϕ : L → V be the inclusion. Consider the functor of deformations of (V,∇, L, ϕ).
It is controlled by the hypercohomology of the complex

C· := End(V ) ⊕ Hom(L, L) → End(V ) ⊗ Ω1
X ⊕ Hom(L, V )

where the differential is the matrix
(

∇ 0
− ◦ ϕ ϕ ◦ −

)
.

There is a long exact sequence

. . . → H
i(Hom(L, L) → Hom(L, V )) → H

i(C·) → H
i(End(V ) ⊗ Ω·

X) → . . . .

The fact that our filtration is gr-stable implies that the spectral sequence as-
sociated to the filtered complex (End(V ) ⊗ Ω·

X , F ·) degenerates at E·,·
1 . The VHS

on End(GrF (V )) has Hodge types (1,−1) + (0, 0) + (−1, 1) so its H1 has types
(2,−1) + . . . + (−1, 2). The associated-graded of H1(End(V ) ⊗ Ω·

X) has pieces

Gr2
F H

1 = H0(Hom(E0, E1) ⊗ Ω1
X),

Gr1
F H

1 = H
1(Hom(E0, E1) → (Hom(E0, E0) ⊕ Hom(E1, E1)) ⊗ Ω1

X),

Gr0
F H

1 = H
1(Hom(E1, E1) ⊕ Hom(E0, E0) → Hom(E1, E0) ⊗ Ω1

X),

Gr−1
F H

1 = H1(Hom(E1, E0)).

The degeneration gives a surjection H1 →→ Gr−1
F H1, in other words

H
i(End(V ) ⊗ Ω·

X) → H1(Hom(E1, E0)) → 0.
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The definition L = E1(−p) gives an exact sequence of the form

(7.4) 0 → Hom(E1, E0) → Hom(L, E0) → Cp → 0.

Note that deg(L) > 0 but deg(E0) < 0 so H0(Hom(L, E0)) = 0, hence the long
exact sequence for (7.4) becomes

0 → C → H1(Hom(E1, E0)) → H1(Hom(L, E0)) → 0.

Putting these two together we conclude that the map

H
1(End(V ) ⊗ Ω·

X) → H1(Hom(L, E0))

is surjective, but there is an element in its kernel which maps to something nonzero
in H1(Hom(E1, E0)). Another exact sequence like (7.4) gives a surjection

H1(OX) = H1(Hom(L, L)) → H1(Hom(L, E1)) → 0.

The long exact sequence for Hom from L to the short exact sequence (7.3) gives

H1(Hom(L, E1)) → H1(Hom(L, V )) → H1(Hom(L, E0)) → 0.

Therefore the map

(7.5) H1(Hom(L, L)) ⊕ H
1(End(V ) ⊗ Ω·

X) → H1(Hom(L, V ))

is surjective but not an isomorphism. This gives vanishing of the obstruction theory
for deforming (V,∇, L, ϕ). And the map (7.5) has an element in its kernel which
maps to something nonzero in H1(Hom(E1, E0)). Hence there is a deformation of
(V,∇, L, ϕ) which doesn’t extend to a deformation of E1 ⊂ V . A one-parameter
family of (Vt,∇t, Lt, ϕt) thus gives the deformation from (V,∇) into the next lowest
stratum Ge−1 where Lt of degree e − 1 will be the destabilizing subsheaf. �

8. Principal objects

Ramanan would want us to consider also principal bundles for arbitrary reduc-
tive structure group G. Notice that the category of partial oper structures, while
posessing tensor product and dual operations, is not tannakian because morphisms
of filtered objects need not be strict. The passage to principal objects should be
done by hand. One can construct the various moduli spaces of principal bundles
with connection, principal Higgs bundles, and the nonabelian Hodge moduli space
of principal bundles with λ-connection

MH(X, G) ⊂ MHod(X, G) ⊃ MDR(X, G)
↓ ↓ ↓

{0} ⊂ A1 ⊃ {1}
.

In this section we indicate how to prove that the limit limt→0 t · p exists for any
p ∈ MHod(X, G). The discussion using harmonic bundles will be more technical
than the previous sections of the paper.

Embedding G →֒ GL(r), it suffices to show that the map of moduli spaces
MHod(X, G) → MHod(X, GL(r)) is finite and then apply Lemma 4.1. Such a finite-
ness statement was considered for MH and MDR in [48] along with the construction
of the homeomorphism between these two spaces. The same statements were men-
tionned for MHod in [49], however the discussion there was inadequate. The main
issue is to prove that the map from the moduli space of framed harmonic bundles
to the GIT moduli space MHod(X, G) is proper. The distinct arguments at λ = 0
and λ = 1 given in [48] don’t immediately generalize to intermediate values of λ.
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This is somewhat similar to—and inspired by—the convergence questions treated
recently by Mochizuki in [38]. We give an argument based on the topology of the
moduli space together with its Hitchin map; it would be interesting to have a more
direct argument with explicit estimates.

Fix a basepoint x ∈ X , and let RHod(X, x, G) be the parameter variety for
(λ, P,∇, ζ) where λ ∈ A1, P is a principal G-bundle with λ-connection ∇ (such
that (P,∇) is semistable with vanishing Chern classes) and ζ : G ∼= Px is a frame
for P at the point x. The group G acts and

RHod(X, x, G) → MHod(X, G)

is a universal categorical quotient. Indeed, RHod(X, x, G) is constructed first as a
closed subscheme of RHod(X, x, GL(r)) for a closed embedding G ⊂ GL(r) by the
same construction as in [48, II, §9], which treated the Higgs case. This was based
on [48, I,§4] which treats the general Λ-module case so the discussion transposes
to MHod. One can choose a GL(r)-linearized line bundle on RHod(X, x, GL(r))
for which every point is semistable, which by restriction gives a G-linearized line
bundle on RHod(X, x, G) for which every point is semistable. Mumford’s theory
then gives the universal categorical quotient.

Fix a compact real form J ⊂ G. For any λ ∈ A1 a harmonic metric on a
principal bundle with λ-connection (P,∇) is a C∞ reduction of structure group h ⊂
P from G to J satisfying some equations (see [38] for example) which interpolate
between the Yang-Mills-Higgs equations at λ = 0 and the harmonic map equations
at λ = 1. Let RJ

Hod(X, x, G) ⊂ RHod(X, x, G) denote the subset of (λ, P,∇, ζ) such
that there exists a harmonic metric h compatible with the frame ζ at x, in other
words ζ : J → hx. This condition fixes h uniquely.

Lemma 8.1. The map RJ
Hod(X, x, G) → MHod(X, G) is proper, and induces

homeomorphisms

MH(X, G) × A
1 ∼= RJ

Hod(X, x, G)/J ∼= MHod(X, G).

Proof. The moduli space of harmonic λ-connections has a natural product
structure RJ

Hod(X, x, G) ∼= HarJ (X, G) × A1 where HarJ (X, G) is the space of
framed harmonic G-bundles; and the topological quotient by the action of J on
the framing is again a product (HarJ (X, G)/J)×A1. The second homeomorphism
follows from the properness statement, by the discussion in [48]. There the proper-
ness was proven at λ = 0, 1. At λ = 0 we get HarJ (X, G)/J ∼= MH(X, G), which
gives the first homeomorphism. At λ = 1 we get HarJ (X, G)/J ∼= MDR(X, G).

Fix G ⊂ GL(r) such that J ⊂ U(r), then RJ
Hod(X, x, G) is a closed subset of

R
U(r)
Hod (X, x, GL(r)). Using this, one can show that the lemma for GL(r) implies

the lemma for G.
Suppose now G = GL(r), with compact subgroup J = U(r). The map on the

subset of stable points RJ
Hod(X, x, r)s → MHod(X, r)s is proper, using the fact that

MHod(X, r)s is a fine moduli space, plus the main estimate for the construction
of Hermitian-Einstein harmonic metric solutions by the method of Donaldson’s
functional. This estimate is explained for the case of λ-connections in [38].

Given a polystable point (λ, V,∇) ∈ MHod(X, r) we can associate a polystable
Higgs bundle (E, θ) in the preferred section corresponding to the harmonic bundle
associated to any harmonic metric on (V,∇). The (E, θ) is unique up to iso-
morphism, in particular the value of the Hitchin map Ψ = det(θ − t) ∈ C

N is
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well-defined. This gives a set-theoretically defined map Ψ : MHod(X, r) → CN .
For a sequence of points ρi ∈ RJ

Hod(X, x, r), there is a convergent subsequence if
and only if the sequence Ψ[ρi] contains a bounded subsequence. Hence, in order
to prove properness of the map RJ

Hod(X, x, r) → MHod(X, r) it suffices to prove
that the function Ψ is locally bounded on MHod(X, r). This is obvious on the fiber
λ = 0 where the Hitchin map Ψ is an algebraic map. On the fiber λ = 1, an ar-
gument using the characterization of harmonic metrics as ones which minimize the
energy ‖θ‖2

L2 again shows that Ψ is locally bounded. In particular, the lemma holds
over λ = 0 and λ = 1, indeed this was the proof of [48] for the homeomorphism
MH(X, r) ∼= MDR(X, r).

Properness over the set of stable points means that the map MHod(X, r)s →
MH(X, r)s is continuous, hence Ψ is continuous over MHod(X, r)s. Similarly, it
is continuous on any stratum obtained by fixing the type of the decomposition of
a polystable object into isotypical components. A corollary is that for any point
[(λ, V,∇)] ∈ MHod(X, r), the function C∗ ∋ t 7→ Ψ(tλ, V, t∇) is continuous.

Suppose we have a sequence of points pi → q converging in MHod(X, r), but
where |Ψ(pi)| → ∞. Assume that they are all in the same fiber Mλ over a fixed
value 0 6= λ ∈ A1. The points λ−1pi converge to λ−1q in MDR(X, r), so (by the
energy argument referred to above) we have a bound |Ψ(λ−1pi)| ≤ C1. Fix a curve
segment γ ⊂ C joining λ−1 to 1 but not passing through 0. The function t 7→ Ψ(tq)
is continuous by the previous paragraph, so there is a bound |Ψ(tq)| ≤ C2 for t ∈ γ.
On the other hand, again by the continuity of the previous paragraph, for any
constant C > C1 there exists a sequence of points ti ∈ γ such that |Ψ(tipi)| = C.
Possibly going to a subsequence, we can assume that tipi → q′ as a limit of harmonic
bundles. Continuity of the Hitchin map on MH says that |Ψ(q′)| = C. The map
from the space of harmonic bundles to MHod is continuous so the limit tipi → q′

also holds in MHod. On the other hand, we can assume ti → t in γ (again possibly
after going to a subsequence), which gives tipi → tq in MHod. Separatedness of the
scheme MHod implies that the topological space is Hausdorff, so tq = q′. If C > C2

this contradicts the bound |Ψ(tq)| ≤ C2 for t ∈ γ. We obtain a contradiction to the
assumption |Ψ(pi)| → ∞, so we have proven that |Ψ(pi)| is locally bounded.

In the fiber over each fixed λ ∈ A
1, this shows properness, hence the homeo-

morphism statements, hence that Ψ is continuous. Now using the connectedness
and separatedness properties of MHod, an argument similar to that of the previ-
ous paragraph will allow us to show boundedness of Ψ globally over MHod without
restricting to a single fiber. Suppose pi → q in MHod over a convergent sequence
λi → λ ∈ A1, but with |Ψ(pi)| → ∞. Fix a preferred section σ : A1 → MHod and we
may assume that σ(λi) is connected to pi by a path γi : [0, 1] → Mλi

. If necessary
replacing X by a sufficiently high genus covering, we can view MHod as a family of
connected normal varieties. Thus we can assume that the paths γi converge to a
path γ connecting q to σ(λ) in the fiber Mλ. Fix a constant C > supt|Ψ(γ(t))|, in
particular also C > |Ψ(σ(λi))|, indeed the Ψ(σ(λi)) are all the same because σ was
a preferred section. For large values of i we have

|Ψ(σ(λi))| = |Ψ(γi(0))| < C < |Ψ(γi(1))| = |Ψ(pi)|.

Continuity of Ψ in each fiber Mλi
shows that there are ti ∈ [0, 1] with |Ψ(γi(ti))| =

C. Going to a subsequence we get convergence of the harmonic bundles associated
to the points γi(ti), keeping the same norm of the Hitchin map. Thus γi(ti) →
q′ with |Ψ(q′)| = C. For a further subsequence, ti → t and as in the previous
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argument, separatedness of the moduli space implies that q′ = γ(t), contradicting
the choice of C. This proves that Ψ is locally bounded, which in turn implies
properness of the map in the first statement of the lemma for GL(r), to complete
the proof. �

Suppose now given an injective group homomorphism between reductive groups
G →֒ H . Choose compact real forms J ⊂ G and K ⊂ H such that the homomor-
phism is compatible: J → H . This gives a diagram

RJ
Hod(X, x, G) → RK

Hod(X, x, H)
↓ ↓

MHod(X, G) → MHod(X, H)

where the vertical maps are proper by the previous lemma. The upper horizontal
map is a closed embedding, indeed we can choose H →֒ GL(r) which also induces
G →֒ GL(r), and the schemes RHod(X, x, G) and RHod(X, x, H) are by construction
closed subschemes of RHod(X, x, GL(r)) [48]. The subsets of framings compatible
with the harmonic metrics are closed, so the upper horizontal map is an inclusion
compatible with closed embeddings into RHod(X, x, GL(r)), hence it is a closed
embedding. In particular, it is proper. This implies that the bottom map is proper.

Corollary 8.2. Given a group homomorphism with finite kernel between re-
ductive groups G → H the resulting map on moduli spaces

MHod(X, G) → MHod(X, H)

is finite.

Proof. If G → H is injective, the above argument shows that the map on
moduli spaces is proper. It is quasi-finite [48] so it is finite. Then the same argument
as in [48] yields the same statement in the case of a group homomorphism with
finite kernel between reductive groups. �

Corollary 8.3. Suppose G is a reductive group. Then for any point p ∈
MHod(X, G) the limit point limt→0 t · p exists and is unique in the fixed point set
MH(X, G)Gm . Hence we get a stratification of MDR(X, G) just as in Proposition
5.1.

Proof. Choose G →֒ GL(r); apply Lemma 4.1 together with the finiteness of
Corollary 8.2 to get existence of the limit. Uniqueness follows from separatedness
of the moduli space [48]. The stratification is defined in the same way as in 5.1. �

The above arguments prove that the limit points exist, however it would be
good to have a geometric construction analogous to what we did in §2, §3. This
should involve a principal-bundle approach to the instability flag [44].

Question 8.4. How to give an explicit description of the limiting points in
terms of Griffiths-transverse parabolic reductions in the case of principal G-bundles?

We obtain the oper stratification of MDR(X, G) just as in Proposition 5.1. The
smallest stratum consisting of G-opers is treated in much detail in [4].

It would be good to generalize the other elements of our discussion §§5, 6, 7
to the principal bundle case too. The theory of parabolic structures would hit the
same complications mentionned by Seshadri in the present conference. The theory
of deformations should follow [10].
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