Iterated destabilizing modifications for vector bundles with connection - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Iterated destabilizing modifications for vector bundles with connection

Carlos Simpson

Résumé

Given a vector bundle with integrable connection $(V,\nabla )$ on a curve, if $V$ is not itself semistable as a vector bundle then we can iterate a construction involving modification by the destabilizing subobject to obtain a Hodge-like filtration $F^p$ which satisfies Griffiths transversality. The associated graded Higgs bundle is the limit of $(V,t\nabla )$ under the de Rham to Dolbeault degeneration. We get a stratification of the moduli space of connections, with as minimal stratum the space of opers. The strata have fibrations whose fibers are Lagrangian subspaces of the moduli space.
Fichier principal
Vignette du fichier
madrid.pdf (320.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00348159 , version 1 (17-12-2008)

Identifiants

Citer

Carlos Simpson. Iterated destabilizing modifications for vector bundles with connection. 2008. ⟨hal-00348159⟩
150 Consultations
302 Téléchargements

Altmetric

Partager

More