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Introduction

Systems biology aims at understanding biological phenomena at different scales: Intracellular environment, cells, organs, living beings. Modelling and simulation of such systems by means of computational tools are essential research topics. The main issues include the recognition of the relevant parameters of the targeted phenomenon, the choice of the appropriate abstraction level and the ability of the model to bring out discriminating results about the simulated system. Among the possible parameters that the model can take into account (biochemical reactions, regulation networks, etc.), compartmentation of the biological systems is often a key feature [START_REF] Presley | Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport[END_REF]. Indeed, a spatial representation of the compartments is needed to describe both static and dynamic characteristics of the systems. In particular, the modifications of the neighbouring relations between compartments influence the evolution of the system parameters (e.g. concentration of molecules or more specifically proteins).

Different approaches have been used in order to model biocellular systems: Differential models for studying the evolution of concentrations (see Virtual Cell [START_REF]Virtual cell[END_REF]), Boolean or discrete modelling for genetic regulatory networks, or rule-based modelling to simulate interacting molecular phenomena. Indeed, transformation rules are well-adapted to represent biochemical reactions (for instance complexation or catalysis). For such kinds of models, formal methods like model checking [START_REF] Bernot | Application of formal methods to biological regulatory networks: Extending Thomas' asynchronous logical approach with temporal logic[END_REF] or symbolic execution [START_REF] Mateus | Symbolic modeling of genetic regulatory networks[END_REF] have been fruitfully applied to verify that the model under consideration satisfies a known property of the biological system. Nevertheless, many rule-based models do not take compart-ments into account and consequently consider, unrealistically, the systems as a homogeneous environment. Recently, such formalisms have been extended to take into account different compartments (see BioCham [START_REF] Calzone | Biocham: an environment for modeling biological systems and formalizing experimental knowledge[END_REF], Bioambients [START_REF] Regev | Bioambients: an abstraction for biological compartments[END_REF] and Brane calculi [START_REF] Cardelli | Brane calculi. interactions of biological membranes[END_REF]). In these models, the compartmentation only captures simple phenomena (for instance endocytosis or exocytosis) and is not related to geometric aspects (position and shape of the objects).

Topology-based geometric modelling [START_REF] Lienhardt | Subdivision of n-dimensional spaces and n-dimensional generalized maps[END_REF] is particularly adapted to represent compartmentation and is widely advocated for computer graphics. It deals with the representation of the structure of the objects (their decomposition into topological units: Vertices, edges, faces and volumes) and of the neighbouring relations that exist between topological units. Since it considers topological structure and geometry separately, it offers a sufficiently high level of abstraction. In particular, the manipulations of compartments and of frontiers between compartments can be handle in the same manner. This allows us to model the role of frontiers in the transport regulation of biochemical elements. In a previous work [START_REF] Poudret | Topologybased geometric modelling for biological cellular processes[END_REF], we have already expressed basic topological operations by means of generic rules which can be applied to a large family of topological objects. In this paper, we explore the capabilities of this topologybased approach for discrimination of models of biological systems. The chosen case study is the Golgi apparatus. This intra-cellular entity is the place where proteins remain for a maturation phase before their excretion to extra-cellular environment. It is widely accepted that excretion of proteins is strongly linked to the spatial dynamics of the Golgi apparatus. However, the precise topology of the apparatus is not well defined and three main hypotheses have been emitted [START_REF] Képès | Morphodynamics of the secretory pathway[END_REF].

We introduce a computer-aided methodology in order to help biologists in analysing topology and dynamics of their different hypotheses. Our methodology is based on succesive simulations of topological models which implement different hypotheses: At each step, one simulation is done by hypothesis under study and parameters of models are updated according to the analysis of output parameters resulting from previous simulations. The biological knowledge is widely involved for initialisation, analysis and updating of parameter values. Moreover, when it seems to be pertinent to biologists, the same updatings are applied to each simulated model. Finally, an hypothesis can be rejected when biologist experts have the conviction that no additional parameter updating would lead to a model which fits with biological expectations (according to their knowledge).

The paper is organised as follows: The Golgi apparatus and the current hypotheses on its topology are presented in Section 1. Section 2 presents our rule-based topological approach. Section 3 is dedicated to a topology-based implementation of the Golgi apparatus hypotheses. In particular, we introduce two topological models corresponding to ongoing biological hypotheses. We also describe our computer-aided methodology for helping biologists in understanding and discriminating hypotheses about both topology and dynamics of the Golgi apparatus.

1 The Golgi Apparatus

General description

Discovered by Camillo Golgi in 1898, the Golgi apparatus (or dictyosome in plants) is an organelle whose role includes the transport of proteins synthesised by the cell from the endoplasmic reticulum to the plasma membrane or to lysosomes. Not only the Golgi apparatus sorts the proteins in order to transport them into adapted locations, but it is also the place of protein maturation by the means of loss of peptidic sequence and addition of sugars (glycosylation) or sulfate (sulfatation). The Golgi apparatus (see electron micrograph on Fig 4 . 1) is located near the nucleus and the centrosome. It generally appears as a stack of 5 or 6 disconnected cisternaes (the saccules) bounded with a phospholipidic membrane (see S on Fig. 1(a)). This stack is usually surrounded by small vesicles that bud out from the saccules (see V on Fig. 1(a)). Notice that on some pictures, the saccules appear perforated (see P on Fig. 1(b)). At last, the Golgi apparatus is a polarised object: The cis face is directed to the endoplasmic reticulum while the trans face is directed to the plasma membrane. 

Three hypotheses on the Golgi apparatus

Because of observation limitations, the complete structure of the Golgi apparatus is not precisely known. Indeed, with optical microscopy techniques, biologists observe the dynamics at the cost of a small resolution that does not allow them to observe the structure. By contrast, electron microscopy provides high resolution pictures but the observation is done on thin and inert section of the Golgi apparatus. Last but not least, those thin sections lead to many interpretation mistakes at the time of a 3-dimensional reconstruction (for instance, both sphere and tube section can appear as a disc on a picture). Thus, the path that proteins follow from the endoplasmic reticulum to the plasmic membrane or lysosomes is not well known. Three main hypotheses exist [START_REF] Képès | Morphodynamics of the secretory pathway[END_REF]. The two first hypotheses appear quite similar since they both suppose that vesicles play a major role in the excretion of proteins. In the vesicular secretion hypothesis (see Fig. 2(a)), an aggregate of endoplasmic reticulum (ER) fragments generates disconnected saccules (S). Proteins migrate through the stack by means of vesicles (V) that jump from one saccule to another. They are finally evacuated by the means of secretory granules (G) that bud out from the trans face. We know that enzymes in charge of the activation and the maturation of proteins are located near the cis face of the Golgi apparatus. In this first hypothesis, those enzymes may stay in the first saccules that are motionless by definition. In the second hypothesis, namely the saccule maturation (see Fig. 2(b)), saccules are still disconnected but follow an anterograde movement which fully explains the transport of proteins. Here, vesicles move along a retrograde flow in order to return enzymes that function early in the pathway to the cis region. The third hypothesis do not relies on any vesicule transporation. On the contrary, it considers a continuous membranes flow (see Fig. 2(c)) emerging from the endoplasmic reticulum. Indeed, observed endoplasmic reticulum fragments and vesicles are interpreted in this hypothesis as small sections of a tubular network that connects the saccules (T). In this case, proteins may follow the membrane flow and diffuse from one saccule to another along the tubes while enzymes may diffuse following a retrograde movement. Moreover, this last hypothesis takes into account the saccules perforation. This phenomenon may explain the creation of the secretory granules by the rupture of the junctions resulting from the perforation.

2 Topology-based geometric modelling for biological cellular processes

Topology-based geometric modelling

In order to take into account the biological compartments into our model, we base our work on the topology-based geometric modelling (topological modelling for short). This field of the computer graphics deals with the representation of the objects structure (their decomposition into topological units: Vertices, edges, faces and volumes) and of the neighbouring relations that exist between topological units. Among numerous topological models, we choose the n-dimensional generalised map [START_REF] Lienhardt | Subdivision of n-dimensional spaces and n-dimensional generalized maps[END_REF] (n-G-maps for short). It defines the topology of an n-dimensional space subdivision and allows the representation of a large class of objects 5 . This topological model has the advantage of provid- ing a homogeneous mathematical definition for all dimensions. This genericity allows one to easily develop robust softwares. On Fig. 3, a 2-dimensional object (see Fig. 3(a)) is successively decomposed into topological units: Faces (see Fig. 3(b)), edges (see Fig. 3(c)) and vertices (see Fig. 3(d)). These vertices, also called darts or half-edges, are the basic elements of the n-G-maps. Labelled graph edges are used in order to recover the neighbouring relations (see Fig. 3(e)). The label of an edge depends on the nature of the neighbouring relation that is symbolised by the edge. For instance, the α 2 -edge between v and v ′ illustrates the sticking of the two faces that include v and v ′ on the original picture (see faces f and f ′ on Fig. 3(a)). Here is the mathematical definition of an n-G-map:

Definition 1 (n-G-map). Let n ≥ 0. An n-G-map is an edge-labelled graph G = (V G , E G ) with labels in Σ E = {α 0 , . . . , α n }, s. t.: -for all v ∈ V G , l ∈ Σ E , there exists a unique v ′ ∈ V s. t. (v, l, v ′ ) ∈ E G ; -for each v ∈ V G , for all α i , α j ∈ Σ E such that 0 ≤ i < i + 2 ≤ j ≤ n, there exists a cycle (α i , α j , α i , α j ) that reaches v.
On the border of the objects, some darts do not have all of its neighbours. For instance, on Fig. 3(e) the dart v ′′ is not linked to another dart by an α 2 -edge. However, according to the first point of definition all darts must have one incident label for each dimension. Thus, if a dart is not linked to another dart by an α i -edge (0 ≤ i ≤ n), it exists an implicit α i -loop that links the dart to itself. For instance, on Fig. 3(e), there is an implicit α 2 -loop incident to vertex v ′′ . The second point of the definition means that if two i-dimensional units are stuck, they must be stuck along a (i -1)-dimensional unit (this is a quasi-variety condition). For instance, on Fig. 3(a), the faces (2-dimensional units) f and f ′ are stuck along an edge (1-dimensional unit). In the corresponding 2-G-map, this property is translated into the presence of a cycle (α 0 , α 2 , α 0 , α 2 ) that reaches v on Fig. 3(e). Thus, since darts v and v ′ are linked with an α 2 -edge, then darts u and u ′ are linked too. In order to build and modify topological objects, computer scientists have defined many topological operations on the n-G-maps. Moreover, it has been established that all of these operations can be decomposed into four basic operations: Dart addition, dart suppression, dart i-sew and dart i-unsew (these two last operations consist in, respectively, sticking and unsticking two i-dimensional topological units along two isomorphic6 (i -1)-dimensional topological units).

Topological transformation rules

In [START_REF] Poudret | Topologybased geometric modelling for biological cellular processes[END_REF], we have expressed the basic operations into graph transformation rules [START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF]. Classical rules are sufficient to express the dart addition (see Fig. 4(a)) and dart suppression (this new rule is obtained by swaping the lefthand and right-hand sides of the dart addition rule). Nevertheless, they are not sufficient to represent the dart i-sew and i-unsew operations. Indeed, the graph transformation to perform for sticking (resp. unsticking) two topological units depends on the size of these units. For instance, sticking two triangular faces implies to add 6 α 2 edges while sticking two square faces implies to add 8 α 2 edges. As it is clearly unreasonable to introduce as many rules as all the potential sizes of the topological units, we introduce the notion of graph transformation meta-rule that abstracts this infinite set of classical rules.

Definition 2 (meta-rule definition). Let us consider Σ E a set of labels and β /

∈ Σ E a new label. A graph transformation meta-rule on β, noted L ← K → R, is a graph transformation rule where L, K and R are edgelabelled graphs with labels in Σ E ∪{β} and satisfying both following properties:

• for each edge in L (resp. R) of the form (v, β, v ′ ), then v = v ′ ;
• there exists at least in L an edge of the form (v, β, v). Graphically β-edges are noted with dotted lines.

In [START_REF] Poudret | Topologybased geometric modelling for biological cellular processes[END_REF], we define the translation of such a meta-rule into a set of classical rules. The dart i-sew meta-rule is introduced in Fig. 4(b) (the i-unsew meta-rule is obtained by simply swapping the left-hand and right-hand side of the i-sew meta-rule). On this figure, the β-edges represent the topological units that parameterise the meta-rule. In short, the i-sew meta-rule may be understood as follows: It matches two isomorphic i-dimensional topological units such that all α i -edges are loops and links the vertices of both units with an α i -edge.

Embedding

In order to model biological cellular processes we may want to associate different kinds of information to the topological units, that is to say to embed them. For instance, we may want to attach geometric or biochemical data to the volumes that abstract the biological compartments. Thus, we may want to write transformation rules whose application depends on embedding and which modify embedding information. In [START_REF] Poudret | Topologybased geometric modelling for biological cellular processes[END_REF], we introduce a language in order to write embedding expressions. Here is an example of expressions (here, we give a simplified syntax whose meaning can be easily understood from the convention) which can be related to the sew meta-rule (see Fig. 4(b)):

3 distance(d 1 , d 2 ) ≤ ǫ (1) 3 update position(d 1 ) ∧ 3 update position(d 2 ) (2) 
Pre-condition ( 1) is used to restrict the application of the rule. The prefix 3 of 3 distance means that we consider the distance between 3-dimensional topological units (i.e. volumes). Thus, the condition means that the volumes which contain the darts d 1 and d 2 may be glued only if they are sufficiently close to each other according to a small distance, denoted ǫ here. Finally, the post-condition (2) updates the position of two volumes that have been glued.

3 Towards a topological discrimination of Golgi Apparatus models

3.1 Iterative approach for modelling biological systems
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Fig. 5. Models discrimination loop

In Section 1.2, we have introduced three hypotheses that have been investigated by the biologists to explain the behavior of the Golgi apparatus. Our main goal consists in providing a framework to help biologists in discriminating which one better corresponds to the biological knowledge. We base our approach on a topology-based geometric modelling of the hypotheses. Discriminating parameters may be highlighted by expert analyses of simulation processes.

We choose to confront the third hypothesis, namely the continuous membrane flow, to one vesicular hypothesis. We focus on the saccule maturation hypothesis, which implies several different phenomena (both saccules and vesicles movements) and is therefore more subtle than the vesicular excretion hypothesis. Moreover, the vesicular hypotheses are strictly identical from the topological point of view (only dynamics differ) while the third one introduces significant topological differences (connected and perforated saccules).

Fig. 5 illustrates the loop of topological model discrimination. Two kinds of parameters appear on the figure. The input parameters (IN 1 and IN 2 ) are realistic values given by the biologists to initialise the simulations of, respectively, topological models M 1 and M 2 that implement the selected hypotheses. Even if some parameters are specific to only one model (for instance, the vesicle diameter is only related to the vesicular hypothesis), they are correlated to parameters of the other model (for instance, to be compatible with same electron micrograph pictures, the vesicle diameter should be linked to the diameter of tubes connecting saccules in the continuous membrane flow hypothesis). This coherence between parameters of M 1 and M 2 is necessary for the models discriminating process. Indeed, a decision which discriminates a model with respect to another one only holds up to some common biological observations taken into account in both models. OU T 1 and OU T 2 parameters result from the simulations of, respectively, M 1 and M 2 (for instance, the flux of excreted proteins are output parameters for both models). After each iteration, results of the simulations are compared with biological experimental observations (OBS on the figure). Different situations result from this comparison:

• Both models are not coherent with observations. If an updating of input parameters seems to lead to a more accurate simulation for at least one of both models, both IN 1 and IN 2 parameters are updated (preserving coherence between them) and new simulations are performed. Otherwise, the topological models have to be called into question. • Both models are coherent with observations. They have to be refined: The models are detailed by, for instance, adding new parameters, likely to refine informations manipulated by both models. • Only one model is coherent with observations. If an updating of input parameters seems to lead to a more accurate simulation for the incoherent model, the associated input parameters are updated (the coherence between parameters leads us to update also the input parameters of the other model) and new simulations are performed. Otherwise, the discrimination process is completed since no updating of the incoherent model seems to make it coherent with observations.

The static definition of topological models (M 1 and M 2 on the figure) is complete. Intuitively, such a static model serves as initial state of the dynamic process and represents a topological description of the steady state for each of the considered hypotheses. The dynamic processes (model simulation and discrimination) are initiated. The first results are presented in the following subsections. In purely topological modelling, we do not deal with the geometry (the shape) of the objects. First of all, we have to pay attention to their topological characteristics. Indeed, geometric data can be embedded later into the topological units. Thus, the main interest of the plate stack model and the tower model is to point out the topological distinction that exists between the Golgi apparatus hypotheses. The first distinction is the saccules (S) connection. The proteins are transported through vesicles (V) in the plate stack while they diffuse into tubes (T) which connect the saccules in the tower model (the proteins do not appear explicitly on the models, they are abstracted by concentrations which appear as embedding information associated to the compartments). Moreover, small parts of the endoplasmic reticulum aggregate into saccules in the first model while the endoplasmic reticulum is connected to the cis face in the second one. Finally, secretory granules (G) bud out from the trans face of the plate stack while they result from the rupture of the bee nest structure which appears progressively (from the cis face to the trans face) in the tower model.

Topological models of the Golgi Apparatus

Both models have been elaborated by following a loop of topological model refinements. Biologists have deeply analysed intermediate models by proposing either topological modifications or parameter updating. This is particulary true for the most recent hypothesis (the continuous membrane flow) for which the tower model presented in Fig. 6(b) gives a new insight on its possible topological structure. The interaction with biologists experts of the Golgi apparatus has yet been fructuous. Indeed, as stated in Section 3.2, the conception of the static topological models that abstract the second and third Golgi apparatus hypotheses is now complete. Our next goal consists in providing transformation rules which animate the models. In Section 2, we have introduced a mean to write rules that transform topological objects. Here, we give two examples of rules that may be used in order to transform dynamically, i.e. to simulate, the plate stack and tower models. The definition of such graph transformation meta-rules is mandatory for animating the topological models and constitutes the first stage for simulations of such complex systems. They define the syntactic part of the simulations, in other words, they define what kind of transformations the simulator can implement. But this definition does not explain how these transformation rules are applied. Now, we have to explore what kind of strategies of application of transformation rules have to be taken into consideration in order to simulate biological processes.

Simulating and discriminating the models
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Conclusion

In this paper, we present a computer-aided methodology to better understand the dynamics of biocellular processes that strongly depend on compartmentation. Our framework is based on the use of topology-based geometric modelling in order to represent compartments with their neighbouring relations and on transformation rules which allow us to simulate at the same time topological, geometric and biochemical mechanisms. We define two topological models, called the plate stack model and the tower model, and give examples of rules useful for their animation. The topological models implement two ongoing Golgi apparatus hypotheses. They strongly differ by their topology: in the plate stack model, saccules are disconnected and proteins move from one saccule to another by the mean of vesicles, while in the tower model, saccules are connected with tubes that allow proteins to cross the apparatus. Both these static toplogical models fit with the available biological knowledge. Simulations for each model are simultaneously iterated within our methodological framework. At each step, input parameters are updated in a coherent way between the two models and in accordance to the biological knowledge. Indeed, the modification of a particular parameter for a given model implies to modify in the same way the correlated parameters in the other model. A model is given up when one can no more update parameters in a satisfactory manner.

Another way to discriminate models is to study wich properties are preserved or reached by simulations. Model-checking technics have already been used to analyse discrete models representing biocellular phenomena (e.g. genetic regulatory networks) and to predict some properties about them. Since our underlying theoretical models are also discrete (they are derived from n-Gmaps and transformation rules), we plan to associate such kind of technics to exhibit properties that seem to emerge (according to biologists'observations) from the simulations. If such new properties can be studied in vivo by biologists, then biological experiments inspired by such emerging computed properties would enrich our discrimination methodology: In the same way as the biological knowledge already guides the updating of simulation parameters, properties issued from simulation would also guide biological experiments. Such a mutual interaction between experiments and simulations would help the biologists in better understanding the biocellular phenomena under interest.
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Roughly speaking, two topological structures are said to be isomorphic if they are superposable.
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