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This paper presents the mathematical framework involved in the determination of an upper bound of the maximum spread value of a D-dimensional Turbo-Code of frame size N. This bound is named Sphere Bound (SB). It is obtained using some simple properties of Euclidian space (sphere packing in a finite volume). The SB obtained for dimension 2 is equal to N . 2 . This result has already been conjectured. For dimension 3, we prove that the SB cannot be reached, but can be closely approached (at least up to 95 %). For dimensions 4, 5 and 6, the construction of particular interleavers shows that SB can be approached up to 80%. Moreover, from the SB calculation, an estimate of the minimum Hamming weight of the weight-two input sequence is derived.

Introduction

When designing two-dimensional turbo-codes [START_REF] Berrou | Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes[END_REF], [START_REF] Benedetto | Unveiling turbo-codes: some results on parallel concatenated coding schemes[END_REF], [START_REF] Benedetto | Design of parallel concatenated convolutional codes[END_REF] the quality of the interleaver is a key component that has a great impact on the performance of the code. It is well known that the performance of an interleaver is degraded by the presence of short cycles [START_REF] Hokfelt | Interleaver Design for Turbo Codes Based on the Performance of Iterative Decoding[END_REF], [START_REF] Dolinar | Weight Distributions for Turbo Codes Using Random and Nonrandom Permutations[END_REF]. Short cycles increase the correlation between the extrinsic information under an iterative decoding algorithm.

Moreover, for turbo-codes, short cycles may lead to low weight codewords. The simplest short cycle is the primary cycle. A primary cycle occurs when two bits that are initially close to each other in the natural order, remain close after the interleaving. In order to take into account the primary short cycles, the notion of "spread" was introduced in [START_REF] Dolinar | Weight Distributions for Turbo Codes Using Random and Nonrandom Permutations[END_REF] to design S-random interleavers.

This spread has been redefined by Crozier et al. in [START_REF] Crozier | New High-Spread High-Distance Interleavers for Turbo-Codes[END_REF]. These authors produced an interleaver achieving a spread of N .

2 , where N is the size of the frame.

In this paper, we give an upper bound, named Sphere Bound (SB) of the maximum spread for a D-dimensional multiple turbo-code. The proof is based on very simple properties of sphere packing, using the 1 l -norm. As a side result, we show that the SB, for the 2-dimensional code, is N . 2 .

Note that the mathematical framework presented in this paper has been inspired to the authors by their work on the optimization of 3-D interleavers [START_REF] Gnaedig | Design of Three-Dimensional Multiple Slice Turbo codes[END_REF].

The paper is divided into four sections. The SB is first derived in section 2. Then, section 3 describes construction of optimized regular interleavers to prove that the SB can be closely approached. Finally, section 4 derives the asymptotic behavior of the Hamming weight of the weight-two input sequences of a turbo-code.

Upper bound of the maximum spread

After a brief review of the definition of the spread in the context of turbo-code design, the method used for the derivation of an upper bound on the maximum spread for D-dimensional multiple turbo-codes is explained.

Definition of spread

The concept of spread to design the so-called "S-random" interleavers was introduced in [START_REF] Dolinar | Weight Distributions for Turbo Codes Using Random and Nonrandom Permutations[END_REF] for non-tail-biting codes. The spread definition was modified in [START_REF] Crozier | New High-Spread High-Distance Interleavers for Turbo-Codes[END_REF] and was also extended to the case of tail-biting codes (although this is not stated explicitly). In this paper, the spread definition used in [START_REF] Crozier | New High-Spread High-Distance Interleavers for Turbo-Codes[END_REF] is explicitly stated for tail-biting codes and is extended to account for a variable number of dimensions. Let N denote the length of the information block of the code. In order to simplify the notation, the block length will not be mentioned when there is no ambiguity on its value. Let Π denote the permutation function that associates an index Π(k), in the interleaved order, to an index k in the natural order.

Definition 1:

In the 2-dimensional case, the spread between two symbols k 1 and k 2 is defined as
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Definition 3: The spread S D of a D-dimensional interleaver ) ..., , ( 1 1 0 - Π Π Π = Π D
is the minimum spread between all couples of different symbols:
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Definition 4: The maximum spread max D S is defined as the maximum achievable spread over the set I Π of all possible interleavers:

D I D S S Π ∈ Π = max max (3)

Upper bound of the maximum spread

The sphere packing approach allows to derive an upper bound of the maximum spread max D S . The general idea is quite simple: for each of the N points of a given interleaver, we define a sphere of radius r. We show that, under a given hypothesis, the maximum radius so that the spheres are disjoint is related to the spread S D of this interleaver. The maximum spread is then given by the maximum radius so that the sphere are all disjoint. This problem is not trivial, nevertheless, a volume argument can be used to bound max D S . In fact, the total volume of the N spheres is at most equal to the total available volume of the space, this gives us a maximum radius SB D S called the sphere bound.

Let

[ [
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be the flat torus of the real numbers modulo N and let 1 d be the application from
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to R + which is defined as:
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One can note that 1 d is a distance over D F . Indeed,
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The proof of these properties is straightforward.

By definition of 1 d , the spread S D is also a distance over
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Let us define d 1 , the distance derived from the 1 l -norm, as
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Hypothesis 1: The value of r is below of equal to N/2 ( 2 N r ≤
).

According to hypothesis 1, the two distances 1 d and 1 d are equivalent. The notation of the sphere ) , , (

1 d r A D Σ is then simplified to ) , ( r A D Σ
. Note that this sphere is a square in dimension 2 and a regular octahedron in dimension 3, as shown in [START_REF] Fedorov | Elements of the study of figures[END_REF]. Lemma 2: Let S D be the spread of an interleaver Π. Then:
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Proof: If the intersection between the two spheres is not empty, there is a point X that verifies
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which is in contradiction with the definition 3 of the spread of an interleaver From the lemma 2, we deduce that the sum of the volume of the N spheres 
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The 2-dimensional case

From the lemma 2, the maximum spread value max 2 S of a 2-dimensional interleaver can be bounded by the SB SB S 2 . In fact, if SB S 2 /2 is less or equal to N/2 (hypothesis 1), the area of the

sphere ) 2 / , ( 2 2 SB S A Σ is ( ) 2 / 2 2 SB S
. Thus the SB leads to the following relation:

( ) N S N S N SB SB ⋅ = ⇒ = ⋅ 2 2 / 2 2 2 2 (7) The hypothesis N S SB ≤ 2 is valid if 2 ≥ N
. This is verified in all practical applications. This result has already been mentioned [START_REF] Crozier | New High-Spread High-Distance Interleavers for Turbo-Codes[END_REF] and this bound can be reached with deterministic interleavers (see section 3).

Generalization to the D-dimensional case.

The above method can be generalized for the D-dimensional case. We define the asymptotic behavior of the spread after defining the volume of the sphere of radius r.

Theorem 1: the volume V(D, r) of the sphere of radius r with respect to the distance d 1 in a Ddimensional space is given by:
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Proof: This property is true for D = 1 and D = 2. In these cases, the volume reduces to the length 2r and the area 2r 2 , respectively. Assume that the property is true for dimension D, then
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and thus, the property is also true for dimension D+1

Then, the sphere packing approach in the D-dimensional case leads to:
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Assuming N S SB D ≤ (hypothesis 1) and using equation (10), the SB is derived as:
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Hence, an upper bound of the maximum spread max D S in the D-dimensional case is given by:
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the hypothesis 1 is not valid. In that case, the volume of the sphere (8) is not correct, since the distance 1 d and d 1 are different for the values of r above N/2 (see figure 2 for the twodimensional case). Nevertheless, for
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Similarly, the expressions of SB D S for SB D S >2N can also be derived.

Figure 3 shows the behavior of the SB for different dimensions and block length. 

Comparison between maximum spread and SB

In this section, we study how tight is the SB for D = 2 up to D = 6 dimensional cases.

Definition 4:

The sphere packing density is defined as 

The 2-dimensional case

In two dimensions, the SB is equal to N 2 . This SB can be achieved with deterministic interleavers. For example, if ² 2n N = , where n is a positive integer, the maximum spread is n S 2 max 2 = . This spread is obtained using simply the interleaver defined as Π 1 (k) = (2n-1)⋅k mod N [START_REF] Crozier | New High-Spread High-Distance Interleavers for Turbo-Codes[END_REF]. Figure 4 shows an example of interleaver with n = 2 and N = 8, i.e., an interleaver of equation 
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The 3 dimensional case

In the 3-dimensional case, the Russian mathematician Fedorov [START_REF] Fedorov | Elements of the study of figures[END_REF] proved that there are only 5 regular or semi-regular polyhedrons able to fill the space without empty spaces. Similarly, The octahedron cannot fill the space without empty spaces. Hence, in the 3-dimensional space, SB S 3 is not achievable.

In the next sub-section, we explain the construction of some deterministic interleavers to approach the upper bounds and to derive a lower bound of the maximum spread for the 3dimensional case. The SB is also approached for the higher dimensions.

Construction of high spread interleavers

In order to give a lower bound of the maximum spread, we optimize deterministic interleavers to approach the SB. The D permutations ) (k i Π of the permutation vector )) ( )..., ( ), ( (

1 1 0 k k k D- Π Π Π
are based on regular interleavers defined by (14):
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where i α and N are relatively prime,
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, and the parameters ) ,...., , (
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The spread is computed for combinations of the parameters ) ,...., , (

1 1 0 - D α α α
for dimensions 2 up to 6. The maximum achievable spread that has been calculated is reported in Tables 1 to 5 respectively. The search is exhaustive for dimensions 2, 3 and 4. For dimensions 5 and 6, for reducing the number of D-tuple to be checked and, thus, to keep a reasonable computational time, we constrain the sum of the integers For the 2-dimensional case (section 3.1), the optimal value is 1

α = 1 2 - N = 2n-1 when ² 2n N = (n integer). One can note, from table 2, that the value 1 α =   1 2 - N
does not necessarily give the optimal value of the spread. For example, for N = 1000, the value of 1 α = 43 gives a spread of 34.

This value has to be compared to the spread of 44 obtained with 1 α = 173. Tables 1 to 5 show that the SB can be reached with deterministic permutations (14) for dimension 2. It can be approached at least up to 95 %, 89 %, 91 % and 81 % for dimension 3, 4, 5 and 6, respectively. In section 3.2, we have proved that the SB cannot be reached in three dimensions. We conjectured that, for dimensions 4, 5 and 6 and higher, the SB cannot be reached.

Estimation of the minimum Hamming weight of the weight-two input sequence

As stated in the introduction, short cycles should be avoided for the construction of a good interleaver. The interleaver should have a reasonably high spread for avoiding problems of correlation and potential low Hamming weight codewords related to weight-two input sequences.

In section 3, we showed that, for a fixed block length N, the spread increases with the number of dimensions. On the other hand, to keep a constant coding rate, the puncturing of each dimension also increases with the number of dimensions. Thus the question arises as to how the minimum Hamming weight 2 min w of a weight-two input sequence behaves as the number of dimensions.

For a rapid estimation of 2 min w , we make the following two new hypotheses:

Hypothesis 2: For a given number of dimensions D and a code of size N, there exists an interleaver Π that has a spread S Π equal to the sphere bound SB S .

Hypothesis 3: There exists a couple of points ) , ( 

k k i i Π Π
that feeds the encoder of the i th dimension, generates a number of non-zero redundancy bits proportional to the length

N i i k k ) ( ), ( 2 1 Π Π .
It should be noted that the hypothesis 2 is optimistic (see section 3) while the hypothesis 3 is pessimistic. In fact, as shown in [START_REF] Benedetto | Unveiling turbo-codes: some results on parallel concatenated coding schemes[END_REF], if the i th encoder is a systematic recursive convolutional code (SRCC) of memory size m with a primitive feedback polynomial, then the weight-two input sequence )) ( ), ( ( 

Π

th position makes the encoder reconverge towards the all zero path. In this case the number ) , ( 21 k k w i of 1's generated by the i th encoder is given by: to the generator polynomials. For example, for the SRCC with m = 3 and polynomial generators of (15) octal for the feedback and (13) octal for the redundancy, P d is equal to 4/7 and b is equal to 2. The number of 1's generated by a weight-two input sequence of length 7l is then equal to 2+4l, for this SRCC encoder. Note that if the length of the weight-two input sequence is not a multiple of l, then the number of non-zero redundant bits is approximately N P d ⋅ for a tail-biting code, which is much larger than ) , ( 21 k k w i . In the sequels, we assume that, in all dimension, the encoders have a primitive feedback polynomial.

b k k P k k w N i i d i + Π - Π ⋅ = ) ( ) ( ) , (
Hypothesis 3 assumes that, for all dimensions i = 0..D-1,

N i i k k ) ( ) ( 2 1 Π - Π
is a multiple of the i th encoder periodicity, which is clearly the worst case (the lowest possible weight).

Let us assume that all dimensions are equally punctured to achieve a code rate r. The rate of a non-punctured systematic multiple turbo code of dimension D is

) 1 ( 1 + D
. To achieve the code rate r, a fraction

( ) ( ) ( ) r r D - ⋅ = 1 1
λ of the parity bits needs to be kept after puncturing. Thus, according to hypothesis 3, in dimension i, the weight-two input sequence
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The first term of (16) represents the Hamming weight of the two non-zero systematic bits. Equation ( 16) can be rewritten as: respectively. Note however that, in the general case, the minimum Hamming distance of a code is generated by more complex error sequences rather than by simple weight-two input sequences. 

        ⋅ + - + ≈ D k k S P b r r w E d ) , ( 1 2 ] 

Conclusion

This shows that the upper bound can be approached up to 92%, 88%, 91% and 80 % for D = 3, 4, 5 and 6 dimensional turbo codes, respectively. From the upper bound, it is also shown that the minimum Hamming weight of weight-two input sequences increases with the number of dimensions D for a given frame size N.
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 1 Figure 1: Representation of the sphere ) , ( r A D Σ : (a) a square in dimension 2, (b) an octahedron in dimension 3.

  or equal to the total space volume D N . The value SB D S , called the SB, leading to equality, is thus an upper bound of max D S.
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 3 Figure 3: SB values for D-dimensional interleaver of size N
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 4 Figure 4: Spread in the 2-dimensional case for N = 8, 4 2
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  of non-zero parity bits generated during a period of the SRCC encoder and the parameter b is an offset generated by the arrival of the two non-zero bit in the encoder. The value b can be either 0, 1 or 2 according
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  lengths N and several dimensions D, for a rate r = 1/2 turbo-code with (15,13) oct RSCC encoders (i.e. b = 16, 38 and 60 for D = 2, 3 or 4,
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 5 Figure 5: Estimation of ] [ 2 min w E for various block lengths N with a multiple turbo-code of rate 1/2.

.

  paper shows that the maximum spread value of a D-dimensional turbo code with tail-biting constituent codes is upper bounded by [ ] The upper bound called the sphere bound is obtained using very simple properties of Euclidian space. It has been shown that this upper bound can be achieved in the two dimensional case, but not in the three dimensional case. For higher dimensions, the question is still open. Nevertheless, the construction of deterministic interleavers
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					3-dimensional case (exhaustive search)
	N	α	0	α	1	α	2	α	3	spread (E) Effective	Bound (B) Sphere	Ratio E/B
	1000	1	51	159 173	346	393	88.04 %
	2000	1	193 231 639	588	661	88.96 %
	3000	1	53	251 587	770	897	85.84 %
	4000	1	81	431 479	992	1113	89.13 %

Table 3 :
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						4-dimensional case (exhaustive search)	
	N	α	0	α	1	α	2	α	3	α	4	spread (E) Effective	Bound (B) Sphere	Ratio E/B
	1000	1	43	99	117 403	537	654	82.11 %
	2000	1	63	267 351 361	1043	1139	91.57 %
	3000	1	59	163 599 743	1300	1575	82.54 %
	4000	1	31	101 447 1393	1653	1983	83.36 %

Table 4 :
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								5-dimensional case (heuristic search)	
	N	α	0	α	1	α	2	α	3	α	4	α	5	spread (E) Effective	Bound (B) Sphere	Ratio E/B
	1000	1	21	71	107 167 567	768	946	81.18 %
	2000	1	9	133 207 309 1027	1342	1686	79.59 %
	3000	1	71	157 463 679 1027	1920	2364	81.22 %
	4000	1	21	99	171 887 1761	2432	3004	80.96 %

Table 5 :
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6-dimensional case (heuristic search)