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Abstract

Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are two risk measures which are
widely used in the practice of risk management. This paper deals with the problem of estimating
both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a
first Robbins-Monro (RM) procedure based on Rockafellar-Uryasev’s identity for the CVaR.
Convergence rate of this algorithm to its target satisfies a Gaussian Central Limit Theorem. As
a second step, in order to speed up the initial procedure, we propose a recursive and adaptive
importance sampling (IS) procedure which induces a significant variance reduction of both VaR
and CVaR procedures. This idea, which has been investigated by many authors, follows a new
approach introduced in [27]. Finally, to speed up the initialization phase of the IS algorithm,
we replace the original confidence level of the VaR by a slowly moving risk level. We prove that
the weak convergence rate of the resulting procedure is ruled by a Central Limit Theorem with
minimal variance and its efficiency is illustrated on several typical energy portfolios.

This work appeared in Monte Carlo Methods and Applications 2009.

Keywords: VaR, CVaR, Stochastic Approximation, Robbins-Monro algorithm, Importance
Sampling, Girsanov.

1 Introduction

Following financial institutions, energy companies are developing a risk management framework
to face the new price and volatility risks associated to the growth of energy markets. Value-
at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are certainly the best known and the most
common risk measures used in this context, especially for the evaluation of extreme losses potentially
faced by traders. Naturally related to rare events, the estimation of these risk measures is a
numerical challenge. The Monte Carlo method, which is often the only available numerical device
in such a general framework, must always be associated to efficient reduction variances techniques
to encompass its slow convergence rate. In some specific cases, Gaussian approximations can lead to
semi-closed form estimators. But, if these approximations can be of some interest when considering
the yield of a portfolio, they turn out to be useless when estimating e.g. the VaR on the EBITDA
(Earnings Before Interest, Taxes, Depreciation, and Amortization) of a huge portfolio as it is often
the case in the energy sector.
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In this article, we introduce an alternative estimation method to estmate both VaR and CVaR,
relying on the use of recursive stochastic algorithms. By definition, the VaR at level α ∈ (0, 1)
(VaRα) of a given portfolio is the lowest amount not exceeded by the loss with probability α (usually
α ≥ 95%). The Conditional Value-at-Risk at level α (CVaRα) is the conditional expectation of
the portfolio losses beyond the VaRα level. Compared to VaR, CVaR is known to have better
properties. It is a coherent risk measure in the sense of Artzner, Delbaen, Eber and Heath, see [2].

The most commonly used method to compute VaR is the inversion of the simulated empirical
loss distribution function using Monte Carlo or historical simulation tools. The historical simula-
tion method usually assumes that the asset returns in the future are independent and identically
distributed, having the same distribution as they had in the past. Over a time interval [t, T ], the
loss is defined by L := V (St, t)−V (St+∆S, T ), where St denotes the market price vector observed
at time t, ∆S = ST − St the variation of S over the time interval [t, T ] -which can be calculated
using historical data- and V (St, t) the portfolio value at time t. The distribution of this loss L can
be computed with the corresponding VaR at a given probability level by the inversion of the empir-
ical function method. However, when the market price dynamics follow a general diffusion process
solution of a stochastic differential equation (SDE), the assumption of asset returns independence
is no longer available.

To circumvent this problem, Monte Carlo simulation tools are generally used. Another widely
used method relies on a linear (Normal approximation) or quadratic expansion (Delta-Gamma ap-
proximation) and assume a joint normal (or log-normal) distribution for ∆S. The Normal approxi-
mation method gives L a normal distribution, thus the computation of the VaRα is straightforward.
However, when there is a non-linear dependence between the portfolio value and the prices of the
underlying assets (think of a portfolio with options) such approximation is no longer acceptable.
The Delta-Gamma approximation tries to capture some non linearity by adding a quadratic term
in the loss expansion. Then, it is possible to find the distribution of the resulting approximation in
order to obtain an approximation of the VaR. For more details about these methods, we refer to [7],
[8], [15], [16] and [34]. Such approximations are no longer acceptable when considering portfolios
with long maturity (T − t = 1 year up to 10 years) or when the loss is a functional of a general
path-dependent SDE.

In the context of hedging or optimizing a portfolio of financial instruments to reduce the CVaR,
it is shown in [33] that it is possible to compute both VaR and CVaR (actually calculate VaR and
optimize CVaR) by solving a convex optimization problem with a linear programming approach. It
consists in generating loss scenarios and then in introducing constraints in the linear programming
problem. Although they address a different problem, this method can be used to compute both
VaR and CVaR. The advantage of such a method is that it is possible to estimate both VaR and
CVaR simultaneously without assuming that the market prices have a specified distribution (e.g.
normal, log-normal, ...). The main drawback is that the dimension (number of constraints) of the
linear programming problem to be solved is equal to the number of simulated scenarios. In our
approach, we are no limited by the number of generated sample paths used in the procedure.

The idea to compute both VaR and CVaR with one procedure comes from the fact that they
are strongly linked as they appear as the solutions and the value of the same convex optimisation
problem (see Proposition 2.1) as pointed out [33]. Moreover both the objective function of the
minimization problem and its gradient read as an expectation. This leads us to define consistent
and asymptotically normal estimators of both quantities as the limit of a global Robbins-Monro
(RM) procedure. Consequently, we are no longer constrained by the number of samples paths used
in the estimation.

A significant advantage of this recursive approach, especially in regard to the inversion of the
empirical function method is that we only estimate the quantities of interest and not the whole
inverse of the distribution function. Furthermore, we do not need to make approximations of the
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loss or of the convex optimization problem to be solved. Moreover, the implementation of the
algorithm is straightforward. However to make it really efficient we need to modify it owing to
the fact that VaR and CVaR computation is closely related to the simulation of rare events. That
is why as a necessary improvement, we introduce a (recursive and adaptive) variance reduction
method based on an importance sampling (IS) paradigm.

Let us be a bit more specific. Basically in this kind of problem we are interested in events
that are observed with a very low probability (usually less that 5%, 1% or even 0.1%) so that we
obtain few significant replications to update our estimates. Actually, interesting losses are those
that exceed the VaR, i.e. the ones that are “in the tail” of the loss distribution. Thus in order to
compute more accurate estimates of both quantities of interest, it is necessary to generate more
samples in the tail of L, the area of interest. A general tool used in this situation is IS.

The basic principle of IS is to modify the distribution of L by an equivalent change of measure
to obtain more “interesting” samples that will lead to better estimates of the VaR and CVaR. The
main issue of IS is to find a right change of measure (among a parameterized family) that will
induce a significant variance reduction. In [16] and [17], a change of measure based on a large
deviation upper bound is proposed to estimate the loss probability P(L > x) for several values of x.
Then, it is possible to estimate the VaR by interpolating between the estimated loss probabilities.

Although this approach provides an asymptotically optimal IS distribution, it is strongly based
on the fact that the Delta-Gamma approximation holds exactly and relies on the assumption that,
conditionally to the past data, market moves are normally distributed. Moreover, as shown in
[18], importance sampling estimators based on a large deviations change of measure can have
variance that increases with the rarity of the event, and even infinite variance. In [12], the VaRα is
estimated by using a quantile estimator based on the inversion of the empirical weighted function
and combined with Robbins-Monro (RM) algorithm with repeated projection devised to produce
the optimal measure change for IS purpose. This kind of IS algorithm is known to converge toward
the optimal importance sampling parameter only after a (long) stabilization phase and provided
that the compact sets have been appropriately specified. By contrast, our parameters are optimized
by an adaptive unconstrained (i.e. without projections) RM algorithm naturally combined with our
VaR-CVaR procedure.

One major issue that arises when combining the VaR-CVaR algorithm with the recursive IS
procedure is to ensure that the IS parameters do move appropriately toward the critical risk area.
They may remain stuck at the very beginning of the IS procedure. To circumvent this problem, we
make the confidence level slowly increase from a low level (say 50%) to α by introducing a deter-
ministic sequence (αn)n≥0 of confidence level that converges toward α. This kind of incremental
threshold increase has been proposed previously [22] in a different framework (use of cross entropy
in rare event simulation). It speeds up the initialization phase of the IS algorithm and consequently
improves the variance reduction. Thus, we can truly experiment asymptotic convergence results in
practice.

The paper is organized as follows. In the next section, we present some theoretical results about
VaR and CVaR. We introduce the VaR-CVaR stochastic algorithm in its first and naive version
and study its convergence rate. We also introduce some background about IS using stochastic
approximation algorithm. Section 3 is devoted to the design of an optimal procedure using an
adaptive variance reduction procedure. We present how it modifies the asymptotic variance of our
first CLT. In Section 4 we provide some extensions to the exponential change of measure and to
deal with the case of infinite dimensional setting. Section 5 is dedicated to numerical examples.
We propose several portfolios of options on several assets in order to challenge the algorithm and
display variance reduction factors obtained using the IS procedure. To prevent the freezing of the
algorithm during the first iterations of the IS procedure, we also consider a deterministic moving
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risk level αn which replace α to speed up the initialization phase and improve the reduction of
variance. We prove theoretically that modifying in this way the algorithm doesn’t change the
previous CLT and fasten the convergence.

Notations: • |.| will denote the canonical Euclidean norm on R
d and 〈., .〉 will denote the canonical

inner product.

• L−→ will denote the convergence in distribution and
a.s.−→ will denote the almost sure convergence.

• x+ := max(0, x) will denote the positive part function.

2 VaR, CVaR using stochastic approximation and some back-

ground on recursive IS

It is rather natural to consider that the loss of the portfolio over the considered time horizon can
be written as a function of a structural finite dimensional random vector, i.e. L = ϕ(X), where X
is a R

d-valued random vector defined on the probability space (Ω, A,P) and ϕ : Rd → R is a Borel
function. ϕ is the function representing the composition of the portfolio which remains fixed and
X is a structural random vector used to model the market prices over the time interval; therefore
we do not need to specify the dynamics of the market prices and only rely on the fact that it is
possible to sample from the distribution of X. For instance, in a Black-Scholes framework, X is
a Gaussian vector and ϕ can be a portfolio of vanilla options. In more sophisticated models or
portfolio, X can be a vector of Brownian increments related to the Euler scheme of a diffusion.
The VaR at level α ∈ (0, 1) is the lowest α-quantile of the distribution ϕ(X) i.e.:

VaRα(ϕ(X)) := inf {ξ | P (ϕ(X) ≤ ξ) ≥ α} .
Since limξ→+∞ P (ϕ(X) ≤ ξ) = 1, we have {ξ | P (ϕ(X) ≤ ξ) ≥ α} 6= ∅. Moreover, we have
limξ→−∞ P (ϕ(X) ≤ ξ) = 0, which implies that {ξ | P (ϕ(X) ≤ ξ) ≥ α} is bounded from below
so that the VaR always exists. We assume that the distribution function of ϕ(X) is continuous
(i.e. without atoms) so that the VaR is the lowest solution of the equation:

P (ϕ(X) ≤ ξ) = α.

Three values of α are commonly considered: 0.95, 0.99, 0.995 so that it is usually close to 1 and
the tail of interest has probability 1 − α. If the distribution function is (strictly) increasing, the
solution of the above equation is unique, otherwise, there may be more than one solution. In fact,
in what follows, we will consider that any solution of the previous equation is the VaR. Another
risk measure generally used to provide information about the tail of the distribution of ϕ(X) is the
Conditional Value-at-Risk (CVaR) (at level α). As soon as ϕ(X) ∈ L1(P), it is defined by:

CVaRα(ϕ(X)) := E [ϕ(X)|ϕ(X) ≥ VaRα(ϕ(X))] .

The CVaR of ϕ(X) is simply the conditional expectation of ϕ(X) given that it lies inside the critical
risk area. To capture more information on the conditional distribution of ϕ(X), it seems natural
to consider more general risk measures like for example the conditional variance. In a more general
framework we can be interested in estimating the Ψ-Conditional Value at Risk (Ψ-CVaR) (at level
α) where Ψ : R → R is a continuous function. As soon as Ψ(ϕ(X)) ∈ L1(P), it is defined by:

Ψ-CVaRα(ϕ(X)) := E [Ψ(ϕ(X))|ϕ(X) ≥ VaRα(ϕ(X))] . (1)

When Ψ ≡ Id and ϕ(X) ∈ L1(P), (1) is the regular CVaR of ϕ(X). When Ψ ≡ x 7→ x2, equation (1)
is but the conditional quadratic norm of ϕ(X).
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2.1 Representation of VaR and Ψ-CVaR as expectations

The idea to devise a stochastic approximation procedure to compute VaR and CVaR, and more
generally the Ψ-CVaR, comes from the fact that these two quantities are solutions of a convex
optimization problem whose value function can be represented as an expectation as pointed out by
Rockafellar and Uryasev in [32].

Proposition 2.1. Let V and VΨ be the functions defined by:

V (ξ) = E [v(ξ,X)] and VΨ(ξ) = E [w(ξ,X)] (2)

where

v(ξ, x) := ξ +
1

1− α
(ϕ(X) − ξ)+ and w(ξ, x) := ξ +

1

1− α
(Ψ(ϕ(x)) − ξ)1{ϕ(x)≥ξ}. (3)

Suppose that the distribution function of ϕ(X) is continuous and that ϕ(X) ∈ L1(P). Then, the
function V is convex, differentiable and the VaRα(ϕ(X)) is any point of the set:

argminV =
{
ξ ∈ R | V ′(ξ) = 0

}
= {ξ | P(ϕ(X) ≤ ξ) = α},

where V ′ is the derivative of V defined for every ξ ∈ R by

V ′(ξ) = E

[
∂v

∂ξ
(ξ,X)

]
. (4)

Furthermore,

CVaRα(ϕ(X)) = min
ξ∈R

V (ξ)

and, if Ψ is continuous and that Ψ(ϕ(X)) ∈ L1(P), for every ξ∗α ∈ argminV (i.e., ξ∗α is a
VaRα(ϕ(X)))

Ψ-CVaRα(ϕ(X)) = VΨ(ξ
∗
α).

Proof. Since the functions ξ 7→ (ϕ(x) − ξ)+, x ∈ R
d, are convex, the function V is convex.

P(dw)-a.s., ∂v
∂ξ
(ξ,X(w)) exists at every ξ ∈ R and

P(dw)-a.s.,

∣∣∣∣
∂v

∂ξ
(ξ,X(w))

∣∣∣∣ ≤ 1 ∨ α

1− α
.

Thanks to Lebesgue Dominated Convergence Theorem, one can interchange differentiation and
expectation, so that V is differentiable with derivative V ′(ξ) = 1 − 1

1−αP(ϕ(X) > ξ) and reaches
its absolute minimum at any ξ∗α satisfying P(ϕ(X) > ξ∗α) = 1− α i.e. P(ϕ(X) ≤ ξ∗α) = α.
Moreover, it is clear that:

V (ξ∗α) = ξ∗α +
E[(ϕ(X) − ξ∗α)+]
P(ϕ(X) > ξ∗α)

=
ξ∗αE[1ϕ(X)>ξ∗α ] + E[(ϕ(X) − ξ∗α)+]

P(ϕ(X) > ξ∗α)
= E [ϕ(X)|ϕ(X) > ξ∗α]

and, in the same way, VΨ(ξ
∗
α) = Ψ-CVaRα(ϕ(X)). This completes the proof.
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Remark: Actually, one could consider a more general framework by including any risk measure
defined by an integral representation with respect to X:

E[Λ(ξ∗α,X)]

where Λ is a (computable) Borel function.

2.2 Stochastic gradient and its adaptive companion procedure: a first naive

approach

The above representation (4) naturally yields a stochastic gradient procedure derived from the
convex Lyapunov function V which will (hopefully) converge toward ξ∗α := VaRα(ϕ(X)). Then, a
recursive companion procedure based on (2) can be easily devised having C∗

α := Ψ-CVaRα(ϕ(X)) as
target. There is no reason to believe that this first version can do better than the empirical quantile
estimate. But, it is a necessary phase in order to understand how our recursive IS algorithm (to
be devised further on) can be combined with this first procedure.
First we set

H1(ξ, x) :=
∂v

∂ξ
(ξ, x) = 1− 1

1− α
1{ϕ(x)≥ξ}, (5)

so that,
V ′(ξ) = E [H1 (ξ,X)] .

Since we are looking for ξ for which E [H1(ξ,X)] = 0, we implement a stochastic gradient descent
derived from the Lyapunov function V to approximate ξ∗α := V aRα(ϕ(X)), i.e., we use the RM
algorithm:

ξn = ξn−1 − γnH1(ξn−1,Xn), n ≥ 1, ξ0 ∈ L1(P), (6)

where (Xn)n≥1 is an i.i.d. sequence of random variables with the same distribution as X, inde-
pendent of ξ0, with E[|ξ0|] < +∞ and (γn)n≥1 is a deterministic step sequence (decreasing to 0)
satisfying: ∑

n≥1

γn = +∞ and
∑

n≥1

γ2n < +∞. (A1)

In order to derive the a.s. convergence of (6) we introduce the following additional assumption on
the distributions of ϕ(X) and Ψ(ϕ(X)). Let a > 0,

ϕ(X) has a continuous distribution function and Ψ(ϕ(X)) ∈ L2a(P). (A2)a

Actually, Equation (6) can be seen either as a regular RM procedure with mean function V ′ since
it is increasing (see e.g. [10] p.50 and p.66) or as a recursive gradient descent procedure derived
from the Lyapunov function V . Both settings yield the a.s. convergence toward its target ξ∗α. To
establish the a.s. convergence of (ξn)n≥1 (and of our different RM algorithms), we will rely on the
following theorem. For a proof of this slight extension of Robbins-Monro Theorem and of the a.s.
convergence of (ξn)n≥1 (under assumptions (A1) and (A2)1), we refer to [13].

Theorem 2.2. (Robbins-Monro Theorem (variant)). Let H : Rq × R
d → R

d be a Borel function
and X be an R

d-valued random vector such that E[|H(z,X)|] <∞ for every z ∈ R
d. Then set

∀z ∈ R
d, h(z) = E[H(z,X)].

Suppose that the function h is continuous and that T ∗ := {h = 0} satisfies

∀z ∈ R
d \T ∗,∀z∗ ∈ T ∗, 〈z − z∗, h(z)〉 > 0. (7)
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Let (γn)n≥1 be a deterministic step sequence satisfying condition (A1). Suppose that

∀z ∈ R
d, E[|H(z,X)|2] ≤ C(1 + |z|2) (8)

(which implies that |h(z)| ≤ C ′(1 + |z|)).
Let (Xn)n≥1 be an i.i.d. sequence of random vectors having the distribution of X, let z0 be a random
vector independent of (Xn)n≥1 satisfying E[|z0|] < ∞, all defined on the same probability space
(Ω, A,P). Let Fn := σ(z0,X1, ...,Xn) and let (rn)n≥1 be an Fn-measurable remainder sequence
satisfying ∑

n

γn|rn|2 <∞. (9)

Then, the recursive procedure defined for n ≥ 1 by

Zn = Zn−1 − γnH(Zn−1,Xn) + γnrn,

satisfies:
∃ z∞, such that Zn

a.s.−→ z∞ and z∞ ∈ T ∗ a.s.

The convergence also holds in Lp(P), p ∈ (0, 2), where Lp(P) denotes the set of all random vectors

defined on (Ω, A,P) such that E[|X|p]
1
p <∞.

Remark: It is in fact a slight variant (see e.g. [13]) of the regular RM Theorem since Zn converges
to a random vector having its value in the set {h = 0} even if {h = 0} is not reduced to a singleton
or a finite set. The remainder sequence in the above theorem plays a crucial role when we will
(slightly) modify the first IS procedure to improve its efficiency.

The second step concerns procedure for the numerical computation of the Ψ-CVaRα. A naive
idea is to compute the function VΨ at the point ξ∗α:

Ψ-CVaRα = VΨ(ξ
∗
α) = E[w(ξ∗α,X)]

using a regular Monte Carlo simulation,

1

n

n−1∑

k=0

w(ξ∗α,Xk+1). (10)

However, we first need to get from (6) a good approximate of ξ∗α and subsequently to use another
sample of the distribution X. A natural idea is to devise an adaptive companion procedure of the
above quantile search algorithm by replacing ξ∗α in (10) by its approximation at step k, namely

Cn =
1

n

n−1∑

k=0

w(ξk,Xk+1), n ≥ 1, C0 = 0. (11)

Hence, (Cn)n≥0 is the sequence of empirical means of the non i.i.d. sequence (w(ξk,Xk+1))k≥1,
which can be written recursively:

Cn = Cn−1 −
1

n
H2 (ξn−1, Cn−1,Xn) , n ≥ 1, (12)

where H2 (ξ, c, x) := c− w(ξ, x).
At this stage, we are facing two procedures (ξn, Cn) with different steps. This may appear not

very consistent or at least natural. A second modification to the original Monte Carlo procedure (12)

7



consists in considering a general step βn satisfying condition (A1) instead of 1
n
(with in mind the

possibility to set βn = γn eventually). This leads to:

Cn = Cn−1 − βnH2 (ξn−1, Cn−1,Xn) , n ≥ 1. (13)

In order to prove the a.s. convergence of (Cn)n≥1 toward C∗
α, we set for convenience β0 :=

supn≥1 βn + 1. Then, one defines recursively a sequence (∆n)n≥1 by

∆n+1 = ∆n
βn+1

βn

β0
β0 − βn+1

, n ≥ 0, ∆0 = 1.

Elementary computations show by induction that

βn = β0
∆n

Sn
, n ≥ 0, with Sn =

n∑

k=0

∆k. (14)

Furthermore, it follows from (14) that for every n ≥ 1

log(Sn)− log(Sn−1) = − log

(
1− ∆n

Sn

)
≥ ∆n

Sn
=
βn
β0
.

Consequently,

log(Sn) ≥
1

β0

n∑

k=1

βk

which implies that limn Sn = +∞.
Now using (13) and (14), one gets for every n ≥ 1

SnCn = Sn−1Cn−1 +∆n (∆Nn+1 + VΨ(ξn))

where, ∆Nn := w(ξn−1,Xn) − VΨ(ξn−1), n ≥ 1, define a martingale increments sequence with
respect to the natural filtration of the algorithm Fn := σ(ξ0,X1, · · · ,Xn), n ≥ 0. Consequently,

Cn =
1

Sn

(
n−1∑

k=0

∆k+1∆Nk+1 +

n−1∑

k=0

∆k+1VΨ(ξk)

)
.

The second term in the right hand side of the above equality converges to VΨ(ξ
∗
α) = Ψ-CVaRα(ϕ(X))

owing to the continuity of VΨ at ξ∗α and Cesaro’s Lemma.
The convergence to 0 of the first term will follow from the a.s. convergence of the series

Nβ
n :=

n∑

k=1

βk∆Nk, n ≥ 1

by the Kronecker Lemma since βn = β0
∆n
Sn

. The sequence (Nβ
n )n≥1 is an Fn-martingale since the

∆Nk’s are martingale increments and

E
[
(∆Nn)

2|Fn−1

]
≤ 1

(1− α)2
E

[
(Ψ (ϕ (X))− ξ)2

]
|ξ=ξn−1

.

Assumption (A2)1 and the a.s. convergence of ξk toward ξ∗α imply that

sup
n≥1

E[(∆Nn)
2|Fn−1] <∞ a.s.

8



Consequently, assumption (A1) implies

〈Nβ〉∞ =
∑

n≥1

β2nE[(∆Nn)
2|Fn−1] <∞

which in term yields the a.s. convergence of (Nβ
n )n≥1, so that Cn

a.s.−→ Ψ-CV aRα (ϕ(X)) .
The resulting algorithm reads as for n ≥ 1:

{
ξn = ξn−1 − γnH1 (ξn−1,Xn) , ξ0 ∈ L1(P),

Cn = Cn−1 − βnH2 (ξn−1, Cn−1,Xn) , C0 = 0,
(15)

and converges under (A1) and (A2)1.
The question of the joint weak convergence rate of (ξn, Cn) is not trivial owing to the coupling

of the two procedures. The case of two different step scales refers to the general framework of two-
time-scale stochastic approximation algorithms. Several results have been established by Borkar
in [5], Konda and Tsitsiklis in [21] but the more relevant in our case are those of Mokkadem and
Pelletier in [30]. The weak convergence rate of (ξn)n≥1 is ruled by the CLT for “regular” (single-
time scale) stochastic approximation algorithms (we refer to Kushner and Clark in [23], Métivier
and Priouret in [4], Duflo in [10] among others). In order to achieve the best asymptotic rate
of convergence, one ought to set γn = γ0

n
where the choice of γ0 depends on the value of the

density fϕ(X) of ϕ(X) at ξ∗α, which is unknown. To circumvent the difficulties induced by the
specification of γ0, which are classical in this field, we are led to modify again our algorithm by
introducing the averaging principle independently introduced by Ruppert [35] and Polyak [19] and
then widely investigated by several authors. It works both with two-time or single-time scale steps
and leads to asymptotically efficient procedures, i.e., satisfying a CLT at the optimal rate

√
n and

minimal variance (see also [30]). See also a variant based on a gliding window developed in [26].
Our numerical examples indicate that the averaged one-time-scale procedure provides less variance
during the first iterations than the averaged procedure of the two-time-scale algorithm. Finally, we
set γn ≡ βn in (15) so that, the VaR-CVaR algorithm can be written in a more synthetic way by
setting Zn = (ξn, Cn) and for n ≥ 1:

Zn = Zn−1 − γnH(Zn−1,Xn), Z0 = (ξ0, C0) , ξ0 ∈ L1(P), (16)

where H(z, x) := (H1(ξ, x),H2(ξ, C, x)). Throughout the rest of this section, we assume that
the distribution ϕ(X) has a positive probability density fϕ(X) on its support. As a consequence
the V aRα(ϕ(X)) is unique so that the procedure algorithm Zn converges a.s. to its single target
(VaRα(ϕ(X)),Ψ-CVaRα(ϕ(X))). Thus, the Cesaro mean of the procedure

Z̄n :=
Z0 + · · ·+ Zn−1

n
, n ≥ 1,

where Zn is defined by (16), converges a.s. to the same target. The Ruppert and Polyak’s Averaging
Principle says that an appropriate choice of the step yields for free the smallest possible asymptotic
variance. We recall below this result (following a version established in [10], see [10] (p.169) for a
proof).

Theorem 2.3. (Ruppert and Polyak’s Averaging Principle) Suppose that the R
d-sequence (Zn)n≥0

is defined recursively by
Zn = Zn−1 − γn (h(Zn−1) + ǫn + rn)

where h is a Borel function. Let F := (Fn)n≥0 be the natural filtration of the algorithm, i.e. such
that the sequence (ǫn)n≥1 and (rn)n≥1 is F−adapted. Suppose that h is C1 in the neighborhood of a
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zero z∗ of h and that M = Dh(z∗) is a uniformly repulsive matrix (all its eigenvalues have positive
real parts) and that (ǫn)n≥1 satisfies

∃ C > 0, such that a.s.





(i) E[ǫn+1|Fn]1{||Zn−z∗||≤C} = 0,

(ii) ∃b > 2, supn E[||ǫn+1||b|Fn] 1{||Zn−z∗||≤C} < +∞,

(iii) E

[
(γn−1)

−1 |rn|2 1{||Zn−z∗||≤C}
]
→ 0,

(iv) ∃ Γ ∈ S+(d,R) such that E
[
ǫn+1ǫ

T
n+1|Fn

] a.s.−→ Γ.

(17)

Set γn = γ1
na

with 1
2 < a < 1, and

Z̄n+1 :=
Z0 + ...+ Zn

n+ 1
= Z̄n −

1

n+ 1
(Z̄n − Zn), n ≥ 0.

Then, on the set of convergence {Zn → z∗}:
√
n
(
Z̄n − z∗

) L→ N
(
0,M−1Γ(M−1)T

)
as n→ +∞,

where (M−1)T denotes the transpose of the matrix M−1.

To apply this theorem to our framework we are led to compute the Cesaro means of both compo-
nents, namely for n ≥ 1

{
ξn := 1

n

∑n
k=1 ξk = ξn−1 − 1

n
(ξn−1 − ξn),

Cn := 1
n

∑n
k=1Ck = Cn−1 − 1

n
(Cn−1 − Cn),

(18)

where (ξk, Ck), k ≥ 0 is defined by (16). In the following theorem, we provide the convergence rate
of the couple Z̄n :=

(
ξn, Cn

)
.

Theorem 2.4. (Convergence rate of the VaR-CVaR procedure). Suppose (A2)a holds for some
a > 1, the density function fϕ(X) of ϕ(X) is continuous, strictly positive at ξ∗α. If the step sequence

is γn = γ1
na

with 1
2 < a < 1 and γ1 > 0 then

√
n
(
Z̄n − z∗

) L−→ N (0,Σ) as n→ +∞

where the asymptotic covariance matrix Σ is given by




α(1−α)
f2
ϕ(X)

(ξ∗α)
α

(1−α)fϕ(X)(ξ∗α)
E
[
(Ψ(ϕ(X)) − ξ∗α)1{ϕ(X)≥ξ∗α}

]

α
(1−α)fϕ(X)(ξ∗α)

E
[
(Ψ(ϕ(X)) − ξ∗α)1{ϕ(X)≥ξ∗α}

]
1

(1−α)2Var
(
(Ψ(ϕ(X)) − ξ∗α) 1{ϕ(X)≥ξ∗α}

)


 .

(19)

Proof. First, the procedure (16) can be written as for n ≥ 1

Zn = Zn−1 − γn (h(Zn−1) + ǫn) , Z0 = (ξ0, C0) , ξ0 ∈ L1(P), (20)

where h(z) := E[H(z,X)] =
(
1− 1

1−αP (ϕ(X) ≥ ξ) , C − E[w(ξ,X)]
)

and ǫn := (∆Mn,∆Nn),

n ≥ 1, denotes the Fn-adapted martingale increment sequence with

∆Mn :=
1

1− α

(
P (ϕ(X) ≥ ξ)|ξ=ξn−1

− 1{ϕ(Xn)≥ξn−1}
)
.
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Owing to Assumption (A2)a and Lebesgue’s differentiation Theorem, one can interchange expec-
tation and derivation, so that the function h is differentiable at z∗ = (ξ∗α, C

∗
α) and

h′(z∗) =M :=




1
1−αfϕ(X)(ξ

∗
α) 0

E

[(
∂
∂ξ
w(ξ,X)

)
|ξ=ξ∗α

]
1


 . (21)

Now, E

[(
∂
∂ξ
w(ξ,X)

)
|ξ=ξ∗α

]
=
(
1− 1

1−αP(ϕ(X) ≥ ξ∗α)
)
= 0, so that, M =

(
1

1−αfϕ(X)(ξ
∗
α) 0

0 1

)
is

diagonal. Since fϕ(X) is continuous at ξ
∗
α, h is C1 in the neighborhood of z∗.

To apply Theorem 2.3, we need to check assumptions (i)-(iv) of (17).
Let A > 0. First note that

E
[
∆M2a

n+1|Fn
]
1{|Zn−z∗|≤A} ≤

(
1

1− α

)2a

22a < +∞.

Thanks to Assumption (A2)a, there exists Cα,Ψ > 0 such that

E
[
∆N2a

n+1|Fn
]
1{||Zn−z∗||≤A} ≤ Cα,Ψ

(
1 + ξ2an

)
1{||Zn−z∗||≤A} < +∞.

Consequently, (ii) of (17) holds true with b = 2a > 2 since

sup
n≥0

E
[
|ǫn+1|2a|Fn

]
1{|Zn−z∗|≤A} < +∞.

It remains to check (iv) for some positive definite symmetric matrix Γ. The dominated convergence
theorem implies that

E

[(
ǫn+1ǫ

T
n+1

)
1,1

|Fn
]

=

(
1

1− α

)2 (
E
[
1{ϕ(X)≥ξ}

]
|ξ=ξn − E

[
1{ϕ(X)≥ξ}

]2
|ξ=ξn

)

a.s.−→ α

1− α
,

E

[(
ǫn+1ǫ

T
n+1

)
1,2

|Fn
]

= E

[(
ǫn+1ǫ

T
n+1

)
2,1

|Fn
]

=

(
1

1− α

)2

E
[
(Ψ(ϕ(X)) − ξ) 1{ϕ(X)≥ξ}

]
|ξ=ξn

×
(
1− E

[
1{ϕ(X)≥ξ}

]
|ξ=ξn

)

a.s.−→ α

(1− α)2
E
[
(Ψ(ϕ(X)) − ξ∗α) 1{ϕ(X)≥ξ∗α}

]
,
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E

[(
ǫn+1ǫ

T
n+1

)
2,2

|Fn
]

= E

[
(∆Nn+1)

2 |Fn
]

=
1

(1− α)2

(
E
[
(Ψ(ϕ(Xn+1))− ξ) 1{ϕ(Xn+1)≥ξ}|Fn

]
|ξ=ξn

−E
[
(Ψ(ϕ(X)) − ξ) 1{ϕ(X)≥ξ}

]2
|ξ=ξn

)

a.s.−→ 1

(1− α)2

(
E

[
(Ψ(ϕ(X)) − ξ∗α)

2
1{ϕ(X)≥ξ∗α}

]

−E
[
(Ψ(ϕ(X)) − ξ∗α) 1{ϕ(X)≥ξ∗α}

]2)

=
1

(1− α)2
Var

(
(Ψ(ϕ(X)) − ξ∗α) 1{ϕ(X)≥ξ∗α}

)
.

Using the continuity of both functions ξ 7→ E
[
(Ψ(ϕ(X)) − ξ) 1{ϕ(X)≥ξ}

]
and

ξ 7→ E

[
(Ψ(ϕ(X)) − ξ)2 1{ϕ(X)≥ξ}

]
at ξ∗α, which follows from the continuity of Ψ and of the distri-

bution function of ϕ(X), finally yields the a.s. convergence of E
[
ǫn+1ǫ

T
n+1|Fn

]
toward

Γ =

(
α

1−α
α

(1−α)2E
[
(Ψ(ϕ(X)) − ξ∗α) 1{ϕ(X)≥ξ∗α}

]

α

(1−α)2E
[
(Ψ(ϕ(X)) − ξ∗α) 1{ϕ(X)≥ξ∗α}

]
1

(1−α)2Var
(
(Ψ(ϕ(X)) − ξ∗α) 1{ϕ(X)≥ξ∗α}

)
)
.

If γn = γ1
na

with γ1 > 0 and 1
2 < a < 1, Ruppert-Polyak’s Theorem implies that

√
n
(
Z̄n − z∗

) L−→ N (0,Σ)

where Σ =M−1Γ
(
M−1

)T
is given by (19). This completes the proof.

Remarks: • It is possible to replace w(ξ, x) in (13) and (15) by w̃(ξ, x) = 1
1−αΨ(ϕ(x))1{ϕ(x)≥ξ}

since C∗
α = E [w̃ (ξ∗α,X)]. Thus, we only have to change also the martingale increment sequence

(∆Nn)n≥1 by
(
∆Ñn

)
n≥1

defined by

∆Ñn :=
1

1− α

(
E
[
Ψ(ϕ(X))1{ϕ(X)≥ξ}

]
|ξ=ξn−1

−Ψ(ϕ(Xn))1{ϕ(Xn)≥ξn−1}
)
.

This provides another procedure C̃n for the computation of the Ψ-CVaRα which satisfies a Gaussian
CLT with the same asymptotic covariance matrix.
• The quantile estimate based on the inversion of the empirical distribution function satisfies a
Gaussian CLT with the same asymptotic covariance matrix than the one of the procedure ξn, see for
example [36] p.75. Obviously, there is no reason to believe that this first version can do better than
the empirical quantile estimate. However, our quantile estimate has the advantage to be recursive:
it naturally combines with a recursive IS algorithm in an adaptive way. In terms of computational
complexity, once N loss samples have been generated, the behaviour of the inversion of the empirical
distribution function method needs a sorting algorithm: good behaviour is O (N log(N)) element
comparisons to sort the list of loss samples. Whereas the behaviour of the recursive quantile
algorithm is O (N).
• One shows that if we choose βn = 1

n
, n ≥ 1 and γn = 1

na
with 1

2 < a < 1 in (15), the resulting
two-time scale procedure satisfies a Gaussian CLT with the same asymptotic covariance matrix Γ
(at rates

√
γ−1
n and

√
n). However, by averaging the first component ξn, the resulting procedure

becomes asymptotically efficient (i.e. rate
√
n).
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Proposition 2.5. (Estimation of variance and confidence interval) For every n ≥ 1, set

σ2n :=
1

(1− α)2

(
1

n

n∑

k=1

(Ψ(ϕ(Xk))− ξk−1)
2
1{ϕ(Xk)≥ξk−1}

−
(
1

n

n∑

k=1

(Ψ(ϕ(Xk))− ξk−1) 1{ϕ(Xk)≥ξk−1}

)2



where (ξn)n≥0 is the first component of (6). If (A2)a is satisfied for some a ≥ 2, then

σ2n
a.s.−→ 1

(1− α)2
Var

(
(Ψ(ϕ(X)) − ξ∗α) 1ϕ(X)≥ξ∗α

)

and

√
n
Cn − C∗

α

σn

L−→ N (0, 1). (22)

Proof. The proof follows from standard arguments already used in the proof of the a.s. convergence
of the sequence (Cn)n≥1 defined by (13).

In practice, the convergence of the algorithm will be chaotic. The bottleneck of this algorithm
is that it is only updated on rare events since it tries to measure the tail distribution of ϕ(X) :
P(ϕ(X) > VaRα) = 1 − α ≈ 0. Another problem may be the simulation of ϕ(X). In practice, we
have to deal with large portfolios of complex derivative securities and options. Each evaluation may
require a lot of computational efforts and takes a long time. So, for practical implementation it is
necessary to combine the above procedure with variance reduction techniques to achieve accurate
results at a reasonable cost. The most appropriate technique when dealing with rare events is IS.

2.3 Some background on IS using stochastic approximation algorithm

The second tool we want to introduce in this paper is a recursive IS procedure which increases
the probability of simulations for which ϕ(X) exceeds ξ. Our goal is to combine it adaptively
with our first naive algorithm. Assume that X has an absolutely continuous distribution PX(dx) =
p(x)λd(dx) where λd denotes the Lebesgue measure on (Rd,Bor(Rd )). The main idea of importance
sampling by translation applied to the computation of

E[F (X)],

where F ∈ L2(PX) satisfies P(F (X) 6= 0) > 0, is to use the invariance of the Lebesgue measure by
translation, for every θ ∈ R

d,

E[F (X)] = E

[
F (X + θ)

p(X + θ)

p(X)

]
, (23)

and among all these random vectors with the same expectation, we want to select the one with the
lowest variance, i.e. the one with lowest quadratic norm

Q(θ) := E

[
F 2(X + θ)

p2(X + θ)

p2(X)

]
≤ +∞, θ ∈ R

d. (24)

If the following assumption
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∀θ ∈ R
d, E

[
F 2(X)

p(X)

p(X − θ)

]
< +∞ (B1)

holds true, then Q is everywhere finite and a reverse change of variable shows that:

Q(θ) = E

[
F 2(X)

p(X)

p(X − θ)

]
, θ ∈ R

d. (25)

Now if p satisfies





(i) ∀x ∈ R
d, θ 7→ p(x− θ) is log-concave

(ii) ∀x ∈ R
d, lim|θ|→+∞ p(x− θ) = 0 or ∀x ∈ R

d, lim|θ|→+∞
p(x−θ)
p2(x− θ

2
)
= 0,

(B2)

one shows that Q is (strictly) finite, convex, goes to infinity at infinity so that argminQ =
{∇Q = 0} is non empty (see [1] and [27]). Provided that ∇Q admits a representation as an
expectation, then it is possible to devise a recursive RM procedure to approximate the optimal
parameter θ∗. Recursive IS by stochastic approximation has been first investigated by Kushner
and then by several authors, see e.g. [11] and [14] in order to “optimize” or “improve” the change
of measure in IS using a stochastic gradient RM algorithm based on the representation of ∇Q(θ).
Recently, it has been brought back to light by Arouna (see [1]) in the Gaussian case, based on the
natural representation of ∇Q obtained by formally differentiating (25). Since we have no knowledge
about the regularity of F and do not wish to have any, we differentiate the second representation
of Q in (25) and not (24). We obtain ∇Q(θ) = E [K(θ,X)].

When X = N (0, 1), Q(θ) = e
|θ|2
2 E[F 2(X)e−θX ] so that K(θ, x) = e

|θ|2
2 F 2(x)e−θx(θ − x). How-

ever, given this resulting form of K, the classical convergence results do not apply since ||K(θ,X)||2
is not sub-linear in θ (see condition (8) of Theorem 2.2). This induces the explosion of the pro-
cedure at almost every implementation as pointed out in [1]. This leads the author to introduce
a “constrained” variant of the regular procedure based on repeated reinitializations known as the
projection “à la Chen”. It forces the stability of the algorithm and prevents explosion. Let us also
mention a first alternative approach investigated in [1] and [3], where Arouna and Bardou change
the function to be minimized by introducing an entropy based criterion. Although it is only an
approximation, it turns out to be often close to the original method.

Recently, Lemaire and Pagès in [27] revisited the original approach and provided a new repre-
sentation of ∇Q(θ) for which the resulting K(θ,X) has a linear growth in θ so that all assumptions
of Theorem 2.2 are satisfied. Thanks to a third translation of the variable θ, it is possible to plug
back the parameter θ “into” F , the function F having in common applications a known behaviour
at infinity which makes possible to devise a “regular” and “unconstrained” stochastic algorithm.
We will rely partially on this approach to devise our final procedure to compute both VaR and
CVaR. To be more specific about the methodology proposed in [27], we introduce the following
assumption on the probability density p of X

∃b ∈ [1, 2] such that





(i) |∇p(x)|
p(x) = O(|x|b−1) as |x| → ∞

(ii) ∃ρ > 0, log (p(x)) + ρ|x|b is convex,

(B3)

and introduce the assumption on F :

∀A > 0,E
[
F (X)2eA|X|b−1

]
< +∞. (B4)
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One shows that as soon as (B1), (B2), (B3) and (B4) are satisfied, Q1 and Q2 are both finite and
differentiable on R

d with a gradient given by

∇Q(θ) := E


F (X − θ)2

p2(X − θ)

p(X)p(X − 2θ)

∇p(X − 2θ)

p(X − 2θ)︸ ︷︷ ︸
W (θ,X)


 . (26)

This expression may look complicated at first glance but in fact the weight term W (θ,X) can be
easily controlled by a deterministic function of θ since

|W (θ,X)| ≤ e2ρ|θ|
b

(A|x|b−1 +A|θ|b−1 +B) (27)

for some real constants A and B. In the case of a normal distribution X
d
= N (0; 1),

W (θ,X) = eθ
2
(2θ −X).

So, if we have a control on the growth of the function F , typically for some positive constant c





∀x ∈ R
d, |F (x)| ≤ G(x) and G(x+ y) ≤ C(1 +G(x))c(1 +G(y))c

E
[
|X|2(b−1)G(X)4c

]
< +∞,

(B5)

then by setting

W̃ (θ,X) :=
e−2ρ|θ|b

1 +G(−θ)2cW (θ,X), (28)

we can define K by
K(θ, x) := F (x− θ)2W̃ (θ,X) (29)

so that it satisfies the linear growth assumption (8) of Theorem 2.2 and

{
θ ∈ R

d | E [K(θ,X)] = 0
}
=
{
θ ∈ R

d | ∇Q(θ) = 0
}
.

Moreover, since Q is convex ∇Q satisfies (7). Now we are in position to derive a recursive uncon-
strained RM algorithm

θn = θn−1 − γnK(θn−1,Xn), θ0 ∈ R
d, (30)

that a.s. converges to an argminQ-valued (square integrable) random variable θ∗.

3 Design of a faster procedure: importance sampling and moving

confidence level

3.1 Unconstrained adaptive importance sampling device

We noted previously that the bottleneck in using the above algorithm lies in its very slow and
chaotic convergence owing to the fact that P(ϕ(X) > ξ∗α) = 1 − α is close to 0. This means that
we observe fewer and fewer simulations for which ϕ(Xk) > ξk−1 as the algorithm evolves. Thus, it
becomes more and more difficult to compute efficiently some estimates of VaRα and CVaRα when
α ≈ 1. Moreover, in the bank and energy sectors, practitioners usually deal with huge portfolio
made of hundreds or thousands of risk factors and options. The evaluation step of ϕ(X) may be
extremely time consuming. Consequently, to achieve accurate estimates of both VaRα and CVaRα
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with reasonable computational effort, the above algorithm (16) drastically needs to be speeded up
by an IS procedure to “recenter” the simulations where “things do happen”, i.e. which generates
scenarios for which ϕ(X) exceeds ξ.

In this section we will focus on IS by mean translation. Our aim is to combine adaptively the IS
(unconstrained) recursive procedure investigated in [27] with our first “naive” approach described
in (16). Doing so every new sample is used to both optimize the IS change of measure and update
VaR and CVaR procedures. We plan to minimize the asymptotic variance of both components of
the algorithm (in its “averaged” form, as detailed in Theorem 2.4), namely

α(1 − α)

fϕ(X)(ξ∗α)
=

Var(1ϕ(X)≥ξ∗α)

fϕ(X)(ξ∗α)
for the VaRα, (31)

and,
Var((Ψ(ϕ(X)) − ξ∗α)1ϕ(X)≥ξ∗α)

(1− α)2
for the CVaRα, (32)

provided the non-degeneracy assumption

∀ξ ∈ argminV, P
(
(Ψ(ϕ(X)) − ξ)2 1{ϕ(X)≥ξ} > 0

)
> 0, (A3)

holds. Since the density fϕ(X)(ξ
∗
α) is an intrinsic constant (and comes in fact from the Jacobian

matrix Dh(ξ∗α, C
∗
α) of the mean function h of the algorithm) we are led to apply the IS paradigm

described in Section 2.3 to

F ∗
1 (X) = 1ϕ(X)≥ξ∗α and F ∗

2 (X) = (Ψ(ϕ(X)) − ξ∗α) 1{ϕ(X)≥ξ∗α}.

Let us temporary forget that of course we do not know ξ∗α at this stage. Those two functionals are
related to the minimization of the two convex functions

Q1(θ, ξ
∗
α) := E

[
1{ϕ(X)≥ξ∗α}

p(X)

p(X − θ)

]
(33)

Q2(µ, ξ
∗
α) := E

[
(Ψ(ϕ(X)) − ξ∗α)

2
1{ϕ(X)≥ξ∗α}

p(X)

p(X − µ)

]
. (34)

We can apply to these functions the minimizing procedure (30) described at section 2.3. Since

H1 (ξ
∗
α, x) = 1− 1

1− α
F ∗
1 (x) and H2 (ξ

∗
α, C

∗
α, x) = C∗

α − ξ∗α − 1

1− α
F ∗
2 (x) (35)

it is clear, owing to (23) that

E [Hi(ξ
∗
α,X)] = E

[
Hi (ξ

∗
α,X + θ)

p(X + θ)

p(X)

]
i = 1, 2.

Now, since we do not know either ξ∗α and C∗
α (the VaRα and the CVaRα) respectively we make

the whole procedure adaptive by replacing at step n, these unknown parameters by their running
approximation at step n− 1. This finally justifies to introduce the following global procedure. One
defines the state variable, for n ≥ 0,

Zn := (ξn, Cn, θn, µn) ,

where ξn, Cn denotes the VaRα and the CVaRα approximate, θn, µn denotes the variance reducers
for the VaR and the CVaR procedures. We update this state variable recursively by

Zn = Zn−1 − γnL (Zn−1,Xn) , (36)
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where (Xn)n≥1 is an i.i.d. sequence with distributions X (and probability density p) and

L1(ξ, θ, x) := e−ρ|θ|
b

(
1− 1

1− α
1{ϕ(x+θ)≥ξ}

p(x+ θ)

p(x)

)
,

L2(ξ, C, µ, x) := C − ξ − 1

1− α
(Ψ(ϕ(x+ µ))− ξ) 1{ϕ(x+µ)≥ξ}

p(x+ µ)

p(x)
,

L3 (ξ, θ, x) := e−2ρ|θ|b1{ϕ(x−θ)≥ξ}
p2(x− θ)

p(x)p(x− 2θ)

∇p(x− 2θ)

p(x− 2θ)
, (37)

L4 (ξ, µ, x) :=
e−2ρ|µ|b

1 +G(−µ)2c + ξ2
(Ψ(ϕ(x− µ))− ξ)2

×1{ϕ(x−µ)≥ξ}
p2(x− µ)

p(x)p(x− 2µ)

∇p(x− 2µ)

p(x− 2µ)
. (38)

The following proposition establishes the a.s. convergence of the procedure. For the sake of sim-
plicity we will assume the uniqueness of the VaRα of ϕ(X).

Proposition 3.1. (Efficient computation of VaR and CVaR). Suppose that Ψ(ϕ(X)) ∈ L2 (P), that
the distribution function of ϕ(X) is continuous and increasing (so that VaRα(ϕ(X)) is unique) and
that (A3) holds. Assume that, for every ξ ∈ R, Qi(., ξ) (i=1,2) satisfies (B1), i.e.

∀θ ∈ R
d, E

[(
1 + (Ψ(ϕ(X)) − ξ)2

)
1{ϕ(X)≥ξ}

p(X)

p(X − θ)

]
< +∞. (39)

Suppose that p satisfies (B2) and (B3) and that

∀A > 0,E
[(
Ψ(ϕ(X))2 + 1

)
eA|X|b−1

]
< +∞.

Assume that the step sequence (γn)n≥1 satisfies (A1). Then,

Zn
a.s.−→ z∗ := (ξ∗α, C

∗
α, θ

∗
α, µ

∗
α)

where ξ∗α = VaRα(ϕ(X)), C∗
α = Ψ-CVaRα(ϕ(X)) and (θ∗α, µ

∗
α) are the optimal variance reduc-

ers (to be precise some random vectors taking values in {∇Q1(ξ
∗
α, .) = 0} and {∇Q2(ξ

∗
α, .) = 0}

respectively).

Proof. We first prove the a.s. convergence of the 3-tuple (ξn, θn, µn) that of (Cn)n≥1 will follow
by the same arguments used in the proof in Section 2.2. The mean function l is defined by

l(ξ, θ, µ) :=

(
e−ρ|θ|

b

(
1− 1

1− α
P (ϕ(X) ≥ ξ)

)
, e−2ρ|θ|b∇Q1 (θ, ξ) ,

e−2ρ|µ|b

1 +G(−µ)c +Ψ(ξ)2
∇Q2(µ, ξ)

)
,

hence,
T ∗ = {l = 0} = {ξ∗α} × {∇Q1(ξ

∗
α, .) = 0} × {∇Q2(ξ

∗
α, .) = 0} .

In order to apply the extended Robbins-Monro Theorem, we have to check the following facts:

• Mean reversion: One checks that ∀ζ = (ξ, θ, µ) ∈ R× R
d × R

d \T ∗, ∀ζ∗ ∈ T ∗,

〈ζ − ζ∗, l(ζ)〉 = e−ρ|θ|
b

(ξ − ξ∗α)
(P(ϕ(X) ≤ ξ)− α)

1− α
+
e−2ρ|θ|b

1− α
〈θ − θ∗α,∇Q1(θ, ξ)〉

+
e−2ρ|µ|b

(1− α)(1 + F (−µ)2c) 〈µ− µ∗α,∇Q2(µ, ξ)〉 > 0,
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owing to the convexity of θ 7→ Q1(θ, ξ) and µ 7→ Q2(µ, ξ), for every ξ ∈ R.

• Linear growth: Let us first deal with L1. First note that:

E

[
L1 (ξ, θ,X)2

]
≤ C

(
1 + E

[
e−2ρ|θ|b1{ϕ(X+θ)≥ξ}

p2(X + θ)

p2(X)

])
≤ C

(
1 + E

[
e−2ρ|θ|b p(X)

p(X − θ)

])
.

Now, elementary computations show (see [27] for more details) that (B3)(ii) implies that

p2(x)

p(x− θ)
≤ e2ρ|θ|

b

p(x+ θ),

so that

E

[
e−2ρ|θ|b p(X)

p(X − θ)

]
≤ E

[
p(X + θ)

p(X)

]
= 1.

L3 and L4 can be treated by a straightforward adaptation of the proofs in [27]. Then, one can
apply Theorem 2.2 which yields the announced result for (ξn, θn, µn). The a.s. convergence of Cn
toward C∗

α can be deduced from the a.s. convergence of the series

Mγ
n :=

n∑

k=1

γk∆M̃k, n ≥ 1,

where ∆M̃n are martingale increments defined by

∆M̃n = E[(Ψ(ϕ(X)) − ξ) 1{ϕ(X)≥ξ}]|ξ=ξn−1

−(Ψ(ϕ(Xn + µn−1))− ξn−1) 1{ϕ(Xn+µn−1)≥ξn−1}
p(Xn + µn−1)

p(Xn)
, n ≥ 1,

satisfying

E

[
∆M̃2

n|Fn−1

]
≤ E

[
(Ψ(ϕ(X + µ))− ξ) 1{ϕ(X+µ)≥ξ}

p(X + µ)

p(X)

]

|ξ=ξn−1,θ=θn−1,µ=µn−1

.

We conclude by the same arguments used in the proof in Section 2.2.

Now, we are interested by the rate of convergence of the procedure. It shows that the algorithm
behaves as expected under quite standard assumptions: it satisfies a Gaussian CLT with optimal
rate and minimal variances.

Theorem 3.2. Suppose the assumptions of Proposition 3.1 hold true. Assume that Ψ(ϕ(X)) ∈
L2a(P) for some a > 1 and that the step sequence is γn = γ1

np
with 1

2 < p < 1 and γ1 > 0. Suppose
that the density fϕ(X) is continuous and strictly positive on its support. Let (ξn, Cn)n≥1 be the
sequence of Cesaro means defined by:

ξn :=
ξ0 + ...+ ξn−1

n
, Cn :=

C0 + ...+ Cn−1

n
, n ≥ 1.

This sequence satisfies the following CLT:

√
n

(
ξn − ξ∗α
Cn − C∗

α

)
L→ N (0,Σ∗) as n→ +∞, (40)
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where

Σ∗
1,1 =

1

f2
ϕ(X)(ξ

∗
α)

Var

(
1{ϕ(X+θ∗α)≥ξ∗α}

p(X + θ∗α)
p(X)

)
,

Σ∗
1,2 = Σ∗

2,1 =
1

(1− α)fϕ(X)(ξ∗α)
Cov

(
(Ψ(ϕ(X + µ∗α))− ξ∗α) 1{ϕ(X+µ∗α)>ξ∗α}

p(X + µ∗α)
p(X)

,

1{ϕ(X+θ∗α)≥ξ∗α}
p(X + θ∗α)
p(X)

)
,

Σ∗
2,2 =

1

(1− α)2
Var

(
(Ψ(ϕ(X + µ∗α))− ξ∗α) 1{ϕ(X+µ∗α)≥ξ∗α}

p(X + µ∗α)
p(X)

)
.

Proof. The proof is built like the one of Theorem 2.4. If we denote h the mean function of the
global algorithm h(z) = E[L(z,X)], the algorithm (36) can be written as

Zn = Zn−1 − γn (h(Zn−1) + ǫ̃n) , n ≥ 1, Z0 = (ξ0, 0) , ξ0 ∈ L1(P), (41)

where the first two components of h are the same function as the ones in the proof of Theorem 2.4
and (ǫ̃n)n≥1 denotes the Fn-adapted martingale increments sequence where

ǫ̃1,n :=
1

1− α

(
P (ϕ(X) ≥ ξ)|ξ=ξn − 1{ϕ(Xn+1+θn)≥ξn}

p(Xn+1 + θn)

p(Xn+1)

)
,

ǫ̃2,n :=
1

1− α

(
E[(Ψ(ϕ(X)) − ξ) 1{ϕ(X)≥ξ}]|ξ=ξn

−(Ψ(ϕ(Xn+1 + µn))− ξn) 1{ϕ(Xn+1+µn)≥ξn}
p(Xn+1 + µn)

p(Xn+1)

)
.

One can check easily that the sequence (ǫ̃n)n≥1 satisfies (i)− (iv) of (17).

Remarks: • There exists a CLT for the whole sequence (Zn)n≥1 and for its empirical mean
(Zn)n≥1 according to Ruppert and Polyak averaging principle. We only stated the result for the
two components of interest (the ones which converge to VaR and CVaR respectively) since we only
need rough estimates for the other two (see below).

• In the first Central Limit Theorem (Theorem 2.4) for quantile estimation, the factor α(1− α) is
the variance of the indicator function of the event {ϕ(X) ≥ ξ∗α}. With our recursive IS procedure,
it is replaced by the variance of the shifted indicator function modified by the measure change:

Var
(
1{ϕ(X+θ∗α)>ξ∗α}

p(X+θ∗α)
p(X)

)
. For further details on the rate of convergence of the unconstrained

recursive importance sampling procedure, we refer to [27].

Now, let us point out an important issue. The algorithm (36) raises an important problem
numerically speaking. Actually, we have two algorithm ξn and (θn, µn) that are in competitive
conditions, i.e. on one hand, we added an IS procedure to (ξn)n≥1 to improve the convergence
toward ξ∗α, and on the other hand, the adjustment of the parameters (θn, µn) “need” some samples
Xn+1 satisfying ϕ(Xn+1 − θn) > ξn and ϕ(Xn+1 − µn) > ξn (Ψ ≡ Id) which tend to become rare
events. Somehow, we postponed the problems resulting from rare events on the IS procedure itself
which may “freeze”. This in term suggests to break the link between the VaR-CVaR and the IS
procedures by introducing a VaR companion procedure that will drive the IS parameters to the
tail distribution. A solution to do this is to make the confidence level increase slowly from a lower
value (say α0 = 50%) up to the target level α. This kind of incremental threshold increase has
been already proposed in [22] in a different framework. This idea is developed in the next section.
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3.2 How to control the move towards the critical risk area: the final procedure

From a theoretical point of view, so far, we considered the purely adaptive approach where we
approximate (ξ∗α, C

∗
α, θ

∗
α, µ

∗
α) using the same innovation sequences. From a numerical point of view,

we only need a rough estimate of the optimal IS parameters (θ∗α, µ
∗
α). So that we are led to break

the algorithm into two phases. Firstly, we compute a rough estimate of the optimal IS parameters
(θM , µM ) with a small number of iterations M and in a second time, estimate the VaRα and the
CVaRα with those optimized parameters with N iterations (M ≪ N in practice).

Now, in order to circumvent the problem induced by the IS procedure, we propose to introduce
companion VaR procedure (without IS, i.e., based on H1 from Section 2.2) that will lead the
IS parameters into the critical risk area during a first phase of the simulation, say the first M
iterations. An idea to control the growth of θn and µn at the beginning of the algorithm, since we
have no idea on how to twist the distribution of ϕ(X), is to move slowly toward the target critical
risk area (at level α) in which ϕ(X) exceeds ξ by introducing a non-decreasing sequence αn slowly
converging to α during the first phase. Since the algorithm for the CVaR component Cn is free of
α, by doing so, we only modify the VaR procedure ξn. The function H1 in (16) is replaced by its
counterpart which depends on the moving confidence level αn, namely

ξ̂n = ξ̂n−1 − γnĤ1

(
ξ̂n−1,Xn, αn

)
, n ≥ 1, ξ̂0 = ξ0 ∈ L1(P). (42)

where,

∀ ξ ∈ R, ∀x ∈ R
d,∀ α̂ ∈]0, 1[, Ĥ1 (ξ, x, α̂) = 1− 1

1− α̂
1{ϕ(x)≥ξ}.

The sequence
(
ξ̂n

)
n≥0

is only designed to drive “smoothly” the IS procedures toward the “critical

area” at the beginning of the procedure, say during the first M iterations and in no case to
approximate ξ∗α or C∗

α. To be more precise, we define recursively the variance reducer sequence
(θ̂n)n≥1, (µ̂n)n≥1 by plugging at each step n, ξ̂n−1 into L3(., θ̂n−1,Xn) and L4(., µ̂n−1,Xn) as defined
in Section 3.1. This reads as follows, for n ≥ 1,





ξ̂n = ξ̂n−1 − γnĤ1

(
ξ̂n−1,Xn, αn

)
, ξ̂0 ∈ L1(P),

θ̂n = θ̂n−1 − γnL3

(
ξ̂n−1, θ̂n−1,Xn

)
, θ0 ∈ R

d,

µ̂n = µ̂n−1 − γnL4

(
ξ̂n−1, µ̂n−1,Xn

)
, µ0 ∈ R

d.

(43)

Although, we are not really interested in the asymptotic of this procedure (ξ̂n), its theoretical
convergence follows from Theorem 2.2: as a matter of fact if we define a remainder term rn by:

rn := Ĥ1

(
ξ̂n−1,Xn, αn

)
−H1

(
ξ̂n−1,Xn

)
, n ≥ 1,

the procedure defined by (43) now reads

ξ̂n = ξ̂n−1 − γn(H1(ξ̂n−1,Xn) + rn), n ≥ 1, ξ̂0 ∈ L1(P). (44)

One checks that

|rn| ≤
|αn − α|
(1− α)2

,

so that Assumption (9) of Theorem 2.2 is satisfied as soon as

∑

n≥1

γn(α− αn)
2 < +∞.
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3.3 A final procedure for practical implementation

In practice, we divided our procedure into two phases:
� Phase I is devoted to the estimation of the variance reducers (θ∗α, µ

∗
α) using (43). The moving

confidence level α has been settled as follows (M ≈ 15000) :

αn = 50% for 1 ≤ n ≤M1 :=M/3, αn = 80% for M1 < n ≤ 2M1, αn = α for 2M1 < n ≤M.

� Phase II produces some estimates for (ξ∗α, C
∗
α) based on the procedure defined by (36) and its

Cesaro mean with N iterations. Note that during this phase, we keep on updating the IS parameters
adaptively.

Now, we can summarize the two phase of the final procedure by the following pseudo-code:

Phase I: Estimation of (µ∗α, θ
∗
α). M ≪ N (typically M ≈ N/100).

for n = 1 to M do

ξ̂n = ξ̂n−1 − γnĤ1

(
ξ̂n−1,Xn, αn

)
,

θ̂n = θ̂n−1 − γnL3

(
ξ̂n−1, θ̂n−1,Xn

)
,

µ̂n = µ̂n−1 − γnL4

(
ξ̂n−1, µ̂n−1,Xn

)
.

end for

Phase II: Estimation of (ξ∗α, C
∗
α). Set, for instance, ξ0 = ξ̂M , C0 = 0, θ0 = θ̂M , and µ0 = µ̂M .

for n = 1 to N do

ξn = ξn−1 − γnL1 (ξn−1, θn−1,Xn) ,
Cn = Cn−1 − γnL2 (ξn−1, Cn−1, µn−1,Xn) ,
θn = θn−1 − γnL3 (ξn−1, θn−1,Xn) ,
µn = µn−1 − γnL4 (ξn−1, µn−1,Xn) ,

Compute the Cesaro means

ξ̄n = ξ̄n−1 − 1
n

(
ξ̄n−1 − ξn

)
,

C̄n = C̄n−1 − 1
n

(
C̄n−1 − Cn

)
.

end for

(ξ∗α, C
∗
α) is estimated by (ξ̄N , C̄N ).

An alternative, especially as concerns practical implementation, is to replace to Phase II by

Phase II’ in which the variance reducers coming from Phase I are frozen at θ̂M , µ̂M .
The only updated sequence is (ξn, Cn), as follows

ξn = ξn−1 − γnL1

(
ξn−1, θ̂M ,Xn

)
,

Cn = Cn−1 − γnL2 (ξn−1, Cn−1, µ̂M ,Xn) .

4 Towards some extensions

4.1 Extension to exponential change of measure: the Esscher transform

Considering an exponential change of measure (also called Esscher transform) instead of the mean
translation is a rather natural idea that has already been investigated in [20] and [27] to extend
the constrained IS stochastic approximation algorithm with repeated projections introduced in [1].
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We briefly introduce the framework and give the main results without any proofs (for more details,
see [27] and [13]). Let ψ denote the cumulant generating function (or log-Laplace) of X i.e. the
function defined by ψ(θ) := logE[e〈θ,X〉]. We assume that ψ(θ) < +∞, which implies that ψ is an
infinitely differentiable convex function and define

pθ(x) = e〈θ,x〉−ψ(θ)p(x), x ∈ R
d.

We denote by X(θ) any random variable with distribution pθ. We make the following assumption
on the function ψ

lim
|θ|
ψ(θ)− 2ψ

(
θ

2

)
= +∞ and ∃δ > 0, θ 7→ ψ(θ)− δ|θ|2 is concave. (Hes

δ )

The two functionals to be minimized are

Q1(θ, ξ
∗
α) := E

[
1{ϕ(X)>ξ∗α}e

−〈θ,X〉+ψ(θ)
]

(45)

Q2(µ, ξ
∗
α) := E

[
(Ψ(ϕ(X)) − ξ∗α)

21{ϕ(X)>ξ∗α}e
−〈µ,X〉+ψ(µ)

]
. (46)

According to Proposition 3 in [27] as soon as ψ satisfies (Hes
δ ) and that,

∀ξ ∈ R,∀θ ∈ R
d, E[|X|

(
1 + Ψ(ϕ(X))2

)
e〈θ,X〉] < +∞, (47)

for every ξ ∈ R, the functions Q1(., ξ) and Q2(., ξ) are finite, convex, differentiable on R
d, go to

infinity at infinity, so that argminQ1(., ξ) and argminQ2(., ξ) are non empty. Moreover, their
gradients are given by

∇θQ1(θ, ξ) = E

[
(∇ψ(θ)−X(−θ))1{ϕ(X(−θ))>ξ}

]
eψ(θ)−ψ(−θ) (48)

∇µQ2(µ, ξ) = E

[
(∇ψ(µ) −X(−µ))(Ψ(ϕ(X(−µ)))− ξ)21{ϕ(X(−µ))>ξ}

]
eψ(µ)−ψ(−µ) (49)

with ∇ψ(θ) = E[Xe〈θ,X〉]
E[e〈θ,X〉]

. Now, the main result of this section is the following theorem (for more

details, we refer to [27] and [13]).

Theorem 4.1. Suppose that ψ satisfies (Hes
δ ) and that (A2)1, (A3) hold. Assume that (47) is

fulfilled and that

∀x ∈ R
d, |Ψ(ϕ(x))| ≤ Ce

λ
4
|x| and E[|X|2eλ|X|] < +∞.

One considers the recursive procedure

Zn = Zn−1 − γnL(Zn−1,Xn), n ≥ 1, Z0 = (ξ0, C0, θ0, µ0) (50)

where (γn)n≥1 satisfies the usual step assumption (A1), Zn := (ξn, Cn, θn, µn) and each component
of L is defined by




L1

(
ξn−1, θn−1,X

(θn−1)
n

)
:= e−

ψ(θn−1)+ψ(−θn−1)

2

(
1− 1

1−α1
{

ϕ(X
(θn−1)
n )>ξn−1

} e
ψ(θn−1)−

〈

X
(θn−1)
n ,θn−1

〉)
,

L2

(
ξn−1, Cn−1, µn−1,X

(µn−1)
n

)
:= C − w̄(ξn−1, µn−1,X

(µn−1)
n ),

L3

(
ξn−1, θn−1,X

(−θn−1)
)
:= 1{ϕ(X(−θn−1))>ξn−1}(∇ψ(θn−1)−X(−θn−1)),

L4

(
ξn−1, µn−1,X

(−µn−1)
)
:= e−

λ
2

√
d|∇ψ(−µn−1)|

1+ξ2n−1
(Ψ(ϕ(X(−µn−1)))− ξn−1)

21{ϕ(X(−µn−1))>ξn−1}
×(∇ψ(µn−1)−X(−µn−1)),
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with w̄(ξ, µ, x) := Ψ(ξ) +
1

1− α
(Ψ(ϕ(x)) −Ψ(ξ))1{ϕ(x)>ξ} e

ψ(µ)−〈µ,x〉.

Then, Zn converges a.s. toward z∗ := (ξ∗α, C
∗
α, θ

∗
α, µ

∗
α), where ξ

∗
α is a square integrable VaRα-

valued random variable, C∗
α = Ψ-CVaRα(ϕ(X)), θ∗α is a (square integrable) argminQ1(., ξ

∗
α)-valued

random vector and µ∗α is a (square integrable) argminQ2(., ξ
∗
α)-valued random vector.

4.2 Extension to infinite dimensional setting

In the above sections, we proposed our algorithm in a finite dimensional setting where the value
of the loss L = ϕ(X) is a function of a random vector having values in R

d. This is due to the
fact that generally the value of a portfolio may depend on a finite number of decisions taken in
the past. Thus, the value of the loss at the horizon time T − t may depend on a large number of
dates in the past t0 = t < t1 < t2, ... < tN = T − t, with N = 250 for a portfolio with time interval
T − t = 1 year. For instance, if we consider a simple portfolio composed of short positions on 250
calls with a maturity at each tk and a strike K. The loss at time tN = 1 year can be written:

L =

N∑

k=1

er(tN−tk)(Stk −K)+ − ertNCk0 ,

where Ci0 denotes the price of the call of maturity ti and strike K, with

Stk+1
= Stke

(r−σ2

2
)(tk+1−tk)+σ

√
(tk+1−tk)Zk .

So that, X = Z = (Z1, ..., Z250) is a Gaussian vector with d = 250. Consequently, with our
above procedure, θn and µn are two random vectors of dimension d and we have to control the
growth of each component. If one grows too fast and take too high values, it may provides bad
performance and bad estimates of both VaR and CVaR. To circumvent this problem, one can
reduce the dimension of the problem by choosing the same shift parameters for several dates, i.e.
for instance

θn = (θ1n, .., θ
1
n︸ ︷︷ ︸

10 times

, ..., θ25n , .., θ
25
n︸ ︷︷ ︸

10 times

).

Now, we can run the IS algorithm for θ1, ..., θ25 so that, we have to deal with a procedure in
dimension 25. It is sub-optimal with respect to the procedure in dimension 250 but it is more
tractable. Another relevant example is a portfolio composed by only one barrier option, for instance
a Down & In Call option

ϕ(X) = (XT −K)+1 {min{0≤t≤T}Xt≤L}
where the underlying X is a process solution of the path-dependent SDE

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x ∈ R
d, (51)

W = (Wt)t∈[0,T ] being a standard Brownian motion. A naive approach is to discretize (51) by an
Euler-Maruyama scheme X̄ = (X̄tk)k∈{0,...,n}

X̄tk+1
= X̄tk + b(X̄tk)(tk+1 − tk) + σ(X̄tk)(Wtk+1

−Wtk), X̄0 = x0 ∈ R.

This kind of approximation is known to be poor for this kind of options. In this case, our IS
parameters θ and µ are n-dimensional vectors which correspond to the number of steps in the
Euler scheme. Now, if you consider a portfolio composed by several barrier options with different
underlyings, the dimension can increase greatly and becomes an important issue, so that our first
IS procedure is no longer acceptable and tractable. To overcome this problem, the idea is to shift
the entire distribution of X in (51) thanks to a Girsanov transformation. This last case is analyzed
and investigated in [27]. It can be adapted to our framework (see [13] for further developments).
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5 Numerical examples

For the sake of simplicity, we focus in this section on the finite dimensional setting and on the
computation of the regular CVaRα (Ψ ≡ Id). We first consider the usual Gaussian framework in
which the exponential change of measure coincide with the mean translation change of measure.
Then we illustrate the algorithm (50) in a simple case.

5.1 Gaussian framework

In this setting, X ∼ N (0, Id) and p is given by

p(x) = (2π)−
d
2 e−

|x|2
2 , x ∈ R

d,

so that (B3) and (B4) are satisfied with ρ = 1
2 and b = 2. In this setting, we already noticed that

L3 (ξ, θ, x) := 1{ϕ(X−θ)≥ξ}(2θ − x),

L4(ξ, µ, x) :=
1

1 +G(−µ) + ξ2
(ϕ(X − µ)− ξ)2+ (2µ− x).

Moreover, we use a stepwise constant sequence αn that slowly converges toward α as proposed in
Section 3.3. We consider three different portfolios of options (puts and calls) on 1 and 5 under-
lying assets (except for the last case). In the third case, we study the behaviour of a portfolio
composed by a power plant that produces electricity from gas with short positions in calls on elec-
tricity. The assets are modeled as geometric Brownian motions for the first two examples. In the
third example, the assets (electricity and gas day-ahead prices) are modeled as exponentials of an
Ornstein-Uhlenbeck process. This last derivative is priced using an approximation of Margrabe
formulae (see e.g. [29]). We assume an annual risk free interest rate of 5%. In each example, we
use three different values of the confidence level α = 95%, 99%, 99.5%, which are specified in the
Tables. We use the following test portfolios:

Example 1. Short position in one put with strike K = 110 and maturity T = 1 year on a stock
with initial value S0 = 100 and volatility σ = 20%. The loss is given by

ϕ1(X) := (K − ST )+ − erTP0

with

ST := S0e

((

r−σ2

2

)

T+σ
√
TX

)

where X ∼ N (0, 1) and P0 is the initial price at which the put option was sold (it is approximately
equal to 10.7). The dimension d of the structural vector X is equal to 1. The numerical results are
reported in Table 1.

Example 2. Short positions in 10 calls and 10 puts on each of the five underlying assets, all
options having the same maturity 0.25 year. The strikes are set to 130 for calls, to 110 for puts
and the initial spot prices to 120. The underlying assets have a volatility of 20% and are assumed
to be uncorrelated. The dimension d of the structural vector X is equal to 5. The numerical results
are reported in Table 2.

Example 3. Short position in a power plant that produces electricity day by day with a maturity
of T = 1 month and 30 long positions in calls on electricity day-ahead price with the same strike
K = 60. Electricity and gas initial spot prices are Se0 = 40 $/MWh and Sg0 = 3 $/MMBTU
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(BTU: British Thermal Unit) with a Heat Rate equals hR = 10 BTU/kWh and generation costs
C = 5 $/MWh. The two spot prices have a correlation of 0.4. The payoff can be written

ϕ3(X) =
30∑

k=1

(
er(T−tk)

(
Setk − hRS

g
tk
− C

)
+
− P c0e

rT
)
+
(
erTC0 − er(T−tk)

(
Setk −K

)
+

)

where P c0 is a proxy of the price of the option on the power plant and is equal to 149.9 and C0

is the price of the call options which is equal to 3.8. This is a sum of spark spread options where
we decide to exchange gas and electricity each day during one month. The dimension d of the
structural vector X is equal to 60. The numerical results are reported in Table 3.

The results displayed in the following tables correspond to the VaR, the CVaR and the variance
reduction ratios estimations for both VaR and CVaR procedure using a number of steps specified
in the first column, still for the same three levels of α. The variance ratios correspond to the ratio
of an estimation of the asymptotic variance using the averaging procedure of (16) divided by an
estimation of the asymptotic variance using the averaging procedure of (36): VRVaR corresponds to
the variance reduction ratio of the VaR estimate and VRCVaR corresponds to the variance reduction
ratio of the CVaR estimate. The results emphasize that the IS procedure yields a very significant,
sometimes huge variance reduction especially when α is closed to 1.
In the three examples, we define the step sequence by γn = 1

nβ+100
where β = 3

4 .

Table 1: Example 1 Results

Number of steps α VaR CVaR VRVaR VRCVaR

10 000 95% 24.6 29.9 5.5 30.5
99% 34.4 37.5 11.1 125.3
99.5% 37.8 41.4 13.4 192.9

100 000 95% 24.6 30.4 6.6 32.2
99% 34.2 37.9 11.5 127.9
99.5% 37.3 40.7 15.1 185

500 000 95% 24.6 30.3 7.7 31.3
99% 34.2 38 14.6 118.4
99.5% 37.3 40.5 15.5 184

Table 2: Example 2 Results

Number of steps α VaR CVaR VRVaR VRCVaR

10 000 95% 339 440.5 6.5 14.9
99% 493.1 561.4 10.1 24.3
99.5% 540.1 606.4 18.2 37.9

100 000 95% 349.8 439.7 6.7 17
99% 495.7 563.8 11.3 28.6
99.5% 544.8 607.8 18.9 40.3

500 000 95% 352.4 439.6 6.8 17.3
99% 495.2 563 11.1 27.7
99.5% 545.3 608.4 19.2 37
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Table 3: Example 3 Results

Number of steps α VaR CVaR VRVaR VRCVaR

10 000 95% 115.7 150.5 3.4 6.8
99% 169.4 196 8.4 12.9
99.5% 186.3 213.2 13.5 20.3

100 000 95% 118.7 150.5 4.5 8.7
99% 169.4 195.4 12.6 17.5
99.5% 188.8 212.9 15.6 29.5

500 000 95% 119.2 150.4 5 9.2
99% 169.8 195.7 13.1 18.6
99.5% 188.7 212.8 17 29

5.2 Esscher transform: the NIG distribution

Now, we consider a simple case of portfolio composed by a long position on a Call option with
strike K = 0.6 and maturity T = 1 year, where the underlying is eXT (X0 = 0), where XT is a
Normal Inverse Gaussian (NIG) variable, XT ∼ NIG(α, β, δ, µ), α > 0, |β| ≤ α, δ > 0, µ ∈ R. Its
density is given by

pXT (x, α, β, δ, µ) :=
αδK1(α

√
δ2 + (x− µ)2)

π
√
δ2 + (x− µ)2

eδγ+β(x−µ),

where K1 is a modified Bessel function of the second kind and γ =
√
α2 − β2. Note that the

generating function of the NIG distribution is given by

ψ(θ) = µθ + δ(γ −
√
α2 − (β + θ)2),

and is not well defined for every θ ∈ R, so that we change the algorithm parametrization (see
section 4.3 of [27]). The loss of the portfolio can be written L = ϕ4(XT ) = 50(eXT −K)+ − erTC0.
Note that the price C0 is computed by a crude Monte Carlo and is approximately equal to 42. The
parameters of the NIG random variable XT are α = 2.0, β = 0.2, δ = 0.8, µ = 0.04. We want
to compare the variance reduction achieved by the translation of the mean (see section 3.1) and
the one achieved by the Esscher Transform (see section 4.1). In the Robbins-Monro procedure, we
define the step sequence by γn = 1

nβ+100
where β = 3

4 .

� Translation case. The functions L3 and L4 of the IS procedure are defined by:

L3(ξ, θ,X) := e−2|θ|1ϕ(X−θ)
p′(X − 2θ)

p(X)

(
p(X − θ)

p(X − 2θ)

)2

,

L4(ξ, µ,X) :=
e−2|µ|

1 +G(−µ) + ξ2
(ϕ(X − µ)− ξ)2+

p′(X − 2µ)

p(X)

(
p(X − µ)

p(X − 2µ)

)2

,

where p′ is easily obtained using the relation on the modified Bessel function K ′
1(x) =

1
x
K1(x) −

K2(x).

� Esscher Transform. In this approach, the functions L3 and L4 are defined by

L3(ξ, θ,X) := 1ϕ(X(−θ))≥ξ(∇ψ(θ)−X(−θ)),

L4(ξ, µ,X) :=
e−|µ|

1 + ξ2
(ϕ(X(−µ))− ξ)2+(∇ψ(µ)−X(−µ)),
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where X(±θ) ∼ NIG(α, β ± θ, δ, µ).
Table 4 compares the variance reduction ratios of the VaRα and CVaRα algorithms achieved by
the translation of the mean (VRtrV aR and VRtrCV aR) and the one achieved by the Esscher Transform
(VResV aR and VResCV aR).

Table 4: Example 4 Results

Number of steps α VaR CVaR VRtrVaR VRtrCVaR VResVaR VResCVaR

10 000 95% 85.8 215.7 5 10 4.2 58.8
99% 217 518 6 12 8 60
99.5% 304 748 8 25 8.9 110

100 000 95% 87.2 215.1 5 12 4.5 60
99% 218 521 5 12 8.2 70
99.5% 303.5 747.8 7 30 12 100

500 000 95% 87.9 215.6 5 9 5 57
99% 227 518.9 5.5 11.8 11.5 68
99.5% 312.8 741.8 6 31 10 123

The IS procedure is very efficient when P(ϕ(X) ≥ ξ∗α) = 1 − α is close to zero and becomes
more and more efficient as α grows to 1. Even for the complex portfolio considered in Example 3,
where X is a Gaussian vector with d = 60, it is possible to achieve a great variance reduction for
both VaRα and CVaRα.

We observed that IS based on Esscher transform is well adapted to distributions with heavy tails
(i.e. heavier tails than the normal distribution). It is therefore suitable when large values are more
frequent than for the normal distribution, as it is the case when the vector X is a NIG random
variable. Indeed, in this setting, the IS parameters modify the parameter β which controls the
asymmetric shape of the NIG distribution. We think that the IS procedure by Esscher transform
outperforms the IS procedure by mean translation when the IS parameter impacts on the symmetry
of the distribution.

6 Concluding remarks.

In this article, we propose a recursive procedure to compute efficiently the Value-at-Risk and
the Conditional Value-at-Risk using the same innovation for both procedures. In our approach,
for a given risk level α, the VaRα and the CVaRα are estimated simultaneously by a regular RM
algorithm. Ruppert and Polyak’s averaging principle provides an asymptotically efficient procedure.
The estimates satisfy a Gaussian CLT. However, due to the slow convergence of the global procedure
since we are interested in rare events, the regular version of this algorithm cannot be used in
practice. To speed-up and thus greatly reduce the number of scenarios, we devise an unconstrained
adaptive IS procedure. The resulting procedure provides estimates that satisfy a CLT with minimal
variances. To optimize the move to the critical risk area, the risk level α can be temporarily replaced
by a slowly increasing level αn (stepwise constant in practice) converging to α. This produces a
VaR companion procedure (ξ̂n)n≥1 that controls the IS change of measure parameters (θ̂n, µ̂n).
Numerically speaking, the resulting procedure converges efficiently and can drastically reduce the
variance. It is possible to extend the methods to portfolio whose losses depend on a general
diffusion process, using Girsanov transform to introduce a potentially infinite dimensional variance
reducer. Finally, we aim at extending the method by implementing low-discrepancy sequences in
our procedure instead of pseudo-random numbers. Preliminary numerical experiments showed a
significant improvement of the convergence rate . This also raises interesting theoretical problems.
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See [25] for some first theoretical results in that direction in a one-dimensional framework and [13]
for further developments in higher dimensional setting.

References

[1] Arouna B. (2004). Adaptative Monte Carlo method, a variance reduction technique, Monte
Carlo Methods and Appl., 10(1), p.1-24.

[2] Artzner P., Delbaen F., Eber J.-M. and Heath D. (1999). Coherent measures of risk, Math.
Finance, 9, p.203-228.

[3] Arouna B., Bardou O. (2004). Efficient variance reduction for functionals of diffusions by relative
entropy, technical report, CERMICS-ENPC (France).

[4] Benveniste A., Métivier M. and Priouret P. (1987). Algorithmes adaptatifs et approximations
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