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Abstract

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are
widely used in the practice of risk management. This paper deals with the problem of comput-
ing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose
a first Robbins-Monro procedure based on Rockaffelar-Uryasev’s identity for the CVaR. The
convergence rate of this algorithm to its target satisfies a Gaussian Central Limit Theorem. As
a second step, in order to speed up the initial procedure, we propose a recursive importance
sampling (I.S.) procedure which induces a significant variance reduction of both VaR and CVaR
procedures. This idea, which goes back to the seminal paper [1], follows a new approach intro-
duced in [22]. Finally, we consider a deterministic moving risk level to speed up the initialization
phase of the algorithm. We prove that the convergence rate of the resulting procedure is ruled
by a Central Limit Theorem with minimal variance and its efficiency is illustrated by considering
several typical energy portfolios.

Keywords: VaR, CVaR, Stochastic Approximation, Robbins-Monro algorithm, Importance Sam-
pling, Girsanov.

1 Introduction

Following financial institutions, energy companies are developping a risk management framework to
face the new price and volatility risks associated to the growth of energy markets. VaR and CVaR
are certainly the best known and the most common risk measures used in this context, especially
for the evaluation of extreme losses potentially faced by traders. Naturally related to rare events,
the estimation of these risk measures is a numerical challenge. The Monte Carlo method, which is
often the only available numerical device in such a general framework, must always be associated
to efficient reduction variances techniques to encompass its slow convergence rate. In some cases,
Gaussian approximations can lead to semi-closed form estimators. But, if these approximations
can be of some interest in considering the yield of a portfolio, they are useless when estimating the
VaR on the EBITDA of a huge portfolio as it is often the case in the energy sector.

In this article, we introduce an alternative estimation method to compute both VaR and CVaR,
relying on the use of stochastic algorithms. By definition, the V aRα of a given portfolio at a specified
level α ∈ (0, 1) is the lowest amount not exceeded by the loss with probability α (usually α ≥ 95%).
The CV aRα is the conditional expectation of the portfolio losses above the V aRα. Several methods
have been proposed to compute or approximate VaR and CVaR. To compute VaR, the simplest
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method is the historical simulation. It assumes that asset returns in the future are independent
and identically distributed, having the same distribution as they had in the past. Over a time
interval T − t, the distribution of the loss L := V (St, t) − V (St + ∆S, T ), where St denotes the
vector of market prices at time t, ∆S the change in S over the time interval T − t and V (St, t) the
portfolio value at time t, can be computed with the corresponding VaR at a given probability level
by the inversion of the empirical function method. However, when market prices follow a general
path-dependent SDE, the assumption of asset returns independence is no longer available. To
circumvent this problem, Monte Carlo simulation tools are generally used. However, they require
to store and sort loss samples in order to inverse the simulated empirical loss distribution function.
Another method widely used relies on a linear (Normal approximation) or quadratic expansion
(Delta Gamma approximation) and assume a joint normal (or log-normal) distribution of ∆S. The
Normal approximation method gives L a normal distribution, thus the computation of the V aRα
is straightforward. However, when there is a nonlinear dependence between the portfolio value
and the prices of the underlying assets (think of a portfolio with options) such approximation is
no longer acceptable. The Delta Gamma approximation tries to capture some non linearity by
adding a quadratic term in the loss expansion. Then, it is possible to find the distribution of the
resulting approximation in order to obtain an approximation of the VaR. For more details about
these methods, one can refer to [6], [7], [12], [13] and [31]. Such approximations are no longer
acceptable when considering portfolios with long maturity (T − t ≈1 year up to 10 years) or when
the loss is a functional of a general path-dependent Stochastic Differential Equation (SDE).
In the context of hedging or optimizing a portfolio of financial instruments to reduce the CVaR,
it is shown in [29] that it is possible to compute both VaR and CVaR (actually calculate VaR
and optimize CVaR) by solving a linear programming problem which is an approximation of the
original one. The advantage of such method is that it is possible to estimate both VaR and CVaR
simulteanously and without assuming that the market prices have a special distribution like normal
or log-normal. However, the linear programming problem is subject to a huge number of linear
constraints (at least equal to the size of the generated loss samples) so that we are quickly limited
in practice.
The idea to compute both with one procedure comes from the fact that the VaR and CVaR are
strongly linked as they appear as the solutions and the value of the same convex optimisation
problem (see Proposition 1.1) as demonstrated in [29]. This leads us to define consistent and
asymptotically normal estimators of both quantities as the limit of a global Robbins-Monro (R.M.)
procedure. So that we are no more constrained by the number of samples paths used in the
estimation which in these approaches is the dimension of the resulting optimization problem. The
great advantage of our point of vue, especially in regard to the inversion of the empirical function
method is that we only estimate the quantities of interest. Furthermore, we do not need to make
approximations of the loss or of the convex optimization problem to be solved. Moreover, the
implementation of the algorithm is very easy and efficient and as a necessary improvement, we also
introduce a recursive variance reduction method based on an I.S. algorihm since both VaR and
CVaR deal with rare events.
As a matter of fact, basically in this kind of problem we are interested by events that are observed
with a very low probability (usually less that 5% or 1%) so that we obtain few significant replications
on which to base our estimates. Actually, interesting losses are those that exceed the VaR, thus the
ones that are in the tail of the loss distribution. So that, to compute more accurate estimates of
both quantities of interest, it is crucial to generate more samples in the tail of L, the area of interest.
A general tool used in this situation is importance sampling. The basic principle of importance
sampling is to modify the distribution of L by an equivalent change of measure to obtain more
“interesting” samples that will lead to better estimates of the VaR and CVaR. The main issue of
importance sampling is to find a right change of measure (giving a parameterized family) that will
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induce a significant variance reduction. Glasserman and al. in [13] and [14] proposed a change of
measure based on a large deviation upper bound to estimate the loss probability P(L > x) for several
values of x. Then, it is possible to estimate the VaR by interpolating between the estimated loss
probabilities. Although this approach provides an asymptotically optimal importance sampling
distribution it is strongly based on the fact that delta gamma approximation holds exactly and
rely on the assumption that, conditional on past data, market moves are normally distributed.
Moreover, as shown in [15], importance sampling estimators based on a large deviations change of
measure can have variance that increases with the rarity of the event, and even infinite variance.
In [10], a quantile estimator based on the inversion of the empirical weighted function and as
an improvement, they use a projected version (on convex compact set) of a Robbins-Monro I.S.
algorithm to find the optimal change of measure. This kind of algorithm is known to converge
toward the optimal importance sampling parameter only after a (long) stabilization phase and
provided that the compact sets have been specified properly. Our importance sampling procedure is
based on a regular and unconstrained R.M. algorithm. One major issue that arises when combining
the VaR-CVaR algorithm with the recursive importance sampling R.M. procedure is to ensure I.S.
parameters do move appropriately toward the critical risk area. To circumvent this problem, we
make the confidence level slowly move from α0 = 1

2 to the final level α by introducing a deterministic
confidence level sequence (αn)n≥0. It speeds up the initialization phase and improves the variance
reduction. Thus, we can truly experiment asymptotic convergence results in practice. Now, let us
be more specific on the problem we are dealing with.

Notations: • |.| will denote the canonical Euclidean norm on R
d and 〈., .〉 will denote the canonical

inner product.

• L−→ will denote the convergence in distribution and
a.s.−→ will denote the almost sure convergence.

• x+ := max(0, x) will denote the positive part function.

Let X : (Ω, A,P) → R
d be a random vector and ϕ : R

d → R, Ψ : R → R be two Borel functions.
Let L = ϕ(X) be the loss of a portfolio over the considered time interval T − t. A positive loss is a
loss sustained by the holder of the portfolio. Thus, ϕ is the function describing the composition of
the portfolio which remains fixed and X is a structural random vector used to model the market
prices over the time interval; thus we do not need to specify the dynamics of the market prices and
only rely on the fact that it is possible to sample from the distribution of X. For instance, in a
Black-Scholes framework, X is a Gaussian vector and ϕ can be a portfolio of vanilla options. In
more sophisticated models or portfolio X can be a vector of Brownian increments related to the
Euler scheme of a diffusion. The VaR at level α ∈ (0, 1) is the lowest α-quantile of the distribution
ϕ(X) i.e.:

VaRα(ϕ(X)) := inf {ξ | P (ϕ(X) ≤ ξ) ≥ α}
Since limξ→+∞ P (ϕ(X) ≤ ξ) = 1, we have {ξ | P (ϕ(X) ≤ ξ) ≥ α} 6= Ø. Moreover, we have

limξ→−∞ P (ϕ(X) ≤ ξ) = 0, which implies that {ξ | P (ϕ(X) ≤ ξ) ≥ α} is bounded below so that
the VaR always exists. We assume that the distribution function of ϕ(X) is continuous (i.e. without
atoms) so that it is the lowest solution of the equation:

P(ϕ(X) ≤ ξ) = α.

Three values of α are commonly considered: 0.95, 0.99, 0.995. If the distribution function is
strictly increasing, the solution of the above equation is unique, otherwise, there may be more
than one solution. In fact, in what follows, we will consider that any solution of the previous
equation is the VaR. Another risk measure generally used to provide information about the tail
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of the distribution of ϕ(X) is the Conditional Value-at-Risk (CVaR) (at level α). As soon as
ϕ(X) ∈ L1(P), it is defined by:

CVaRα(ϕ(X)) := E [ϕ(X)|ϕ(X) ≥ VaRα(ϕ(X))] .

The CVaR of ϕ(X) is but the conditional expectation of ϕ(X) given that it lies inside the
critical risk area. To capture more information on the conditional distribution of ϕ(X), it seems
natural to consider more general risk measures like for example the conditional variance. In a more
general framework we can be interested by computing the Ψ-Conditional Value at Risk (Ψ-CVaR)
(at level α). As soon as Ψ(ϕ(X)) ∈ L1(P), it is defined by:

Ψ-CV aRα(ϕ(X)) := E [Ψ(ϕ(X))|ϕ(X) ≥ V aRα(ϕ(X))] . (1)

When Ψ ≡ Id and ϕ(X) ∈ L1(P), (1) is the regular CVaR of ϕ(X). When Ψ : x 7→ x2, (1) denotes
the conditional quadratic norm of ϕ(X).

The idea to devise a stochastic approximation procedure to compute VaR and CVaR, and more
generally the Ψ-CVaR, comes from the fact that these two quantities are solutions of a convex
optimization problem whose value function can be represented as an expectation as pointed out by
Rockafellar and Uryasev in [28].

Representation of VaR and Ψ-CV aR as expectations:

Proposition 1.1. Suppose that ϕ is continuous. Let V and VΨ be the functions defined by:

V (ξ) = E [v(ξ,X)] and VΨ(ξ) = E [w(ξ,X)] (2)

where

v(ξ, x) := ξ +
1

1 − α
(ϕ(X) − ξ)+ and w(ξ, x) := Ψ(ξ) +

1

1 − α
(Ψ(ϕ(x)) − Ψ(ξ))1{ϕ(x)≥ξ}. (3)

Suppose that the distribution function of ϕ(X) is continuous and that ϕ(X) ∈ L1(P). Then, the
function V is convex, differentiable and the V aRα(ϕ(X)) is any point of the set:

arg minV = {∇V = 0} = {ξ | ξ ,P(ϕ(X) ≤ ξ) = α}.

Furthermore,

CV aRα(ϕ(X)) = min
ξ∈R

V (ξ)

and, for every ξ∗ ∈ arg minV ( i.e. a V aRα(ϕ(X)))

Ψ-CV aRα(ϕ(X)) = VΨ(ξ∗).

Proof. Since the functions ξ 7→ (ϕ(x) − ξ)+ are convex, the function V is convex. P(dw)-a.s.,
∂v
∂ξ

(ξ,X(w)) exists at every ξ ∈ R and

P(dw)-a.s.,

∣
∣
∣
∣

∂v

∂ξ
(ξ,X(w))

∣
∣
∣
∣
≤ 1 ∨ α

1 − α
.

Thanks to Lebesgue differentiation Theorem, one can invert differentiation and expectation, V is
differentiable with derivative V ′(ξ) = 1 − 1

1−αP(ϕ(X) > ξ) and reaches its absolute minimum at
any ξ∗ satisfying P(ϕ(X) > ξ∗) = 1 − α i.e. P(ϕ(X) ≤ ξ∗) = α.
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Moreover, it is clear that:

V (ξ∗) = ξ∗ +
E[(ϕ(X) − ξ∗)+]

P(ϕ(X) > ξ∗)

=
ξ∗E[1ϕ(X)>ξ∗ ] + E[(ϕ(X) − ξ∗)+]

P(ϕ(X) > ξ∗)
= E [ϕ(X)|ϕ(X) > ξ∗]

and, in the same way, VΨ(ξ∗) = Ψ-CV aRα(ϕ(X)).

Remark 1.1. Actually, one can consider a more general framework by including any risk measure
defined by an integral representation with respect to X:

E[Λ(ξ∗,X)]

where Λ is a (computable) Borel function.

Stochastic gradient and companion procedure

So in order to compute the V aRα, we are interested in finding a zero of the non decreasing
function V ′. First note that V ′ admit the representation:

V ′(ξ) = E [H (ξ,X)]

with

H(ξ, x) :=
∂v

∂ξ
(ξ, x) = 1 − 1

1 − α
1{ϕ(x)≥ξ}.

A classical procedure to compute such a zero is to consider the (recursive) R.M. algorithm defined
by:

ξn+1 = ξn − γn+1H(ξn,Xn+1), n ≥ 0, ξ0 ∈ L1(P), (4)

where (Xn)n≥1 is an i.i.d. sequence of random variables with the same distribution as X, indepen-
dent of ξ0 and (γn)n≥1 is a step sequence (decreasing to 0) satisfying:

∑

n≥1

γn = +∞ and
∑

n≥1

γ2
n < +∞. (A1)

Actually, (4) can be seen as a regular R.M. procedure with mean function V ′ (see [9] p.50 and
p.66) or as a recursive gradient descent procedure derived from the Lyapunov function V. Both
settings yields to the a.s. convergence toward its target ξ∗ = V aRα(ϕ(X)). We will temporarily
assume this fact to carry on the design of the second step procedure: the computation of the
Ψ-CV aRα. A naive idea is to compute the function VΨ at the point ξ∗:

Ψ-CV aRα = VΨ(ξ∗) = E[w(ξ∗,X)]

using a regular Monte Carlo simulation,

1

n

n−1∑

k=0

w(ξ∗,Xk+1). (5)
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However, we first need to get from (4) a good approximation of ξ∗ and subsequently to use
another sample of the distribution X. A natural idea is to devise a companion procedure of the
above quantile search algorithm by replacing ξ∗ in (5) by its approximation at step k, namely

Cn =
1

n

n−1∑

k=0

w(ξk,Xk+1), n ≥ 1, C0 = 0. (6)

Hence, (Cn)n≥0 is the sequence of empirical means of the non i.i.d sequence (w(ξk,Xk+1))k≥1, which
can be written recursively:

Cn+1 = Cn −
1

n+ 1
(Cn − w(ξn,Xn+1)) , n ≥ 0 C0 = 0. (7)

In Proposition 2.2, it is shown that (7) a.s. converges toward VΨ(ξ∗). At this stage, we are facing
two procedures (ξn, Cn) with different steps. This may appear not very consistent or at least
natural. A second modification to the original Monte Carlo procedure (7) consists in considering a
general step βn satisfying (A1) instead of 1

n
(with in mind the possibility to set βn = γn eventually).

This leads to:
Cn+1 = Cn − βn+1 (Cn −w(ξn,Xn+1)) , n ≥ 0 C0 = 0, (8)

The resulting algorithm reads:
{
ξn+1 = ξn − γn+1H(ξn,Xn+1), ξ0 ∈ L1(P), n ≥ 0
Cn+1 = Cn − βn+1 (Cn − w(ξn,Xn+1)) , C0 = 0, n ≥ 0.

(9)

Our first aim in this paper is to study the almost sure convergence and the joint weak conver-
gence rate of (ξn, Cn). The question is not trivial owing to the coupling of the two procedures.
The case of two different step sizes (γn) ≡ γ0n

−b and (βn) ≡ β0n
−a with γ0 > 0, β0 > 0 and

1
2 < b < a ≤ 1 refers to the general framework of two-time-scale stochastic approximation algo-
rithms. Several results have been established by Borkar in [4], Konda and Tsitsiklis [18] but the
more relevant in our case are those of Mokkadem and Pelletier in [25]. It is possible to show that, if
ϕ(X) has a strictly positive density fϕ(X) in a neighborhood of ξ∗, the couple satisifies a Gaussian

CLT at the rate
√

γ−1
n for ξn and

√

β−1
n for Cn. The procedure for (ξn) is free of (Cn) so its

convergence rate is ruled by the CLT for ”regular” single-time scale stochastic approximation algo-
rithms (see Kushner and Clark in [19], Métivier and Priouret in [3], Duflo in [9] and many others
for more details) i.e. set γn = γ0

n
where the choice of γ0 depends on fϕ(X)(ξ

∗), which is unknown.

The optimal choice for βn is 1
n
. A posteriori, we verify that the resulting algorithm reduced to a

one-time-scale procedure. To circumvent the difficulties induced by the specification of γ0, which
are classical in this field, we are led to modify again our algorithm by introducing the averaging
principle independently introduced by Ruppert [32] and Polyak [16] and then widely investigated
by several authors. It works in both two-time and single-time scale algorithm and leads to asymp-
totically efficient procedures i.e. satisfying a CLT at the optimal rate

√
n and minimal variance.

Our numerical examples indicate that the averaged one-time-scale procedure provides less variance
during the first iterations than the averaged procedure of the two-time-scale algorithm and others
procedure with different steps choice. So the final form of our procedure (without the variance
reduction) is as follows:

set

γn = βn = Cn−a, with
1

2
< a < 1, C > 0

and,

ξn :=
1

n

n∑

k=1

ξk and Cn :=
1

n

n∑

k=1

Ck (10)
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where (ξk, Ck), k ≥ 0 is defined by (9). Thanks to Ruppert and Polyak averaging principle, we
obtain an asymptotically efficient procedure which satisfies the Gaussian CLT:

√
n

(
(ξn − ξ∗)
(Cn − C∗)

)

L→ N (0,Σ) (11)

where Σ is the asymptotic covariance matrix that will be explicited in Theorem 2.4. However, in
pratice, the convergence of the algorithm will be very slow and especially chaotic for the V aRα
and so for the CV aRα. The bottleneck of this algorithm is the fact that it is only updated in rare
events since it tries to measure the tail distribution of ϕ(X) : P(ϕ(X) > V aRα) = 1 − α ≈ 0.

Another problem may be the simulation of ϕ(X). For instance, we can imagine large portfolio of
complex derivative securities and options. Each evaluation may require a lot of computational time.
So, for pratical implementation the above procedure must be combined with variance reduction
techniques to achieve accurate results. An appropriate technique when we deal with rare events is
importance sampling.

Unconstrained Recursive Importance Sampling

The second tool we want to introduce in this paper is a recursive importance sampling procedure
which increases the probability of simulations for which ϕ(X) exceeds ξ. Assume that X has an
absolutely continuous distribution PX(dx) = p(x)λd(dx) where λd denotes the Lebesgue measure on
(Rd,Bor(Rd )). The main idea of importance sampling by translation applied to the computation
of

E[F (X)],

where F ∈ L2(PX) satisfies P(F (X) 6= 0) > 0, is to use the invariance of the Lebesgue measure by
translation, for every θ ∈ R

d,

E[F (X)] = E

[

F (X + θ)
p(X + θ)

p(X)

]

and among all these random vectors with the same expectation, we want to select the one with the
lowest variance, i.e. the one with lowest quadratic norm

Q(θ) := E

[

F 2(X + θ)
p2(X + θ)

p2(X)

]

, θ ∈ R
d.

If the following assumption

∀θ ∈ R
d, E

[

F 2(X)
p(X)

p(X − θ)

]

< +∞ (12)

holds true, then Q is everywhere finite and a reverse change of variable show that:

Q(θ) = E

[

F 2(X)
p(X)

p(X − θ)

]

, θ ∈ R
d. (13)

Making few (natural) assumptions on p, one can show that Q is (strictly) finite, convex, goes to
infinity at infinity so that arg minQ = {∇Q = 0} is non empty (see [1] and [22]). Provided that ∇Q
admits a representation as an expectation, then it is possible to devise a recursive Robbins-Monro
procedure to approximate the optimal parameter θ∗. First investigated by Arouna (see [1]) in the
Gaussian case, they used the natural representation of ∇Q as an expectation by formally differenti-
ating (13) to design a stochastic gradient algorithm: ∇Q(θ) = E [K(θ,X)]. When X = N (0, 1), one

can show that Q(θ) = e
|θ|2

2 E[F 2(X)e−θX ] so that K is given by K(x, θ) = e
|θ|2

2 F 2(x)e−θx(θ − x).
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However, by this resulting form of K, the classical convergence results do not apply. Actually, the
requested linear mean growth assumption is not fulfilled, i.e. ||K(θ,X)||2 is not sub linear in θ
as |θ| goes to infinity, inducing the explosion of the procedure at almost every implementation as
pointed out in [1]. This lead the authors to introduce projected versions of the procedure based on
repeated reinitializations when the algorithms exits from an increasing sequence of compact sets
(while the step γn keeps going to 0). This approach is known as the projection ”à la Chen”. It
forces the stability of the algorithm and prevents explosion. Let us also mention a first alternative
approach investigated in [1] and [2], where Arouna and Bardou change the function to be minimized
by introducing an entropy based criterion. Although it is only an approximation, it turns out to
be often close to the original method.
Recently, Lemaire and Pagès in [22] deeply revisited the original method to remove the constraints
introduced by the previous algorithm. Thanks to a third translation of the variable θ, it is possi-
ble to plug back the parameter θ ”into” F (X), the function F having in common applications a
known behaviour at infinity. We propose a regular and unconstrained importance sampling R.M.
algorithm (θn(ξn), µn(ξn))n≥1 as an application of [22] to the computation of both VaR and CVaR.

Our paper is now organized as follows. Section 2 is devoted to the exact design and to the study
of its convergence rate. We firstly state our assumptions and give a result concerning the procedure
without importance sampling; then, we introduce the adaptive variance reduction procedure and
present how it modifies the asymptotic variance of our first CLT in Section 3. In Section 4 we
provide some extensions to the exponential change of measure and to deal with the case of infinite
dimensional setting. Section 5 is dedicated to numerical examples. We propose several portfolios
of options on several assets in order to challenge the algorithm and display variance reduction
factors obtained using the I.S. procedure. To prevent the freezing of the algorithm during the first
iterations of the importance sampling procedure, we also consider a deterministic moving risk level
αn which replace α in (4) to speed up the initialization phase and improve the reduction of variance.
We prove theoretically that modifying in this way the algorithm doesn’t change the previous CLT
and fasten dramatically the convergence.

2 Study of the Var-CVaR stochastic approximation algorithm

In this section, we study the a.s. convergence and weak convergence rate of the one-time scale
averaged procedure (10). The set arg minV , or more precisely, the random variables taking values
in arg minV will be the target of the first component of our (averaged) procedure (ξ̄n)n≥0. If ϕ(X)
is strictly increasing then arg minV = {ξ∗} is reduced to one single point. However, thanks to the
next result, this will not be necessary to ensure the a.s. convergence of both ξ̄n and C̄n. We will
rely on this Theorem in order to prove that our different R.M. algorithms a.s. converge. For a
proof of this slight extension of Robbins-Monro Theorem, we refer to [11]. The study of the CLT
is postponed to the second subsection.

2.1 The a.s convergence of the regular procedure

Theorem 2.1. (Extended Robbins-Monro Theorem). Let H : R
q × R

d → R
d be a Borel function

and X be an R
d-valued random vector such that E[|H(z,X)|] <∞ for every z ∈ R

d. Then set

∀z ∈ R
d, h(z) = E[H(z,X)].

Suppose that the function h is continuous and that T ∗ := {h = 0} satisfies

∀z ∈ R
d \T ∗,∀z∗ ∈ T ∗, 〈z − z∗, h(z)〉 > 0. (14)

8



Let (γn)n≥1 be the decreasing step sequence satisfying (A1). Suppose that

∀z ∈ R
d,E[|H(z,X)|2] ≤ C(1 + |z|2) (15)

(which implies that |h(z)|2 ≤ C(1 + |z|2)).
Let (Xn)n≥1 be an i.i.d sequence of random vectors having the distribution of X, let z0 be a random
vector independent of (Xn)n≥1 satisfying E[|θ0|] < ∞, all defined on the same probability space
(Ω, A,P). Let Fn := σ(θ0,X1, ...,Xn) and let (rn)n≥1 be the Fn-measurable reminder sequence
satisfying

∑

γn−1|rn|2 <∞.

Then, the recursive procedure defined by

Zn = Zn−1 − γn−1(H(Zn−1,Xn) + rn), n ≥ 1

satisfies:
∃z∞, such that Zn

a.s.−→ z∞ and z∞ ∈ T ∗ a.s.

The convergence also holds in Lp(P), p ∈ (0, 2).

In order to apply this theorem for our purpose, we write (9) (γn = βn) in a more synthetic way
by setting Zn = (ξn, Cn) and:

{
Zn = Zn−1 − γn−1H(Zn−1,Xn), n ≥ 0
Z0 = (ξ0, 0) , ξ0 ∈ L1(P)

(16)

where H(z, x) := (H1 (ξ, x) ,H2 (ξ, C, x)) =
(

1 − 1
1−α1{ϕ(x)≥ξ}, C − w (ξ, x)

)

is a Borel function

from R
2 × R

d to R
2.

The a.s. convergence of the algorithm resulting from this first approach is established in the
proposition below. It is only a first step toward our final procedure in which we will add several
devices to speed up the convergence: the Ruppert-Polyak’s averaging principle on the one hand
and some adaptive importance sampling procedure on the other hand. Moreover, we make the
following additional assumption on the distributions of ϕ(X) and Ψ(ϕ(X))

ϕ(X) is continuous and Ψ(ϕ(X)) ∈ L2a(P) for a > 0. (A2)a

Proposition 2.2. (Convergence of the algorithm) Suppose that Ψ is continuous for every ξ∗ ∈
arg minV as well as (A1) and (A2)1 are satisfied.
Then, the recursive procedure defined by (16) a.s. converges toward z∗ := (ξ∗, C∗) where ξ∗ is a
square integrable V aRα-valued random variable and C∗ = Ψ-CV aRα(ϕ(X)).

Proof. For the convergence of the first component (ξn)n≥1 we check that the function H1 and its
mean h1(ξ) := E[H1(ξ,X)] = 1 − 1

1−αP(ϕ(X) ≥ ξ) satisfy the assumptions of the Robbins-Monro
Theorem without a reminder sequence:

• The function h1 clearly satisfies (14) since it is non-decreasing.

• The function H1 is uniformly bounded since

∀ξ ∈ R, |H1(ξ,X)| ≤ 1 ∨ α

1 − α

so that the linear quadratic growth assumption (15) is clearly satisfied.
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Consequently, ξn
a.s.−→ ξ∗ and in every Lp, p ∈ [1, 2). Now let us deal with the second component.

Set for convenience γ0 := supn≥1 γn + 1. then, one defines recursively a sequence (∆n)n≥1 by

∆n+1 = ∆n
γn+1

γn

γ0

γ0 − γn+1
, n ≥ 0, ∆0 = 1.

Then elementary computations show by induction that

γn = γ0
∆n

Sn
, n ≥ 0, with Sn =

n∑

k=0

∆k. (17)

Furthermore, it follows from (17) that for every n ≥ 1

log(Sn) − log(Sn−1) = − log

(

1 − ∆n

Sn

)

≥ ∆n

Sn
=
γn
γ0
.

Consequently,

log(Sn) ≥
1

γ0

n∑

k=1

γk

which implies that limn→+∞ Sn = +∞.
Now using (8) and (17), one gets for every n ≥ 1

SnCn = Sn−1Cn−1 + ∆n (∆Nn+1 + VΨ(ξn))

where, ∆Nn := w(ξn−1,Xn) − VΨ(ξn−1), n ≥ 1, define a martingale increments sequence with
respect to the natural filtration of the algorithm Fn := σ(ξ0,X1, · · · ,Xn), n ≥ 0. Consequently,

Cn =
1

Sn

(
n−1∑

k=0

∆k+1∆Nk+1 +
n−1∑

k=0

∆k+1VΨ(ξk)

)

.

The second term in the right hand side of the above equality converges to VΨ(ξ∗) = Ψ-CV aRα(ϕ(X))
owing to the continuity of VΨ at ξ∗ and Cesaro’s lemma.

The convergence to 0 of the first term will follow from the a.s. convergence of the series

Nγ
n :=

n∑

k=1

γk∆Nk, n ≥ 1

by the Kronecker lemma since γn = γ0
∆n

Sn
. The sequence (Nγ

n )n≥1 is an Fn-martingale since the
∆Nk’s are martingales increments and

E
[
(∆Nn)

2|Fn−1

]
≤ 1

(1 − α)2
E

[

(Ψ (ϕ (X)) − Ψ (ξ))2
]

|ξ=ξk−1

.

The continuity of Ψ at ξ∗ and the a.s. convergence of ξk toward ξ∗ imply that

sup
n≥1

E[(∆Nn)
2|Fn−1] <∞ a.s.

Consequently, assumption (A1) implies

〈Nγ〉∞ =
∑

n≥1

γ2
nE[(∆Nn)

2|Fn−1] <∞

which in term yields the a.s. convergence of (Nγ
n )n≥1, so that Cn

a.s.−→ Ψ-CV aRα (ϕ(X)) .
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Remark 2.1. • When the V aRα is unique, the convergence is ensured by the regular Robbins-
Monro Lemma.

• It is possible to replace w(ξ, x) in (8) and (9) by w̃(ξ, x) = 1
1−αΨ(ϕ(x))1{ϕ(x)≥ξ} since

E [w̃ (ξ∗,X)] = Ψ-CV aRα(ϕ(X)). Thus, we only have to change also the martingale increments se-

quence (∆Nn)n≥1 by ∆Ñn := 1
1−α

(

E
[
Ψ(ϕ(X))1{ϕ(X)≥ξ}

]

|ξ=ξn−1
− Ψ(ϕ(Xn))1{ϕ(Xn)≥ξn−1}

)

. This

provides another procedure C̃n for the computation of the Ψ-CV aRα.

2.2 Rate of convergence

Throughout this section, we assume that the distribution has a positive probability density fϕ(X)

on its support. As a consequence the V aRα(ϕ(X)) is unique so that the procedure algorithm (Zn)
converges to its single target (V aRα(ϕ(X)),Ψ-CV aRα(ϕ(X)).

As a consequence, the Césaro mean of the procedure Z̄n := Z0+···+Zn−1

n
, n ≥ 1, converges a.s.

to the same target. The Ruppert and Polyak’s Averaging Principle says that an appropriate choice
of the step yields for free the smallest asymptotic variance. We recall below this result (following
a version established in [9]).

Theorem 2.3. (Ruppert and Polyak’s Averaging Principle) Suppose that the R
d sequence (Zn)n≥0

is defined recursively by
Zn = Zn−1 − γn−1(h(Zn−1) + ǫn + rn)

where h is a Borel function. Suppose that z∗ is a zero of h satisfying

h(z) = M(z − z∗) +O(|z − z∗|2)

where M = Dh(z∗) is a uniformly repulsive matrix (all its eigenvalues have positive real parts), and
(ǫn)n≥1 is a random sequence such that

∃C > 0, such that a.s.







(i) E[ǫn+1|Fn]1{||Zn−z∗||≤C} = 0,

(ii) ∃b > 2, supn E[||ǫn+1||b|Fn] 1{||Zn−z∗||≤C} <∞
(iii) E

[

(γn−1)
−1 |rn|2 1{||Zn−z∗||≤C}

]

→ 0

(iv) ∃Γ ∈ S+(d, d) such that E[ǫn+1ǫ
t
n+1|Fn]

a.s.−→ Γ.

(18)

Set γn = γ1
na with 1

2 < a < 1, and

Z̄n+1 :=
Z0 + ...+ Zn

n+ 1
= Z̄n −

1

n+ 1
(Z̄n − Zn), n ≥ 0.

Then, on the set of convergence {Zn → z∗}:
√
n
(
Z̄n − z∗

) L→ N
(
0,M−1Γ(M−1)T

)
as n→ +∞

See [9] (p.169) for a proof.
In fact the regular algorithm satisfies a Central Limit Theorem. By “optimal” we mean the

algorithm for which the step γn = γ0
n

(with γ0 a d× d matrix) has been optimized to minimize the

asymptotic variance of the normalized procedure γ
− 1

2
n (Zn − z∗). As expected, unfortunately this

optimal step choice depends on the unknown density fϕ(X)(ξ
∗). Ruppert and Polyak’s averaging

principle allows us to achieve the same optimal asymptotic variance by averaging our regular R.M.
procedure. See also a variant based on a gliding window developed in [21]. Applying this theorem
to our framework yields the following result for the rate of convergence of our procedure.
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Theorem 2.4. (Convergence rate of the VaR-CVaR procedure) Suppose (A2)a (with a > 1) holds,
Ψ is differentiable at ξ∗ and that the density of ϕ(X) is continuous and strictly positive at ξ∗. If
the positive step sequence is γn = γ1

na with 1
2 < a < 1 and γ1 > 0 then, the averaged procedure of

the algorithm (16) satisfies the CLT:

√
n
(
Z̄n − z∗

) L−→ N (0,Σ) as n→ +∞

where Σ is given by





α(1−α)
f2

ϕ(X)
(ξ∗)

α
(1−α)fϕ(X)(ξ∗)E

[
(Ψ(ϕ(X)) − Ψ(ξ∗))1{ϕ(X)≥ξ∗}

]

α
(1−α)fϕ(X)(ξ∗)E

[
(Ψ(ϕ(X)) − Ψ(ξ∗))1{ϕ(X)≥ξ∗}

]
1

(1−α)2
Var

(
(Ψ(ϕ(X)) − Ψ(ξ∗))1{ϕ(X)≥ξ∗}

)



(19)

Proof. First, the procedure (16) can be written as

Zn = Zn−1 − γn (h(Zn−1) + ǫn) , n ≥ 0, Z0 = (ξ0, 0) , ξ0 ∈ L1(P), (20)

where h(z) := E[H(z,X)] =
(

1 − 1
1−αP (ϕ(X) ≥ ξ) , C − E[w(ξ,X)]

)

and ǫn := (∆Mn,∆Nn),

n ≥ 1, denotes the Fn-adapted martingale increments sequence with

∆Mn :=
1

1 − α

(

P (ϕ(X) ≥ ξ)|ξ=ξn−1
− 1{ϕ(Xn)≥ξn−1}

)

.

Thanks to assumption (A2), the differentiability of Ψ at ξ∗ and Lebesgue’s differentiation Theorem,
one can invert expectation and derivation, so that the function h is differentiable at z∗ = (ξ∗, C∗)
and

h′(z∗) = M :=





1
1−αfϕ(X)(ξ

∗) 0

E

[(
∂
∂ξ
w(ξ,X)

)

|ξ=ξ∗

]

1



 (21)

now, since Ψ is differentiable at ξ∗, E

[(
∂
∂ξ
w(ξ,X)

)

|ξ=ξ∗

]

=
(

1 − 1
1−αP(ϕ(X) ≥ ξ∗)

)

Ψ′(ξ∗) = 0

so, M =

( 1
1−αfϕ(X)(ξ

∗) 0

0 1

)

. To apply Theorem 2.3, we need to check assumptions (i)-(iv) (see

(18)):
Let A > 0. First note that

E
[
∆M2a

n+1|Fn
]
1||Zn−z∗||≤A ≤

(
1

1 − α

)2a

22a < +∞.

Thanks to assumption (A2), there exists Cα,Ψ > 0 such that

E
[
∆N2a

n+1|Fn
]

1||Zn−z∗||≤A ≤ Cα,Ψ
(
1 + Ψ(ξn)

2a
)

1||Zn−z∗||≤M < Cα,Ψ

(

1 + sup
|ξ−ξ∗|≤A

|Ψ(ξ)|2a
)

< +∞

consequently, (ii) of (18) holds true with b = 2a > 2 since

sup
n≥0

E
[
||ǫn+1||2a|Fn

]
1||Zn−z∗||≤M < +∞.
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It remains to check (iv) i.e. that E
[
ǫn+1ǫ

T
n+1|Fn

] a.s→ Γ , where Γ is a positive definite symmetric
matrix. The dominated convergence theorem implies that

E

[(
ǫn+1ǫ

t
n+1

)

1,1
|Fn
]

=

(
1

1 − α

)2 (

E
[
1{ϕ(X)≥ξ}

]

|ξ=ξn − E
[

1{ϕ(X)≥ξ}
]2

|ξ=ξn

)
a.s.→ α

1 − α

E

[(
ǫn+1ǫ

t
n+1

)

1,2
|Fn
]

= E

[(
ǫn+1ǫ

t
n+1

)

2,1
|Fn
]

=

(
1

1 − α

)2

E
[
(Ψ(ϕ(X)) − Ψ(ξ)) 1{ϕ(X)≥ξ}

]

|ξ=ξn

(

1 − E
[
1{ϕ(X)≥ξ}

]

|ξ=ξn

)

a.s.→ α

(1 − α)2
E
[
(Ψ(ϕ(X)) − Ψ(ξ∗)) 1{ϕ(X)≥ξ∗}

]

E

[(
ǫn+1ǫ

t
n+1

)

2,2
|Fn
]

= E

[

(∆Nn+1)
2 |Fn

]

=
1

(1 − α)2

(

E
[
(Ψ(ϕ(Xn+1)) − Ψ(ξ)) 1{ϕ(Xn+1)≥ξ}|Fn

]

|ξ=ξn

−E
[
(Ψ(ϕ(X)) − Ψ(ξ)) 1{ϕ(X)≥ξ}

]2

|ξ=ξn

)

a.s.→ 1

(1 − α)2

(

E

[

(Ψ(ϕ(X)) − Ψ(ξ∗))2 1{ϕ(X)≥ξ∗}
]

−E
[
(Ψ(ϕ(X)) − Ψ(ξ∗)) 1{ϕ(X)≥ξ∗}

]2
)

=
1

(1 − α)2
Var

(
(Ψ(ϕ(X)) − Ψ(ξ∗)) 1{ϕ(X)≥ξ∗}

)
.

Using the continuity at ξ∗ of the two functions: ξ 7→ E
[
(Ψ(ϕ(X)) − Ψ(ξ)) 1{ϕ(X)≥ξ}

]
, ξ 7→

E

[

(Ψ(ϕ(X)) − Ψ(ξ))2 1{ϕ(X)≥ξ}
]

which follow from the continuity of Ψ and of the distribution

function of ϕ(X). Finally,

Γ =

(
α

1−α
α

(1−α)2
E
[
(Ψ(ϕ(X)) − Ψ(ξ∗)) 1{ϕ(X)≥ξ∗}

]

α

(1−α)2
E
[
(Ψ(ϕ(X)) − Ψ(ξ∗)) 1{ϕ(X)≥ξ∗}

]
1

(1−α)2
Var

(
(Ψ(ϕ(X)) − Ψ(ξ∗)) 1{ϕ(X)≥ξ∗}

)

)

If γn = γ1
na , γ1 > 0 and 1

2 < a < 1, Ruppert-Polyak’s Theorem implies that

√
n
(
Z̄n − z∗

) L→ N (0,Σ)

where Σ = M−1Γ
(
M−1

)T
is given by (19).

Remark 2.2. • From a theoretical viewpoint the optimal rate of convergence of the procedure
(20) is not impacted by the choice of γ1 and a. In pratice, high or very small values of γ1 will have
as an effect to deteriorate the asymptotic variance at the usual range of simulations (say at most a
few millions). Actually, if γ1 is too high, the algorithm can freeze because it can take high values so
that ϕ(X) will not exceed ξ. Numerically, the “CLT regime” will take place later than with small
steps once the algorithm is trapped. The algorithm spends most of the time “exploring” the state
space before getting trapped.
• It is possible to show that if we choose βn = 1

n
, n ≥ 1 and γn = 1

np with 1
2 < p < 1 in (9), the

resulting procedure satisfies a Gaussian CLT with the same asymptotic covariance matrix of the
above theorem but not the same convergence rate. However, by averaging the first component ξn,
the resulting procedure becomes asymptotically efficient.
• It is possible to show that if we replace Cn by the other procedure C̃n (see the remarks about
Proposition 2.2) the procedure satisfies again a CLT with the same asymptotic covariance matrix.
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Proposition 2.5. (Estimation of variance and confidence interval) For every n ≥ 1, set

σ2
n :=

1

(1 − α)2




1

n

n∑

k=1

(Ψ(ϕ(Xk)) − Ψ(ξk−1))
2
1{ϕ(Xk)≥ξk−1} −

(

1

n

n∑

k=1

(Ψ(ϕ(Xk)) − Ψ(ξk−1))1{ϕ(Xk)≥ξk−1}

)2




where (ξn)n≥0 is the first component of (4). If (A2) is satisfied with a = 2, then on the convergence
set {(Zn) → z∗}

σ2
n
a.s.−→ 1

(1 − α)2
Var

(
(Ψ(ϕ(X)) − Ψ(ξ∗))1ϕ(X)≥ξ∗

)

and

√
n
Cn − C∗

σn

L−→ N (0, 1). (22)

Proof. The proof follows from standard arguments already used in the proof of Proposition 2.2

3 Design of a faster procedure: importance sampling and moving

confidence level

3.1 Unconstrained adaptive importance sampling device

We noted previously that the bottleneck in using the above algorithm lies in its very slow and chaotic
convergence owing to the fact that P(ϕ(X) > ξ∗) = 1−α is close to 0 in practical implementations.
This means that we observe fewer and fewer simulations for which ϕ(Xk) > ξk−1 as the algorithm
evolves. Thus, it becomes more and more difficult to compute efficiently some estimates of V aRα
and CV aRα when α ≈ 1. Moreover, in the bank and energy sectors, practitioners usually deal with
huge portfolio composed by hundreds or thousands of risk factors and options. The evaluation step
of ϕ(X) may require and consume a lot of computational time. Consequently, to achieve accurate
estimates of both V aRα and CV aRα with reasonable computational effort, the above algorithm
(16) drastically needs to be speeded up by an I.S. procedure to recenter simulation “where things
do happen”, i.e. scenarios for which ϕ(X) exceeds ξ.

As we already said in the introduction, the main idea is to twist the distribution of X in order
to minimize the asymptotic variance of the two components in the above CLT: the asymptotic
variance of the V aRα algorithm Var

(
1{ϕ(X)≥ξ∗}

)
and the asymptotic variance of CV aRα algorithm

Var
(
(Ψ(ϕ(X)) − Ψ(ξ∗)) 1{ϕ(X)≥ξ∗}

)
. It amounts to find the parameters θ∗α and µ∗α minimizing the

two functionals:

Q1(θ, ξ
∗) := E

[

1{ϕ(X)≥ξ∗}
p(X)

p(X − θ)

]

(23)

Q2(µ, ξ
∗) := E

[

(Ψ(ϕ(X)) − Ψ(ξ∗))2 1{ϕ(X)≥ξ∗}
p(X)

p(X − µ)

]

(24)

as soon as
∀ξ ∈ arg minV,P

(

(Ψ(ϕ(X)) − Ψ(ξ))2 1{ϕ(X)≥ξ} > 0
)

> 0. (A3)

Now if the density p function of X satisfies
{

(i) ∀x ∈ R
d, θ 7→ p(x− θ) is log-concave

(ii) ∀x ∈ R
d, lim|θ|→+∞ p(x− θ) = 0 or ∀x ∈ R

d, lim|θ|→+∞
p(x−θ)
p2(x− θ

2
)

= 0 (B1)

and that,
Q1(θ, ξ) < +∞, ∀θ ∈ R

d,∀ξ ∈ R Q2(µ, ξ) < +∞, ∀µ ∈ R
d,∀ξ ∈ R, (B2)
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then, one can show that the functions Q1 and Q2 are both finite, convex, goes to infinity at
infinity. Consequently, the optimal parameters θ∗α and µ∗α exist since arg minQ1 and arg minQ2

are non empty (see [22] for more details). Recursive I.S. consists in devising a R.M. procedure to
approximate the optimal parameters. Provided the gradients of the two target functions Q1 and
Q2 admits a representation as an expectation, ∇Q1(θ, ξ

∗) = E[KQ1(θ, ξ
∗,X)] and ∇Q2(θ, ξ

∗) =
E[KQ2(µ, ξ

∗,X)], one can easily devise two R.M. procedures by

{
θn+1 = θn − γn+1KQ1(θn, ξ

∗,Xn+1)
µn+1 = µn − γn+1KQ2(µn, ξ

∗,Xn+1).
(25)

where KQ1 and KQ2 are naturally defined by the formal differentiation of Q1 and Q2







∇Q1(θ, ξ
∗) = E

[

1{ϕ(X)≥ξ∗}
p(X)

p2(X−θ)∇p(X − θ)
]

∇Q2(µ, ξ
∗) = E

[

(Ψ(ϕ(X)) − Ψ(ξ∗))2 1{ϕ(X)≥ξ∗}
p(X)

p2(X−µ)
∇p(X − µ)

]

.
(26)

However, in our case, it is not possible to simulate or compute KQ1(µn, ξ
∗,X) or KQ2(µn, ξ

∗,X)
by (25) since ξ∗ is unknown. If one already has a good approximation of ξ∗ and only wants to
compute the optimal I.S. parameters (which seems unrealistic and uninteresting), it is possible
to approximate θ∗α and µ∗α by devising directly the R.M. algorithm developed by Arouna (in the
Gaussian framework) in its constrained form or the unconstrained R.M. procedure developed by
Lemaire and Pagès in [22]. The main idea of our global procedure is to approximate both ξ∗ and
C∗ and the optimal I.S. paramaters as the limit of an unconstrained I.S. algorithm coupled with
the V aRα procedure (ξn)n≥0 using the same innovation sequence (Xn)n≥1 for both procedure.
The key idea of the unconstrained recursive I.S. algorithm developed in [22] is to introduce a third

change of probability in order to control the annoying terms p(x)
p(x−θ) and p(x)

p(x−µ) by plugging back the

parameters into 1{ϕ(X)≥ξ} and Ψ(ϕ(X)) which has a controlled growth at infinity. To derive both
new expressions for the gradients, we make the following assumption on the probability density p
of X

∃b ∈ [1, 2] such that

{

(i) |∇p|
p

(x) = O(|x|b−1) as |x| → ∞
(ii) ∃ρ > 0, log (p(x)) + ρ|x|b is convex.

(B3)

Moreover, we need one more assumption on the function Ψ:

∀C > 0,∀ξ ∈ R,E
[

(Ψ(ϕ(X)) − Ψ(ξ))2eC|X|b−1
]

< +∞. (B4)

In [22], it is shown that as soon as (A3), (B1), (B2), (B3) and (B4) are satisfied, Q1 and Q2 are
both finite and differentiable on R

d with a gradient given by

∇Q1(θ, ξ) := E

[

1{ϕ(X−θ)≥ξ}
p2(X − θ)

p(X)p(X − 2θ)

∇p(X − 2θ)

p(X − 2θ)

]

(27)

∇Q2(µ, ξ) := E

[

(Ψ(ϕ(X − µ)) − Ψ(ξ))2 1{ϕ(X−µ)≥ξ}
p2(X − µ)

p(X)p(X − 2µ)

∇p(X − 2µ)

p(X − 2µ)

]

. (28)

The two last expressions may look complicated at first glance but, in fact, the weight term of the
expectation involving the probability density can be easily controlled by a deterministic function

of θ. For instance, when X
d
= N (0; 1),

p2(X − θ)

p(X)p(X − 2θ)

∇p(X − 2θ)

p(X − 2θ)
= eθ

2
(2θ −X)
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and more generally, if (B1) and (B3) hold, then there exist two constant A and B such that

p2(x− θ)

p(x)p(x− 2θ)

|∇p(x− 2θ)|
p(x− 2θ)

≤ e2ρ|θ|
b

(A|x|b−1 +A|θ|b−1 +B) (29)

so that this weight can always be controlled by a deterministic function of θ (for more details,
one can refer to [22]). Now, as soon as the growth of the function x 7→ Ψ(ϕ(x)) at infinity can
be explicitly controlled, it is possible to derive a regular Robbins-Monro procedure. For this, we
introduce the following assumption where the function Ψoϕ is bounded by a function F from R

d

to R+ that satisfies a sub-multiplicative property and in which c > 0 i a real constant







∀x ∈ R
d, |Ψ(ϕ(x))| ≤ F (x) and F (x+ y) ≤ C(1 + F (x))c(1 + F (y))c

E
[
|X|2(b−1)F (X)4c

]
< +∞.

(B5)

Now, we can devise our global procedure which consists in approximating both V aRα and CV aRα
(in its I.S. version) with the optimal I.S. parameters. So, we are lead to devise the following
algorithm, in which Zn denotes the 4-tuple (ξn, Cn, θn, µn),

Zn = Zn−1 − γnL(Zn−1,Xn) (30)

where (Xn)n≥1 is an i.i.d. sequence with the same distribution as X and







L1(ξ, θ, x) := e−ρ|θ|
b
(

1 − 1
1−α 1{ϕ(x+θ)≥ξ}

p(x+θ)
p(x)

)

L2(ξ, C, µ, x) := C − w̄(ξ, µ, x)

L3 (ξ, θ, x) := e−2ρ|θ|b1{ϕ(x−θ)≥ξ}
p2(x−θ)

p(x)p(x−2θ)
∇p(x−2θ)
p(x−2θ)

L4 (ξ, µ, x) := e−2ρ|µ|b

1+F (−µ)2c+Ψ(ξ)2
(Ψ(ϕ(x− µ)) − Ψ(ξ))2 1{ϕ(x−µ)≥ξ}

p2(x−µ)
p(x)p(x−2µ)

∇p(x−2µ)
p(x−2µ)

(31)

with

w̄(ξ, µ, x) := Ψ(ξ) +
1

1 − α
(Ψ(ϕ(x+ µ)) − Ψ(ξ)) 1{ϕ(x+µ)≥ξ}

p(x+ µ)

p(x)
. (32)

Proposition 3.1. (Efficient computation of VaR and CVaR) Suppose that (A2)a (with a=1), (A3),
(B1), (B2), (B3), (B4) and (B5) are fulfilled and that the step sequence (γn)n≥1 satisfies (A1).
Then,

Zn
a.s.−→ z∗ := (ξ∗, C∗, θ∗α, µ

∗
α)

where (Zn)n≥0 is the recursive algorithm defined by (30), where C∗ = Ψ-CV aRα and (ξ∗, θ∗α, µ
∗
α) ∈

T ∗ := {(ξ, θ, µ) |ξ ∈ arg minV, (θ, ξ) ∈ {∇Q1 = 0} , (µ, ξ) ∈ {∇Q2 = 0}} .

Proof. First we demonstrate that the 3-tuple (ξn, θn, µn) a.s. converges toward (ξ∗, θ∗α, µ
∗
α) as

n→ +∞. Then, the convergence of (Cn)n≥1 toward C∗ will follow from standard arguments already
used in the proof of Proposition 2.2. In order to apply the extended Robbins-Monro Theorem, we
have to check the following facts:

• Mean reversion: the mean function of the three components procedure is defined by

l(z) := (E [L1(ξ, θ,X)] ,E [L3(ξ, θ, x)] ,E [L4(ξ, µ, x)])

with,

E [L1(ξ, θ,X)] =

(

1 − 1

1 − α
P (ϕ(X) ≥ ξ)

)

e−ρ|θ|
b

,
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E [L3(ξ, θ, x)] = e−2ρ|θ|b∇Q1 (θ, ξ)

and

E [L4(ξ, µ, x)] =
e−2ρ|µ|b

1 + F (−µ)2c + Ψ(ξ)2
∇Q2 (µ, ξ)

so that, {l = 0} = T ∗ is such that ∀z∗ ∈ T ∗ and ∀z = (ξ, θ, µ) ∈ R × R
d × R

d \ T ∗

(z − z∗, l(z)) = e−ρ|θ|
b

(ξ − ξ∗)
(P(ϕ(X) ≤ ξ) − α)

1 − α
+
e−2ρ|θ|b

1 − α
〈θ − θ∗α,∇Q1(θ, ξ)〉

+
e−2ρ|µ|b

(1 − α)(1 + F (−µ)2c + Ψ(ξ)2)
〈µ− µ∗α,∇Q2(µ, ξ)〉 > 0.

• Linear growth: Component by component it is easy to demonstrate that this condition is fulfilled:

E
[
L1(ξ, θ,X)2

]
≤ C

(

1 + E

[

e−2ρ|θ|b 1{ϕ(X+θ)≥ξ}
p2(X + θ)

p2(X)

])

= C

(

1 + E

[

e−2ρ|θ|b p(X)

p(X − θ)

])

.

Now, let f be the convex function defined on R
d by f(x) = log p(x)+ρ|x|b. Then, for every x, θ ∈ R

d,

log

(
p2(x)

p(x− θ)p(x+ θ)

)

= 2f(x) − f(x− θ) − f(x+ θ) + ρ(|x+ θ|a + |x− θ|a − 2 |x|a).

Note that x = (x−θ)+(x+θ)
2 , so that using the convexity of f and the following inequality (valid if

b ∈ (0, 2])

∀u, v ∈ R
d, |u|b + |v|b ≤ 2

(∣
∣
∣
∣

u+ v

2

∣
∣
∣
∣

b

+

∣
∣
∣
∣

u− v

2

∣
∣
∣
∣

b
)

yields

p2(x)

p(x− θ)
≤ e2ρ|θ|

b

p(x+ θ),

so that

E

[

e−2ρ|θ|b p(X)

p(X − θ)

]

≤ 1.

L3 and L4 are specially designed to fulfill this condition (for more details, one can refer to [22]).

Now, we are interested by the rate of convergence of the two components procedure (ξ̄n, C̄n).
It shows that the algorithm behaves as expected under quite standard assumptions: it satisfies a
Gaussian CLT with optimal rate and minimal variances.

Theorem 3.2. Suppose that (A2)a with a > 1, (A3), (B1), (B2), (B3), (B4) and (B5) are satisfied
and that the positive step sequence is γn = γ1

np with 1
2 < p < 1 and γ1 > 0. Then, the empirical

mean of the algorithm (30) satisfies the following local CLT:

√
n
(
Z̄n − z∗

) L→ N (0,Σ∗) as n→ +∞
where







Σ∗
1,1 = 1

f2
ϕ(X)

(ξ∗)
Var( 1{ϕ(X+θ∗α)≥ξ∗}

p(X+θ∗α)
p(X) )

Σ∗
1,2 = Σ∗

2,1 = 1
(1−α)fϕ(X)(ξ∗)Cov

(

(Ψ(ϕ(X + µ∗α)) − Ψ(ξ∗))1{ϕ(X+µ∗α)>ξ∗}
p(X+µ∗α)
p(X) ,

1{ϕ(X+θ∗α)≥ξ∗}
p(X+θ∗α)
p(X)

)

Σ∗
2,2 = 1

(1−α)2
Var

(

(Ψ(ϕ(X + µ∗α)) − ξ∗) 1{ϕ(X+µ∗α)≥ξ∗}
p(X+µ∗α)
p(X)

)

.
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Proof. The proof is built on the same way that the one of Theorem 2.4. Since, by the definition of
translation by mean, h1(z) = E [L1(ξ, θ, µ,X)] = E [H1(ξ,X)] and h2(z) = E [L2(ξ, C, θ, µ,X)] =
E [H1(ξ, C,X)], the algorithm (30) can be written as

{
Zn+1 = Zn − γn+1 (l(Zn) + ǫ̃n) , n ≥ 0
Z0 = (ξ0, 0) , ξ0 ∈ L1(P)

(33)

where the two first components of h are the same function as the ones in the proof of Theorem 2.4
and (ǫ̃n)n≥1 denotes the Fn-adapted martingale increments sequence with







ǫ̃1,n := 1
1−α

(

P (ϕ(X) ≥ ξ)|ξ=ξn − 1{ϕ(Xn+1+θn)≥ξn}
p(Xn+1+θn)
p(Xn+1)

)

ǫ̃2,n := 1
1−α

(
E[(Ψ(ϕ(X)) − Ψ(ξ)) 1{ϕ(X)≥ξ}]|ξ=ξn

−(Ψ(ϕ(Xn+1 + µn)) − Ψ(ξn)) 1{ϕ(Xn+1+µn)≥ξn}
p(Xn+1+µn)
p(Xn+1)

)

.

One can without difficulties demonstrate that the sequence (ǫ̃n)n≥1 satisfies (i) − (iv) of (18).

Remark 3.1. • Actually, only a rough estimate of θ∗α and µ∗α is needed to reduce the asymptotic
variance of the VaR-CVaR algorithm. That’s why we don’t specify the asymptotic variance of the
I.S. procedure. one can replace the unconstrained I.S. parameters (θn, µn) by any sequences (θ̃n)n≥0

(θ̃0 ∈ R
d) and (µ̃n)n≥0 (µ̃0 ∈ R

d) such that θn and µn are Fn-adapted and a.s. converge toward θ∗α
and µ∗α and obtain the same Gaussian CLT.

• In the first Central Limit Theorem (Theorem 2.4) for quantile estimation, the factor α(1 − α) is
the variance of the indicator function of the event {ϕ(X) ≥ ξ∗}. With our recursive I.S. procedure,
it is replaced by the variance of the shifted indicator function modified by the measure change:

Var
(

1{ϕ(X+θ∗α)>ξ∗}
p(X+θ∗α)
p(X)

)

. For further details on the rate of convergence of the unconstrained

recursive importance sampling procedure, we refer to [22].

• According to (B3), if there exists a positive real number ρ such that x 7→ log(p(x)) + ρ|x|b is

concave, then ∃ C > 0, such that p(x) ≤ Ceρ|x|
b
(|x| + 1) which implies that the function F in

(B5) satisfies F (x) ≤ C
′
e

λ
4ce

|x|e for some e ∈ (0, b), some λ > 0 and with ce = 1 if e ∈ [0, 1],
ce = 2

e
2 if e > 1. Consequently, for pratical implementation, to control the growth of the I.S.

parameters (especially when ϕ has a non-isotropic behaviour near infinity), it may be more efficient
to implement the renormalized procedure, namely:

L3 (ξ, θ,X) :=
e−2ρ|θ|b

1 + ||θ||2
1{ϕ(X−θ)≥ξ}

p2(X − θ)

p(X)p(X − 2θ)

∇p(X − 2θ)

p(X − 2θ)

and

L4(ξ, µ,X) :=
e−2ρ|µ|b− λ

2ce
|µ|e

1 + ||µ||2
(Ψ(ϕ(X − µ)) − Ψ(ξ))2 1{ϕ(X−µ)≥ξ}

p2(X − µ)

p(X)p(X − 2µ)

∇p(X − 2µ)

p(X − 2µ)

to prevent the algorithm to take high values during the first steps, thus controling the growth of
the importance sampling parameters.

Now, let us point out an important issue. For the sake of simplicity, we consider the VaR-CVaR
algorithm so that Ψ ≡ Id. The algorithm (30) raises an important problem numerically talking.
It is due to the fact that basically, we are dealing with rare events to update the VaR-CVaR and
the importance sampling procedures. Somehow, we have two algorithm ξn and (θn, µn) that are
in competitive conditions, i.e. on one hand, we added an I.S. procedure to (ξn)n≥1 to improve the
convergence toward ξ∗, and on the other hand, the adjustment of the parameters (θn, µn) are based
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on samples Xn+1 satisfying ϕ(Xn+1 − θn) > ξn and ϕ(Xn+1 − µn) > ξn which are rare events. For
the sake of simplicity, at the beginning of the global algorithm, there are two basic situations:

� If we don’t have any idea how to start the VaR procedure (ξ0 = 0 for instance), at the very
begining of the algorithm, the I.S. procedure is going to be updated according to samples that do
not correspond to the tail of distribution. As a consequence, it may twist the distribution to an
area that is not the good one and the parameters may remain “stuck” at the very begining of the
I.S. procedure. This may lead to poor performance in terms of variance reduction.

� If we have a relatively good approximation ξ0 of ξ∗, we may observe few replications in which to
base the adjustment of θn and µn. This may result again in a poor performance in terms of both
VaR and CVaR estimation and variance reduction.

To circumvent this problem, we propose to break the link between the VaR and the I.S. proce-
dure by introducing a second artificial VaR procedure that will lead the I.S. parameters into the
critical risk area.

3.2 How to control the move to the critical risk area?

As already noted, to obtain good estimates and efficient variance reduction it is crucial to sample
in the good direction. An idea in order to control the growth of θn and µn at the beginning of
the algorithm, since we have no idea on how to twist the distribution of ϕ(X), is to move slowly
toward the critical risk area at level α in which ϕ(X) exceeds ξ by replacing α by a deterministic
sequence αn that converges to α in (30). Since the algorithm for the CVaR component Cn is free of
α, by doing so, we only modify the VaR computation procedure ξn. The function H1 of (16) now
depends of the current step of the procedure, namely H1,n−1(ξn−1,Xn) = 1− 1

1−αn−1
1{ϕ(Xn)≥ξn−1}

and the V aRα algorithm ξn becomes

ξ̂n = ξ̂n−1 − γnH1,n−1(ξ̂n−1,Xn), n ≥ 0, ξ̂0 ∈ L1(P). (34)

The sequence ξ̂n is only designed to drive smoothly the new I.S. procedures θ̂n, µ̂n toward the
critical risk area. Consequently, we are neither going to use it in order to approximate ξ∗ nor to
compute C∗ but only to “help” the unconstrained recursive I.S. algorithm. This new procedure
differs slightly from the original procedure, i.e. if we define the reminder sequence (rn)n≥1 by
rn := H1,n−1(ξ̂n−1,Xn) −H1(ξ̂n−1,Xn), n ≥ 1, the resulting procedure can be written as,

ξ̂n = ξ̂n−1 − γn(H1(ξ̂n−1,Xn) + rn), n ≥ 0, ξ̂0 ∈ L1(P). (35)

To obtain the convergence of the VaR-CVaR algorithm, we only have to check that ξ̂n still converges
toward a V aRα-valued random variable. In practice, we plug a deterministic sequence (αn)n≥1 that
converges toward α which is stepwise constant to let the importance sampling parameters move
toward the good direction.

Proposition 3.3. (Convergence of the new procedure) Suppose that the assumptions of Proposition
2 are satisfied and that (αn)n≥0 is a deterministic sequence of real numbers taking its value in ]0, 1[
which converges to α and such that

∑

γn(αn − α)2 < +∞. (36)

Then, the recursive procedure defined by (35) a.s. converges toward ξ∗.

Proof. The reminder sequence (rn) is Fn-adapted and ∃C > 0 such that

|rn| ≤ C (αn−1 − α) , n ≥ 0
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so that,
∑

γn|rn|2 < +∞.

Consequently, according to Robbins-Monro Theorem with a reminder part, the procedure still
converges toward a random variable taking its value in {V ′ = 0}.

The aim of this new VaR procedure is to drive and control the two importance sampling recursive
procedures. Indeed, in order to define a new unconstrained I.S. procedure (θ̂n, µ̂n), we only need
to replace ξ∗ by ξ̂n into the importance sampling algorithm (30)

{
θ̂n+1 = θ̂n − γn+1L3(ξ̂n, θ̂n,Xn+1) n ≥ 0, θ0 ∈ R

d

µ̂n+1 = µ̂n − γn+1L4(ξ̂n, µ̂n,Xn+1), n ≥ 0, µ0 ∈ R
d.

(37)

To establish the convergence of this new procedure, we rely on the Extended Robbins-Monro
Theorem with reminder part. In the same way as the proof of Proposition 3.1, it is easy to see that
if the same assumptions are fullfiled and that the assumption on the sequence (αn)n≥1 (36) holds
then the mean reversion and the linear growth assumptions are satisfied. Finally, the procedure we
use to estimate the couple (ξ∗, C∗) is the algorithm (30) with (θ̂n, µ̂n) for the importance sampling

parameters. Let us note that since the sequence
(

θ̂n, µ̂n

)

is Fn-adapted and converges towards

(θ∗α, µ
∗
α), the procedure (30) (with θ̂n and µ̂n) satisfies the same CLT.

4 Additional remarks

4.1 Extension to exponential change of measure: the Esscher transform

Considering an exponential change of measure (also called Esscher transform) instead of the mean
translation is a rather natural idea that has already been investigated in [17] and [22] to extend the
constrained importance stochastic approximation algorithm with repeated projections introduced
in [1]. We briefly introduce the framework and give the main results without any proofs (for more
details, see [22] and [11]). Let ψ denote the cumulant generating function (or log-Laplace) of X
i.e. the function defined by ψ(θ) := log E[e〈θ,X〉]. We assume that ψ(θ) < +∞, which implies that
ψ is an infinitely differentiable convex function and define

pθ(x) = e〈θ,x〉−ψ(θ)p(x), x ∈ R
d.

We denote by X(θ) any random variable with distribution pθ. We make the following assumption
on the function ψ

lim
|θ|
ψ(θ) − 2ψ

(
θ

2

)

= +∞ and ∃δ > 0, θ 7→ ψ(θ) − δ|θ|2 is concave. (Hes
δ )

The two functionals to be minimized are

Q1(θ, ξ
∗) := E

[

1{ϕ(X)>ξ∗}e
−〈θ,X〉+ψ(θ)

]

and
Q2(µ, ξ

∗) := E

[

(Ψ(ϕ(X)) − Ψ(ξ∗))21{ϕ(X)>ξ∗}e
−〈µ,X〉+ψ(µ)

]

According to Proposition 3 in [22] as soon as ψ satisfies (Hes
δ ) and that,

∀ξ ∈ R,∀θ ∈ R
d, E[|X|e〈θ,X〉] < +∞ and E[|X|Ψ(ϕ(X))2e〈θ,X〉] < +∞ (38)
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the functions Q1(., ξ) and Q2(., ξ) are finite, convex, differentiable on R
d, go to infinity at infinity,

so that arg minQ1(, ξ) and arg minQ2(, ξ) are non empty. Moreover,∀ξ ∈ R their gradients are
given by

∇Q1(θ, ξ) = E

[

(∇ψ(θ) −X(−θ))1{ϕ(X(−θ))>ξ}
]

eψ(θ)−ψ(−θ)

and,

∇Q2(µ, ξ) = E

[

(∇ψ(µ) −X(−µ))(Ψ(ϕ(X(−µ))) − Ψ(ξ))1{ϕ(X(−µ))>ξ}
]

eψ(µ)−ψ(−µ)

with ∇ψ(θ) = E[Xe〈θ,X〉]

E[e〈θ,X〉]
. Now, the main result of this section is the following theorem (for more

details, see [22] and [11]).

Theorem 4.1. Suppose that ψ satisfies (Hes
δ ) and that (A2)1, (A3) hold. Assume that (38) is

fullfiled and that

∀x ∈ R
d, |Ψ(ϕ(x))| ≤ Ce

λ
4
|x| and E[|X|2eλ|X|] < +∞.

Then, the recursive procedure defined by

Zn+1 = Zn − γn+1L(Zn,Xn+1), n ≥ 0, Z0 = (ξ0, C0, θ0, µ0) (39)

where (γn)n≥1 satisfies the usual step assumption (A1), Zn := (ξn, Cn, θn, µn) and L can be written

L(Zn,Xn+1) :=
(

L1

(

ξn, θn,X
(θn)
n+1

)

, L2

(

ξn, Cn, µn,X
(µn)
n+1

)

, L3

(

ξn, θn,X
(−θn)

)

, L4

(

ξn, µn,X
(−µn)

))

each component being defined by







L1 (ξ, θ, x) := 1 − 1
1−α1{ϕ(x)>ξ} e

ψ(θ)−〈x,θ〉,
L2 (ξ, C, µ, x) := C − w̄(ξ, µ, x),
L3 (ξ, θ, x) := 1{ϕ(x)>ξ}(∇ψ(θ) − x),

L4 (ξ, µ, x) := e−
λ
2

√
d|∇ψ(−µ)|(Ψ(ϕ(x)) − Ψ(ξ))21{ϕ(x)>ξ}(∇ψ(µ) − x),

and where w̄(ξ, µ, x) := Ψ(ξ)+ 1
1−α (Ψ(ϕ(x))−Ψ(ξ))1{ϕ(x)>ξ} e

ψ(µ)−〈µ,x〉 a.s. converges toward z∗ :=
(ξ∗, C∗, θ∗α, µ

∗
α), ξ∗ being a square integrable V aRα-valued random variable, C∗ = Ψ-CV aRα(ϕ(X)),

θ∗α being an arg minQ1(., ξ
∗)-valued (square integrable) random vector and µ∗α being an arg minQ2(., ξ

∗)-
valued (square integrable) random vector.

4.2 Extension to infinite dimensional setting

In the above sections, we proposed our algorithm in a finite dimensional setting where the value
of the loss L = ϕ(X) is a function of a random vector having values in R

d. This is due to the
fact that generally the value of a portfolio may depend on a finite number of decisions which were
taken in the past. In Gaussian frameworks, X is a Gaussian vector. However in more sophisticated
models or portfolio X can be a vector of Brownian increments related to the Euler scheme of a
diffusion. Thus, the value of the loss at the horizon time T − t may depend on a large number of
dates in the past t0 = t < t1 < t2, ... < tN = T − t, with N = 250 for a portfolio with time interval
T − t = 1 year. For example, let’s take a simple portfolio composed of short positions on 250 calls
with a maturity at each tk and a strike K. The loss at time tN = 1 year can be written:

L =
N∑

k=1

er(tN−tk)(Stk −K)+ − ertNCk0 ,
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where Ci0 denotes the price of the call of maturity ti and strike K, with

Stk+1
= Stke

(r−σ2

2
)(tk+1−tk)+σ

√
(tk+1−tk)Zk .

So that, X = Z = (Z1, ..., Z250) is a Gaussian vector with d = 250. Consequently, with our above
procedure, θn and µn are two vectors of dimension d and we have to control the growth of each
component. If one grows too quickly and take too high values, it may provides bad performance and
bad estimates of both VaR and CVaR. To circumvent this problem, one can reduce the dimension
of the problem by choosing the same shift parameters for several dates, i.e. for instance

θn = (θ1
n, .., θ

1
n

︸ ︷︷ ︸

10 times

, ..., θ25
n , .., θ

25
n

︸ ︷︷ ︸

10 times

).

Now, we can run the importance sampling algorithm for θ1, ..., θ25 so that, we have to deal with a
procedure in dimension 25. It is sub-optimal with respect to the procedure in dimension 250 but
it is more tractable. Another relevant example is a portfolio composed by only one barrier option,
for instance a Down & In Call option

ϕ(X) = (XT −K)+1 {min{0≤t≤T}Xt≤L}

where the underlying X is a process solution of the path-dependent SDE

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x ∈ R
d, (40)

W = (Wt)t∈[0,T ] being a standard Brownian motion. A naive approach is to discretize (40) by an
Euler-Maruyama scheme X̄ = (X̄tk)k∈{0,...,n}

X̄tk+1
= X̄tk + b(X̄tk)(tk+1 − tk) + σ(X̄tk)(Wtk+1

−Wtk), X̄0 = x0 ∈ R.

This kind of approximation is known to to be poor for this kind of options. In this case, our I.S.
parameters θ and µ are n-dimensional vectors which corresponds to the number of steps in the
Euler scheme. Now, if you consider a portfolio composed by several barrier options with different
underlyings, the dimension can increase greatly and becomes an important issue, so that our first
I.S. procedure is no longer acceptable and tractable. To overcome this problem, the idea is to shift
the entire distribution of X in (40) thanks to Girsanov transform. This last case is analyzed and
investigated in [22]. It can be adapted to our framework (it is developed in [11]).

5 Numerical examples

For the sake of simplicity, we focus in this section on the finite dimensional setting and on the
computation of the CV aRα (Ψ ≡ Id). We consider first the usual Gaussian framework in which
the exponential change of measure and translation by mean are the same, then we illustrate the
algorithm (39) in a simple case.

5.1 Gaussian framework

In this setting, X = N (0, Id) and its density is given on R
d by

p(x) = (2π)−
d
2 e−

|x|2

2 , x ∈ R
d
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so that (B3) and (B4) are satisfied with ρ = 1
2 and b = 2. In this setting, we already noticed that

L3 (ξ, θ, x) :=
1

1 + ||θ||2
1{ϕ(X−θ)≥ξ}(2θ − x)

and

L4(ξ, µ, x) :=
e−

λ
2
|µ|e

1 + ϕ2(−µ)
(ϕ(X − µ) − ξ)2+ (2µ− x).

Moreover, we use a stepwise constant sequence αn that converges slowly toward α. For instance, if
α = 0.95, we firstly set αn = 0.5 during 5000-10000 replications to let θ̂n and µ̂n move towards the
critical risk area, then we set αn = 0.8 for 5000-10000 replications and then finally set αn = 0.95.
We consider three different portfolios of options (puts and calls) on 1 and 5 underlying assets
except for the last case which is particular. In the third case, we study the behaviour of a portfolio
composed by a power plant that produces electricity from gas with short positions in calls on
electricity. The assets are modeled as geometric brownian motion for the first two cases. In the
third case, the assets (electricity and gaz day-ahead prices) are modeled as exponential of an
Ornstein-Uhlenbeck process. This last derivative is priced using an approximation of Margrabe
formulae. Each underlying assets are assumed uncorrelated except in the last case. We assume an
annual risk free interest rate of 5%. In each case, we use three different values of loss probability
P (ϕ(X) ≥ ξ∗) = 1 − α = 5%, 1%, 0.5%. This probability is specified in the tables. We use the
following test portfolios:

� Short position in 1 put with strike K = 110 and maturity T = 1 year on a stock whose initial
price is S0 = 100 and volatility σ = 20%.

ϕ1(X) := (K − ST )+ − erTP0

with

ST := S0e

““

r−σ2

2

”

T+σ
√
TX

”

where X = N (0, 1) and P0 is the initial price for which we sell the put option.

� Short positions in 10 calls and 10 puts on each of 5 underlying assets, all options having the
same maturity 0.25 years with several strikes, each underlying assets having a volatility of 20% and
are assumed to be uncorrelated.

� Short position in a power plant that produces electricity day by day with a maturity of T = 1
month and 30 long positions in calls on electricity day-ahead price with the same strike K = 60.
Electricity’s and gas’s initial spot prices are Se0 = 40$/MWh and Sg0 = 3$/MMBtu with a Heat
Rate equals hR = 10Btu/kWh and generation costs C = 5$/MWh. The two spot prices have a
correlation of 0.4. The payoff can be written

ϕ3(X) =
30∑

k=1

(

er(T−tk)
(
Setk − hRS

g
tk
− C

)

+
− P c0e

rT
)

+
(

erTC0 − er(T−tk)
(
Setk −K

)

+

)

This is a sum of spark spread options where we decide to exchange gas and electricity each day
during one month.

From a theoretical point of view, we considered the purely adaptive approach where we approx-
imate (ξ∗, C∗, θ∗α, µ

∗
α) using the same innovation sequences. From a numerical point of view, it is

possible to break the algorithm into two parts. Firstly, we can compute a rough estimate of the
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optimal I.S. parameters
(

θ̂M , µ̂M

)

with a number of steps M < N (compared with N , M can be

small) and in a second time, compute the V aRα and the CV aRα with the resulting I.S. parameters
estimate.
The results displayed in the following tables corresponds to Value-at-Risk, Conditional Value-at-
Risk, variance reduction ratios for both VaR and CVaR procedure for three different values of α:
α = 95%, α = 99%, α = 99.5%. Variance ratios corresponds to the ratio of variances using the
averaged procedure of (16) and using (30). The results indicate that the I.S. procedure yields
greater variance reduction, especially when α is closed to 1. The variance ratios in the table are
estimated using different number of steps for the algorithm.

We observed that the unconstrained adaptive I.S. procedure converges very quickly. Only
10000−20000 steps are needed to obtain a good estimate of θ∗α and µ∗α. Then, one can freeze those
two parameters and let (ξ̄n, C̄n)n≥1 converges.
The results indicate that the variance reduction achieved in estimating the Conditional Value-at-
Risk is greater than the one achieved in estimating the Value-at-Risk. This can be explained by the
presence of the factor 1

fϕ(X)(ξ∗) in the asymptotic variance of (19). This factor can be very large,

especially when ξ∗ is in the tail of the distribution, since the density may be close to zero whereas
this factor doesn’t appear in the asymptotic variance of the CV aR procedure.

Table 1: Portfolio 1 Results
Number of steps α VaR CVaR RVVaR RVCVaR

10 000 95% 24.6 29.9 5.5 30.5
99% 34.4 37.5 11.1 125.3

99.5% 37.8 41.4 13.4 192.9
100 000 95% 24.6 30.4 6.6 32.2

99% 34.18 37.9 11.5 127.9
99.5% 37.3 40.7 15.1 185

500 000 95% 24.6 30.3 7.7 31.3
99% 34.2 38 14.6 118.4

99.5% 37.3 40.5 15.5 184

Table 2: Portfolio 2 Results
Number of steps α VaR CVaR RVVaR RVCVaR

10 000 95% 339 440.5 6.5 14.9
99% 493.1 561.4 10.1 24.3

99.5% 540.1 606.4 18.2 37.9
100 000 95% 349.8 439.7 6.7 17

99% 495.7 563.8 11.3 28.6
99.5% 544.8 607.8 18.9 40.3

500 000 95% 352.4 439.6 6.8 17.3
99% 495.2 563 11.1 27.7

99.5% 545.3 608.4 19.2 37

5.2 Esscher transform: the NIG distribution

Now, we consider a simple case of a portfolio composed by a long position on a Call option with
strike K = 0.6 and maturity T = 1 year, where the underlying XT (X0 = 0) is a normal inverse
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Table 3: Portfolio 3 Results
Number of steps α VaR CVaR RVVaR RVCVaR

10 000 95% 115.7 150.5 3.4 6.8
99% 169.4 196 8.4 12.9

99.5% 186.3 213.2 13.5 20.3
100 000 95% 118.7 150.5 4.5 8.7

99% 169.4 195.4 12.6 17.5
99.5% 188.8 212.9 15.6 29.5

500 000 95% 119.2 150.4 5 9.2
99% 169.8 195.7 13.1 18.6

99.5% 188.7 212.8 17 29

Gaussian variable XT≈NIG(α, β, δ, µ), α > 0, |β| ≤ α, δ > 0, µ ∈ R. Its density is given by

pXT
(x, α, β, δ, µ) :=

αδK1(α
√

δ2 + (x− µ)2)

π
√

δ2 + (x− µ)2
eδγ+β(x−µ),

where K1 is a modified Bessel function of the second kind and γ =
√

α2 − β2. Note that the
generating function of the NIG distribution is given by

ψ(θ) = µθ + δ(γ −
√

α2 − (β + θ)2),

and is not well defined for every θ ∈ R so that we change the algorithm parametrization (see section
4.3 of [22]). We want to compare the variance reduction achieved by the translation of the mean
(see section 3.1) and the one achieved by the Esscher Transform (see section 4.1).

� Translation case. The functions H3 and H4 of the I.S. procedure are defined by:

H3(ξ, θ,X) :=
e−2|θ|

1 + |θ|1ϕ(X−θ)
p′(X − 2θ)

p(X)

(
p(X − θ)

p(X − 2θ)

)2

,

and

H4(ξ, µ,X) :=
e−2|µ|

1 + |µ| (ϕ(X − µ) − ξ)2+
p′(X − 2µ)

p(X)

(
p(X − µ)

p(X − 2µ)

)2

,

where p′ is easily obtained using the relation on the modified Bessel function K ′
1(x) = 1

x
K1(x) −

K2(x).

� Esscher Transform. In this approach, the functions H3 and H4 are defined by

H3(ξ, θ,X) :=
e−|θ|

1 + |θ|1ϕ(X(−θ))≥ξ(∇ψ(θ) −X(−θ)),

and

H4(ξ, µ,X) :=
e−|µ|

1 + |µ|(ϕ(X(−µ)) − ξ)2+(∇ψ(µ) −X(−µ)),

where X(±θ) ≈ NIG(α, β ± θ, δ, µ).
The loss of the portfolio can be written L = ϕ4(XT ) = 50(eXT −K)+ − erTC0. Note that the

price C0 is computed by a crude Monte Carlo and is approximately equal to 42. The parameters
of the NIG random variable XT are α = 2.0, β = 0.2, δ = 0.8, µ = 0.04. Table 4 compares
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Table 4: Portfolio 4 Results
Number of steps α VaR CVaR RV tr

VaR RV tr
CVaR RV es

VaR RV es
CVaR

10 000 95% 85.8 215.7 5 10 4.2 58.8
99% 217 518 6 12 8 60

99.5% 304 748 8 25 8.9 110
100 000 95% 87.2 215.1 5 12 4.5 60

99% 218 521 5 12 8.2 70
99.5% 303.5 747.8 7 30 12 100

500 000 95% 87.9 215.6 5 9 5 57
99% 227 518.9 5.5 11.8 11.5 68

99.5% 312.8 741.8 6 31 10 123

the variance ratios of the V aRα and CV aRα algorithms achieved by the translation of the mean
(RV tr

V aR and RV tr
CV aR) and the one achieved by the Esscher Transform (RV es

V aR and RV es
CV aR)

The I.S. procedure is very efficient when P(ϕ(X) ≥ ξ∗) = 1 − α is close to zero and becomes
more and more efficient that α grows to 1. Even for the complex portfolio (3) whereX is a Gaussian
vector with d = 60, it is possible to provide good estimate with a great variance reduction for both
V aRα and CV aRα.

Concluding Remarks

In this article, we propose a recursive procedure to compute efficiently the Value-at-Risk and
the Conditional Value-at-Risk using the same innovation for both procedure. In our approach, for
a given risk level α, the V aRα and the CV aRα are selected simultaneously by a regular Robbins-
Monro algorithm. Ruppert and Polyak’s averaging principle provides an asymptotically efficient
procedure which satisfies a Gaussian CLT. However, due to the slow and chaotic convergence of
the VaR component since we are interested by rare events, the regular version of this algorithm
cannot be used in practice. To speed-up and thus greatly reduce the number of scenarios, we
devise an unconstrained recursive I.S. procedure. Then, at each step of the regular procedure, we
plug the approximation obtained by the I.S. algorithm. The resulting procedure satisfies a CLT
with minimal variances. To optimize the move to the critical risk area, the risk level α can be
replaced by a deterministic sequence that converges slowly (stepwise constant in practice) to α.
This produces a new VaR algorithm (ξ̂n)n≥1 that controls the parameters (θn, µn). Numerically
speaking, the resulting procedure converges efficiently and can greatly reduce variance. In current
work, we extend the methods to portfolio whose losses depend of general path-dependent diffusion.
This framework has particularly practical relevance. Numerical tests show that the VaR-CVaR
procedure with I.S. is robust and is effective. Moreover, we are extending the method to low-
discrepancy sequences instead of pseudo-random numbers into our procedure. This setting raises
very interesting theoretical problems (for more details, see [11]).
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