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Abstract: One of the prerequisites for formal verification of logic controllers using model-
checking is the formalization of properties to verify. The work presented in this paper 
proposes a method to elaborate the formal properties of a logic controller from a Fault 
Tree Analysis (FTA). The method developed here extends the traditional FTA with event 
ordering and timed information by introducing specific gates which model logic and 
physical time constraints. The behavior of these gates is then formalized in the form of 
state automata; formal properties are derived from the set of automata obtained at the end 
of FTA. A simple case study exemplifies the method. 
 
Keywords: Dependability, Fault tree analysis, Formal verification, Event ordering, Timed 
automata. 

 
 
 

1. INTRODUCTION 
 
Model-checking is a very popular formal verification 
technique relying on state automata theory (Bérard, 
et al., 2001). Its principle is to check whether formal 
properties hold (or do not hold) on a state model of 
the system. Hence, formal verification of logic 
controller using model-checking implies to build a 
state model of the controller as well as to write the 
formal properties that express in a formal way the 
application requirements that must be satisfied. 
 
Unfortunately properties formalization is a difficult 
task because the application requirements are 
expressed in industry in a quite informal way, i.e. 
some sentences in natural language or drawings, but 
never with sound mathematical statements. Moreover 
the formalisms used to state formally properties in 
model-checking environments (timed or untimed 
temporal logics or timed automata) are totally 
unknown by automation engineers.  
 
 
* The Mexican Council of Technology CONACYT 
finances Israel Barragán. 

The work presented in this paper proposes a 
methodology to facilitate the identification and 
formalization of properties by means of an analysis 
technique commonly employed in industry for 
critical systems design: fault-tree analysis (FTA).  
 
Our aim is to take benefit of the results of a fault tree 
analysis, developed from the application 
requirements, to elaborate formal properties that will 
be later inputs of a model-checker. Therefore, this 
work enables to bridge the gap between fault tree 
analysis, a widespread fault forecasting method, and 
model-checking, a promising fault removal method. 
 
Since we deal with formal verification of controllers, 
the preliminary fault-tree analysis must take into 
account not only the random faults produced by 
failures of physical components of the process but 
also the faults issued from controllers. These latter 
faults come from designers’ errors or 
misinterpretation of the control requirements and 
behave as systematic faults because they can be 
repeated all the time while the program is running. 
 
 



 

     

The inclusion of controller faults in fault trees 
requires an extended FTA vocabulary, in which the 
notions of events ordering and physical time exist 
and can be used to describe relationships among 
input conditions that trigger the fault and output 
conditions with which the fault is manifested. This 
vocabulary is composed of temporal (untimed) and 
timed gates1 whose behaviors are formalized using 
state automata. 
 
This paper is structured as follows. The proposed 
method is outlined in section 2. Section 3 presents 
the extended FTA vocabulary, while section 4 deals 
with the formalization of the gates of this 
vocabulary. In section 5, a case study is developed so 
as to exemplify the overall method. Conclusions and 
prospects are discussed in the last section. 
 
 

2. METHOD OVERVIEW 
 
Figure 1 depicts the faults forecasting and removal 
approach that we advocate. Our contribution stands 
on the right side of this figure and can be split in two 
steps: design of a fault tree that includes systematic 
controller faults, and elaboration of the formal 
properties of the controller from the result of this 
FTA.  This set of properties will be then input into a 
model-checking tool, once the controller will be 
really designed and implemented. FTA and model-
checking are therefore performed at different phases 
of the design. 
 
Obtaining formal properties from a fault tree requires 
to have at one's disposal a formal definition of each 
elementary gate as well as formal composition rules 
that permit to translate any set of connected gates 
into a formal model, provided that this set is 
consistent. Hence, formalization of each fault tree 
gate and gates set is one of the main objectives of 
this research.  
 
Fault tree formalization has been addressed by 
several works (Schäfer, 2003), (Ortmeier, 2004) and 
(Reif, 2004). Nevertheless, it matters to highlight that 
the objective of these works is far different from that 
of ours. These researches indeed are aiming at 
proposing a modeling frame for safety analysis that 
combines FTA and model-checking; model-checking 
is then used to check completeness and correctness 
of a fault-tree from a formal model of the process. 
On the contrary, our approach uses sequentially these 
two techniques and focuses on the faults of the 
controller. Moreover, it will be shown in the next 
section that FTA taking into account controllers 
faults requires to introduce specific gates that are not 
taken into account in the works mentioned above.  

                                                 
1 Even if the term 'gate' is commonly used to describe 
combinatory logic operators, such as AND, OR, …, it will 
be used in what follows to name each basic operator of a 
FT whatever the behavior of this operator (purely 
combinatory behavior or behavior depending on events 
order or on physical time). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. From FTA to model-checking of controller 
 

3. MODELLING CONTROLLER FAULTS  
USING TEMPORAL AND TIMED GATES 

 
Fault Tree Analysis aims at finding all the associated 
sets of basic events that could cause that a given top 
event (a system failure of some kind) occurs. In 
classical FTA, the connections between the various 
identified basic events are carried out by means of 
logical gates, such as the AND-gate and the OR-gate, 
that express static relationships among their inputs. 
 
Then classical FTA assumes that the order in which 
the basic failures occur is irrelevant. However, 
especially in programmable systems, situations 
frequently arise in which the order of events is vital 
for the correct or faulty behavior of systems (Dugan, 
1999), (Bozzano and Villafiorita, 2003). In general, 
the representation of controller faults in fault trees 
requires mechanisms for specifications of temporal 
relationships among events. This requires the use of 
gates which have come to be known as "temporal" 
for they express faults that depend on events order. In 
this work, we adopt the use of temporal gates as a 
means of describing systematic faults but we focus 
on two  gates originally defined in an intuitive 
fashion in the fault tree handbook: “Priority AND” 
and “Exclusive OR with condition” (US N.R. 
Commission, 1981). The specification of these gates 
is given in Fig. 2. 
 
In the case of the PAND gate, the chronograms show 
that the output fault happens only if a and b occur, 
with a occurring before b. Here we include the 
important notion of “event persistence”, i.e. a must 
still be persistent when b appears. That means if a 
disappears before the appearance of b no fault will be 
detected at the output of the gate.  
 
Furthermore, the work developed by (Palshikar, 
2003) proposes the addition to the fault tree notation 
of other special gates to describe timed systems, i.e. 
systems whose faulty behaviors are described using 
physical time. There are several timed gates but in 
this paper we deal only with WHITHIN n and 
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FORPAST n gates. The representation of these two 
gates is also included in figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Temporal and timed gates 
 
Finally, the fault tree including systematic controller 
faults is constructed from static gates, temporal gates 
(if event-ordering description is necessary to describe 
a fault), and timed gates if timing constraints must be 
taken into account. The use of these gates preserves 
the simple, qualitative and visual nature of the fault 
trees. Nevertheless each temporal and timed gate 
must be endowed with a sound formal definition as 
shown in the next section. 
 
 

4. FORMALIZATION OF TEMPORAL AND 
TIMED GATES  

 
The aim of this section is to show that temporal and 
timed gates can be represented formally thanks to 
timed automata. Temporal gates can be also 
formalized using temporal logic statements as 
presented in (Barragan and Faure, 2005). 
Nevertheless using an only formalism to describe the 
behavior of these two types of gates is compulsory 
when addressing gates combination. 
 
4.1 Timed automata 
 
Timed automata is a modeling language that allows 
to describe the behavior of systems by means of 
finite state automata, extended with clocks and time 
constraints (Alur and Dill, 1994).  
 
To give the basic definitions of timed automata the 
following notations are used (Behrmann, 2004) : C is 
a set of clocks. In a set of integer valued variables. 
D(C,In) and B(C) are conjunctions over simple 
conditions of the form x□c or x–y□c, where x,y ∈ C 
for B(C) and x,y ∈ C or In for D(C,In). c ∈ ℵ and □ 

∈{<,≤,=,≥,>}. F(C,In) represents the assignment of 
values to clocks C and variables In which happens on 
the transition when an automaton changes its state. 
 
A timed automaton is a tuple (S, S0, C, A, E, I), 
where S is a set of states, So ∈ S is the initial state, C 
is the set of clocks, A is a set of actions and co-
actions, E ⊆ S x A x D(C,In) x F(C,In) x S is a set of 
edges between states with an action, a guard and a set 
of clocks to be reset and I: S→ B (C) assigns 
invariants to locations. See figure 3. 
 
A guard (firing condition) satisfies the following 
conditions: it evaluates to a Boolean; only clocks, 
integer variables, and constants are referenced; 
guards over clocks are essentially conjunctions. An 
assignment label is a comma-separated list of 
expressions only referred to clocks, integer variables, 
constants and only assigns integer values to clocks or 
integer variables. 
 
 
 
 
 
 
 
 
 
Fig. 3. Timed automata 
 
4.2 Priority AND gate 
 
Priority AND gate definition (according to  figure 2) 
determines that the fault happens if its input basic 
events occur in a specific order. The output fault 
happens only if a and b occur, with a occurring 
before b. Here we include the important notion of 
“event persistence”, i.e. a must still be persistent 
when b appears. That means if a disappears before 
the appearance of b no fault will be detected in the 
output of the gate.  
 
The state automaton modelling the gate is depicted in 
figure 4. The first edge shows that the action is the 
occurrence of the event a (represented by a rising 
edge). The guard is the condition that b is not true. 
The edge leading to the Fault state has the action 
“occurrence of the event b”. Its guard is the 
constraint that a must be persistent. Hence, the 
automaton reaches the fault state only if the events 
occur in the given order. A third edge produces the 
return to the Initial state. It symbolizes the condition 
that event a must still be persistent when b appears. 
If this is not the case (falling edge of a), the fault is 
not produced. The property to verify, obtained from 
this gate, holds if the Fault state is never reached. 
 
 
4.3 Exclusive OR gate with condition on one of 
inputs 
 
In this gate, the fault is produced only if the 
conditioned input b appears before the event a that 
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can be produced later or not at all. The proposed 
automaton modeling this behavior is also shown in 
figure 4. The state Fault is reached if there is a rising 
edge of b (occurrence of the event) with a being false 
acting as a guard. As before, the property to verify, 
obtained from this gate, holds if the Fault state is 
never reached. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Timed automata for temporal gates 
 
4.4 Timed gates FORPAST n and WITHIN n 
 
FORPAST n. The gate output is true if the event a is 
true now and for the last n time units in the past. The 
corresponding automaton is depicted in figure 5. The 
clock t is automatically increased with the physical 
time. As soon as a happens (rising edge) t is 
initialized. One transition leads from the initial state 
to an intermediate state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Timed automata for timed gates 
  
From this intermediate state, where the value of the 
clock must be smaller than or equal to n, two 
transitions are possible: one of them leading back to 
Initial depending whether the event a is transient and 
becomes false (falling edge) before the clock reaches 
the value n. The second edge leads to Fault if t 
equals n, i.e. a is always true during the n time units. 
The property to check holds if this Fault state is 
never reached.  
 

WITHIN n. In this case, the fault happens if a is 
either true now or at some instant within the last n 
time units. The proposed automaton for this gate 
(shown also in figure 5) behaves as follows: in the 
first edge, a signal called “start” determines the 
beginning of the interval between t=0 and t=n (at the 
same time t is initialized). The Fault state is reached 
if a rising edge of a is produced within this interval. 
In the opposite case, when a doesn’t happen in the 
interval, the automata moves to the Initial state. Here 
again, the model checker must verify that the 
sequence leading to the Fault state is not produced. 
  
 

5. CASE STUDY 
 
The case study is developed on the third station of a 
Bosch mechatronics system (figure 6) whose aim is 
to assembly/disassembly gear wheels. Only 
automatic operations will be considered. 
 
5.1 The process 
 
The principal elements composing the station are a 
carriage, a linear conveyor, an insertion press 
(INPress) and its cylinder feeder (INFeeder), an 
extraction press (OutPress) and its cylinder feeder 
(OutFeeder). At the initial position (receiving 
position at the left) of the station the carriage waits 
for a gear from the previous station, which issues the 
signal to start the process and transmits a signal 
which indicates the presence or absence of a plain 
bearing. The linear conveyor brings the carriage 
either to the insertion or the extraction press device. 
Parts with plain bearings run to the extraction press 
and parts without a plain bearing to the insertion 
press. If the presence of a plain bearing was 
previously detected, the plain bearing is pressed out. 
If none is present, one is pressed in. The gear is 
conveyed by means of a feeder unit from the carriage 
to the working space of the press. In the case of the 
insertion press, a plain bearing is simultaneously fed 
from a drop magazine located behind the press. After 
the pressing step, the feeder unit takes back the piece 
into the carriage, which at its turn, runs to the transfer 
position (right) where the gear is transferred to the 
following station. Then the carriage runs back to the 
receiving position and the process starts again. A 
logic controller commands the global process.  
 
5.2 First analysis: A part with bearing is transferred 
into the insertion press. 
 
In the analysis, we consider events related to physical 
components, to the controller and faults that are 
combinations of these two kinds (edged respectively 
in fault trees by a dot line, a double line, and a simple 
line as is shown in figure 7). The undesirable event to 
analyze is “a part with bearing is transferred into the 
insertion press”. This fault can produce the press 
breaking by trying to insert a bearing into a part 
already containing one. In a first stage, two faults 
linked by an OR gate produce the undesirable event.  
See figure 7. 
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Fig. 6. Diagram of the assembly/disassembly station 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Fault tree for “a part with bearing is 
transferred into the InPress” 
 
The undesirable event is produced because of a 
physical failure or because the controller failed in the 
signal interpretation and delivers the erroneous 
command introducing the part into the INPress even 
if the condition signal Part_with_bearing is true. The 
controller fault (in double line box) is the result of a 
Priority AND gate where the fault occurs if at first 
the signal of the position switch in front of INPress is 
set, and then the controller commands the retraction 
of the INFeeder cylinder when the carriage is still in 
front of the press (PosIn). This sequence itself is not 
really a fault. It is only a fault if the condition signal 
Part_with_bearing is present (shown by the condition 
gate), i.e., it has been well transmitted from the 
previous station. If the carriage leaves the position 
PosIn before the cylinder is retracted the fault does 
not happen because PosIn is not persistent. Notice 
that we have included the normal events “PosIn” and 
“InFeed”. This is essential here to derive the formal 
property that can model effectively the event of an 
erroneous commission of the controller output.  
 
The state automaton modeling the controller fault is 
depicted in figure 8. The first transition contains the 
condition of the condition gate, the only variation 
from the generic model. The verification has to show 
that the state Fault is never reached.  

 
 
 
 
 
 
 
Fig. 8. Timed automaton for the first analysis 
 
 
5.3 Second analysis: fault in carriage control 
 
The second undesirable top-level event to analyze is  
“Erroneous Commission of carriage_to_left 
command before the transfer position is reached”. 
The faults indicates an error of the controller that 
commands the return of the carriage (M-) even if the 
transfer position (Tran_pos) is not true. The gate 
Exclusive OR with condition on one of inputs is used 
to represent this fault (see figure 9.a). The faulty 
behavior is the occurrence of the event M- (rising 
edge) before Tran_pos is true. It is important to 
remark that, to represent this fault, it is not possible 
to use a simple AND gate with inputs ¬Trans_pos 
and M-, like one could think at first sight. This would 
lead to an incorrect fault detection in the normal 
operation when the carriage has left the transfer 
position to go to the left. At that moment Tran_pos 
would be false and M- still true, what would lead to 
the incorrect fault detection. The associated timed 
automaton is shown in figure 9.b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Fault tree and timed automata for “Erroneous 
commission of carriage_to_left” 
 
 
5.4 Third analysis: fault in extraction press feeder 
 
The last case is “omission of the OutFeeder retraction 
when the carriage is in position”. This fault means 
that there is no retraction movement of the feeder 
cylinder immediately after the carriage is in position 
in front of the extraction press. Here we want to treat 
a missing reactivity. The controller fails to set the 
retraction output in an interval of n time units starting 
from the event "PosOut is set”. See figure 10(a). Two 
causes, linked by an AND gate, produce the 
undesired event: “signal of the position sensor is set” 
and “OutFeed command is omitted”.  
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Fig. 10. Fault tree for “Omission of feeder retraction” 
and timed automaton  
 
The first one is a condition and is the output of the 
temporal gate FORPASTn meaning that the sensor 
signal PosOut is true now and for the last n time 
units in the past. The cause in the right branch of the 
tree is a fault of the controller which omits to deliver 
the command OutFeed (NOT gate) either now or at 
some instant within the last same n instants started 
when PosOut is true. The temporal gate WITHINn 
describes this situation.  
 
As it is shown in the figure 10.b, an automaton 
modelling the function of both temporal gates can be 
used to represent the faulty behaviour. For the 
integration the same clock t is used which is 
automatically increased with the physical time.  As 
soon as PosOut happens (rising edge), t is initialized 
and the time starts counting. This signal is used for 
the synchronization of both automata. One transition 
leads to an intermediate state where the value of the 
clock must be smaller than or equal to n. Three 
transitions are then possible: one leading back to 
Initial depending whether the signal PosOut is 
transient and becomes false before the clock reaches 
the value n. The other one, also leading to Initial, if 
the signal OutFeed becomes true (the controller sets 
the command) before the clock reaches the value n, 
i.e. at some instant within n. Finally, the third 

transition leads to Fault if t equals n, and the signal 
OutFeed is not produced at all . 
 
 

6. CONCLUSIONS 
 
The approach developed in this paper proposes to 
facilitate formal properties elaboration by means of a 
preliminary fault-tree analysis extended with 
systematic faults coming from logic controller. An 
important result of this work is the formal modelling 
of temporal and timed gates behaviour using timed 
automata. The global method presented in figure 1 
has been used to verify logic controllers developed in 
standardised languages like ladder diagram. The 
model-checking tool employed in these experiments 
was UPPAAL. Several prospects can be drawn from 
this work. Consistency checking of fault trees 
involving the same variables and minimal cut sets 
computation including temporal and timed gates 
based in automata composition are challenging ones. 
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