
HAL Id: hal-00348083
https://hal.science/hal-00348083

Submitted on 18 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OBTAINING TEMPORAL AND TIMED
PROPERTIES OF LOGIC CONTROLLERS FROM

FAULT TREE ANALYSIS
Israel Santiago Barragan, Matthias Roth, Jean-Marc Faure

To cite this version:
Israel Santiago Barragan, Matthias Roth, Jean-Marc Faure. OBTAINING TEMPORAL AND TIMED
PROPERTIES OF LOGIC CONTROLLERS FROM FAULT TREE ANALYSIS. 12th IFAC Sym-
posium on Information Control Problems in Manufacturing, INCOM 2006, May 2006, France. pp.
243-248. �hal-00348083�

https://hal.science/hal-00348083
https://hal.archives-ouvertes.fr

OBTAINING TEMPORAL AND TIMED PROPERTIES OF LOGIC CONTROLLERS
FROM FAULT TREE ANALYSIS

Israel BARRAGAN SANTIAGO* (1), Matthias ROTH (2) and Jean-Marc FAURE (1), (3)

(1) LURPA – ENS Cachan – 61, Avenue du Président Wilson, 94230 Cachan, France
{barragan, faure}@lurpa.ens-cachan.fr

(2) Technische Universität Kaiserslautern, Erwin-Schrödinger-Str.12, 67653 Kaiserslautern, Germany
(3) Institut Supérieur de Mécanique de Paris (SUPMECA) – 3 rue Fernand Hainaut, 93407 Saint-Ouen, France

Abstract: One of the prerequisites for formal verification of logic controllers using model-
checking is the formalization of properties to verify. The work presented in this paper
proposes a method to elaborate the formal properties of a logic controller from a Fault
Tree Analysis (FTA). The method developed here extends the traditional FTA with event
ordering and timed information by introducing specific gates which model logic and
physical time constraints. The behavior of these gates is then formalized in the form of
state automata; formal properties are derived from the set of automata obtained at the end
of FTA. A simple case study exemplifies the method.

Keywords: Dependability, Fault tree analysis, Formal verification, Event ordering, Timed
automata.

1. INTRODUCTION

Model-checking is a very popular formal verification
technique relying on state automata theory (Bérard,
et al., 2001). Its principle is to check whether formal
properties hold (or do not hold) on a state model of
the system. Hence, formal verification of logic
controller using model-checking implies to build a
state model of the controller as well as to write the
formal properties that express in a formal way the
application requirements that must be satisfied.

Unfortunately properties formalization is a difficult
task because the application requirements are
expressed in industry in a quite informal way, i.e.
some sentences in natural language or drawings, but
never with sound mathematical statements. Moreover
the formalisms used to state formally properties in
model-checking environments (timed or untimed
temporal logics or timed automata) are totally
unknown by automation engineers.

* The Mexican Council of Technology CONACYT
finances Israel Barragán.

The work presented in this paper proposes a
methodology to facilitate the identification and
formalization of properties by means of an analysis
technique commonly employed in industry for
critical systems design: fault-tree analysis (FTA).

Our aim is to take benefit of the results of a fault tree
analysis, developed from the application
requirements, to elaborate formal properties that will
be later inputs of a model-checker. Therefore, this
work enables to bridge the gap between fault tree
analysis, a widespread fault forecasting method, and
model-checking, a promising fault removal method.

Since we deal with formal verification of controllers,
the preliminary fault-tree analysis must take into
account not only the random faults produced by
failures of physical components of the process but
also the faults issued from controllers. These latter
faults come from designers’ errors or
misinterpretation of the control requirements and
behave as systematic faults because they can be
repeated all the time while the program is running.

The inclusion of controller faults in fault trees
requires an extended FTA vocabulary, in which the
notions of events ordering and physical time exist
and can be used to describe relationships among
input conditions that trigger the fault and output
conditions with which the fault is manifested. This
vocabulary is composed of temporal (untimed) and
timed gates1 whose behaviors are formalized using
state automata.

This paper is structured as follows. The proposed
method is outlined in section 2. Section 3 presents
the extended FTA vocabulary, while section 4 deals
with the formalization of the gates of this
vocabulary. In section 5, a case study is developed so
as to exemplify the overall method. Conclusions and
prospects are discussed in the last section.

2. METHOD OVERVIEW

Figure 1 depicts the faults forecasting and removal
approach that we advocate. Our contribution stands
on the right side of this figure and can be split in two
steps: design of a fault tree that includes systematic
controller faults, and elaboration of the formal
properties of the controller from the result of this
FTA. This set of properties will be then input into a
model-checking tool, once the controller will be
really designed and implemented. FTA and model-
checking are therefore performed at different phases
of the design.

Obtaining formal properties from a fault tree requires
to have at one's disposal a formal definition of each
elementary gate as well as formal composition rules
that permit to translate any set of connected gates
into a formal model, provided that this set is
consistent. Hence, formalization of each fault tree
gate and gates set is one of the main objectives of
this research.

Fault tree formalization has been addressed by
several works (Schäfer, 2003), (Ortmeier, 2004) and
(Reif, 2004). Nevertheless, it matters to highlight that
the objective of these works is far different from that
of ours. These researches indeed are aiming at
proposing a modeling frame for safety analysis that
combines FTA and model-checking; model-checking
is then used to check completeness and correctness
of a fault-tree from a formal model of the process.
On the contrary, our approach uses sequentially these
two techniques and focuses on the faults of the
controller. Moreover, it will be shown in the next
section that FTA taking into account controllers
faults requires to introduce specific gates that are not
taken into account in the works mentioned above.

1 Even if the term 'gate' is commonly used to describe
combinatory logic operators, such as AND, OR, …, it will
be used in what follows to name each basic operator of a
FT whatever the behavior of this operator (purely
combinatory behavior or behavior depending on events
order or on physical time).

Fig. 1. From FTA to model-checking of controller

3. MODELLING CONTROLLER FAULTS
USING TEMPORAL AND TIMED GATES

Fault Tree Analysis aims at finding all the associated
sets of basic events that could cause that a given top
event (a system failure of some kind) occurs. In
classical FTA, the connections between the various
identified basic events are carried out by means of
logical gates, such as the AND-gate and the OR-gate,
that express static relationships among their inputs.

Then classical FTA assumes that the order in which
the basic failures occur is irrelevant. However,
especially in programmable systems, situations
frequently arise in which the order of events is vital
for the correct or faulty behavior of systems (Dugan,
1999), (Bozzano and Villafiorita, 2003). In general,
the representation of controller faults in fault trees
requires mechanisms for specifications of temporal
relationships among events. This requires the use of
gates which have come to be known as "temporal"
for they express faults that depend on events order. In
this work, we adopt the use of temporal gates as a
means of describing systematic faults but we focus
on two gates originally defined in an intuitive
fashion in the fault tree handbook: “Priority AND”
and “Exclusive OR with condition” (US N.R.
Commission, 1981). The specification of these gates
is given in Fig. 2.

In the case of the PAND gate, the chronograms show
that the output fault happens only if a and b occur,
with a occurring before b. Here we include the
important notion of “event persistence”, i.e. a must
still be persistent when b appears. That means if a
disappears before the appearance of b no fault will be
detected at the output of the gate.

Furthermore, the work developed by (Palshikar,
2003) proposes the addition to the fault tree notation
of other special gates to describe timed systems, i.e.
systems whose faulty behaviors are described using
physical time. There are several timed gates but in
this paper we deal only with WHITHIN n and

A im of
the work

 FTA including controller faults

 Formal properties elaboration

Formal model

 of controller

Properties verified or not
(and diagnosis in the latter case)

Model checking tool

 ..)

Formal
properties
(CTL, timed
automata

Resulting Fault Tree

Chariot portant

Défaut physique Commission
Chariot portant

Défaut physique Défaut physique

A(a W b)

t<=n

FORPAST n gates. The representation of these two
gates is also included in figure 2.

Fig. 2. Temporal and timed gates

Finally, the fault tree including systematic controller
faults is constructed from static gates, temporal gates
(if event-ordering description is necessary to describe
a fault), and timed gates if timing constraints must be
taken into account. The use of these gates preserves
the simple, qualitative and visual nature of the fault
trees. Nevertheless each temporal and timed gate
must be endowed with a sound formal definition as
shown in the next section.

4. FORMALIZATION OF TEMPORAL AND
TIMED GATES

The aim of this section is to show that temporal and
timed gates can be represented formally thanks to
timed automata. Temporal gates can be also
formalized using temporal logic statements as
presented in (Barragan and Faure, 2005).
Nevertheless using an only formalism to describe the
behavior of these two types of gates is compulsory
when addressing gates combination.

4.1 Timed automata

Timed automata is a modeling language that allows
to describe the behavior of systems by means of
finite state automata, extended with clocks and time
constraints (Alur and Dill, 1994).

To give the basic definitions of timed automata the
following notations are used (Behrmann, 2004) : C is
a set of clocks. In a set of integer valued variables.
D(C,In) and B(C) are conjunctions over simple
conditions of the form x□c or x–y□c, where x,y ∈ C
for B(C) and x,y ∈ C or In for D(C,In). c ∈ ℵ and □

∈{<,≤,=,≥,>}. F(C,In) represents the assignment of
values to clocks C and variables In which happens on
the transition when an automaton changes its state.

A timed automaton is a tuple (S, S0, C, A, E, I),
where S is a set of states, So ∈ S is the initial state, C
is the set of clocks, A is a set of actions and co-
actions, E ⊆ S x A x D(C,In) x F(C,In) x S is a set of
edges between states with an action, a guard and a set
of clocks to be reset and I: S→ B (C) assigns
invariants to locations. See figure 3.

A guard (firing condition) satisfies the following
conditions: it evaluates to a Boolean; only clocks,
integer variables, and constants are referenced;
guards over clocks are essentially conjunctions. An
assignment label is a comma-separated list of
expressions only referred to clocks, integer variables,
constants and only assigns integer values to clocks or
integer variables.

Fig. 3. Timed automata

4.2 Priority AND gate

Priority AND gate definition (according to figure 2)
determines that the fault happens if its input basic
events occur in a specific order. The output fault
happens only if a and b occur, with a occurring
before b. Here we include the important notion of
“event persistence”, i.e. a must still be persistent
when b appears. That means if a disappears before
the appearance of b no fault will be detected in the
output of the gate.

The state automaton modelling the gate is depicted in
figure 4. The first edge shows that the action is the
occurrence of the event a (represented by a rising
edge). The guard is the condition that b is not true.
The edge leading to the Fault state has the action
“occurrence of the event b”. Its guard is the
constraint that a must be persistent. Hence, the
automaton reaches the fault state only if the events
occur in the given order. A third edge produces the
return to the Initial state. It symbolizes the condition
that event a must still be persistent when b appears.
If this is not the case (falling edge of a), the fault is
not produced. The property to verify, obtained from
this gate, holds if the Fault state is never reached.

4.3 Exclusive OR gate with condition on one of
inputs

In this gate, the fault is produced only if the
conditioned input b appears before the event a that

Exclusive OR with condition on one of inputs

The fault occurs only if exactly b o ccurs and that before a

Priority AND

c

a b

b before a

c

b
 c

a

 c occurs if both a and b occur, and if
a occurred before b

1

 0

 b

1

 0

1
 0

c

a b

Timed gates

b is true if a is true
now and for the last
n instants in the past

a

1

 0

1
0
1
0

a
FORPAST n

b

a
WITHIN

n

b

b
 c

a

1

 0

1
0
1
0

1

 0

 b

1

 0

1
 0 c

a

t k
a a a a

t k :current
instant (now)

tk

a

State
sequences

If n=3 If n=3

b is true if a is either true
now or at some instant
within the last n instants

t<=5

Invariant

A(actions)

A1?, t==0 & x==3, y :=3 -, t==5, x:=2

A1 !, t==1, -

Guard Assignment

can be produced later or not at all. The proposed
automaton modeling this behavior is also shown in
figure 4. The state Fault is reached if there is a rising
edge of b (occurrence of the event) with a being false
acting as a guard. As before, the property to verify,
obtained from this gate, holds if the Fault state is
never reached.

Fig. 4. Timed automata for temporal gates

4.4 Timed gates FORPAST n and WITHIN n

FORPAST n. The gate output is true if the event a is
true now and for the last n time units in the past. The
corresponding automaton is depicted in figure 5. The
clock t is automatically increased with the physical
time. As soon as a happens (rising edge) t is
initialized. One transition leads from the initial state
to an intermediate state.

Fig. 5. Timed automata for timed gates

From this intermediate state, where the value of the
clock must be smaller than or equal to n, two
transitions are possible: one of them leading back to
Initial depending whether the event a is transient and
becomes false (falling edge) before the clock reaches
the value n. The second edge leads to Fault if t
equals n, i.e. a is always true during the n time units.
The property to check holds if this Fault state is
never reached.

WITHIN n. In this case, the fault happens if a is
either true now or at some instant within the last n
time units. The proposed automaton for this gate
(shown also in figure 5) behaves as follows: in the
first edge, a signal called “start” determines the
beginning of the interval between t=0 and t=n (at the
same time t is initialized). The Fault state is reached
if a rising edge of a is produced within this interval.
In the opposite case, when a doesn’t happen in the
interval, the automata moves to the Initial state. Here
again, the model checker must verify that the
sequence leading to the Fault state is not produced.

5. CASE STUDY

The case study is developed on the third station of a
Bosch mechatronics system (figure 6) whose aim is
to assembly/disassembly gear wheels. Only
automatic operations will be considered.

5.1 The process

The principal elements composing the station are a
carriage, a linear conveyor, an insertion press
(INPress) and its cylinder feeder (INFeeder), an
extraction press (OutPress) and its cylinder feeder
(OutFeeder). At the initial position (receiving
position at the left) of the station the carriage waits
for a gear from the previous station, which issues the
signal to start the process and transmits a signal
which indicates the presence or absence of a plain
bearing. The linear conveyor brings the carriage
either to the insertion or the extraction press device.
Parts with plain bearings run to the extraction press
and parts without a plain bearing to the insertion
press. If the presence of a plain bearing was
previously detected, the plain bearing is pressed out.
If none is present, one is pressed in. The gear is
conveyed by means of a feeder unit from the carriage
to the working space of the press. In the case of the
insertion press, a plain bearing is simultaneously fed
from a drop magazine located behind the press. After
the pressing step, the feeder unit takes back the piece
into the carriage, which at its turn, runs to the transfer
position (right) where the gear is transferred to the
following station. Then the carriage runs back to the
receiving position and the process starts again. A
logic controller commands the global process.

5.2 First analysis: A part with bearing is transferred
into the insertion press.

In the analysis, we consider events related to physical
components, to the controller and faults that are
combinations of these two kinds (edged respectively
in fault trees by a dot line, a double line, and a simple
line as is shown in figure 7). The undesirable event to
analyze is “a part with bearing is transferred into the
insertion press”. This fault can produce the press
breaking by trying to insert a bearing into a part
already containing one. In a first stage, two faults
linked by an OR gate produce the undesirable event.
See figure 7.

Initial Fault

↓a?, - ,-

↑a?, b==0, - ↑b?, a==1 ,-

Priority AND

Initial Fault
↑b?, a==0, -

Exclusive OR

Fault

Initial

↑a?,-,t :=0

t<= n

-,t== n,-

↓a ?,-,-

FORPAST

Fault

Initial

start?,-,t :=0

t<= n

↑a?,t== n,-

-,t==n,-

WITHIN

Fig. 6. Diagram of the assembly/disassembly station

Fig. 7. Fault tree for “a part with bearing is
transferred into the InPress”

The undesirable event is produced because of a
physical failure or because the controller failed in the
signal interpretation and delivers the erroneous
command introducing the part into the INPress even
if the condition signal Part_with_bearing is true. The
controller fault (in double line box) is the result of a
Priority AND gate where the fault occurs if at first
the signal of the position switch in front of INPress is
set, and then the controller commands the retraction
of the INFeeder cylinder when the carriage is still in
front of the press (PosIn). This sequence itself is not
really a fault. It is only a fault if the condition signal
Part_with_bearing is present (shown by the condition
gate), i.e., it has been well transmitted from the
previous station. If the carriage leaves the position
PosIn before the cylinder is retracted the fault does
not happen because PosIn is not persistent. Notice
that we have included the normal events “PosIn” and
“InFeed”. This is essential here to derive the formal
property that can model effectively the event of an
erroneous commission of the controller output.

The state automaton modeling the controller fault is
depicted in figure 8. The first transition contains the
condition of the condition gate, the only variation
from the generic model. The verification has to show
that the state Fault is never reached.

Fig. 8. Timed automaton for the first analysis

5.3 Second analysis: fault in carriage control

The second undesirable top-level event to analyze is
“Erroneous Commission of carriage_to_left
command before the transfer position is reached”.
The faults indicates an error of the controller that
commands the return of the carriage (M-) even if the
transfer position (Tran_pos) is not true. The gate
Exclusive OR with condition on one of inputs is used
to represent this fault (see figure 9.a). The faulty
behavior is the occurrence of the event M- (rising
edge) before Tran_pos is true. It is important to
remark that, to represent this fault, it is not possible
to use a simple AND gate with inputs ¬Trans_pos
and M-, like one could think at first sight. This would
lead to an incorrect fault detection in the normal
operation when the carriage has left the transfer
position to go to the left. At that moment Tran_pos
would be false and M- still true, what would lead to
the incorrect fault detection. The associated timed
automaton is shown in figure 9.b.

Fig. 9. Fault tree and timed automata for “Erroneous
commission of carriage_to_left”

5.4 Third analysis: fault in extraction press feeder

The last case is “omission of the OutFeeder retraction
when the carriage is in position”. This fault means
that there is no retraction movement of the feeder
cylinder immediately after the carriage is in position
in front of the extraction press. Here we want to treat
a missing reactivity. The controller fails to set the
retraction output in an interval of n time units starting
from the event "PosOut is set”. See figure 10(a). Two
causes, linked by an AND gate, produce the
undesired event: “signal of the position sensor is set”
and “OutFeed command is omitted”.

Carriage

Inputs INPress_Position PosIn OUTPress_Position PosOUT Part_Without_Bearing PWB
Transfert_Position Tran_pos

Outputs
Carr iage _to_Right M+

Carriage _to_Left M-

OutFeeder_Retraction OutFeed
INFeeder_Retraction InFeed

R

ec
ei

vi
ng

po

si
tio

n

IN
Pr

es
s

po
si

tio
n

sw
itc

h

O
U

TP
re

ss

po
si

tio
n

sw
itc

h

M+

M-

Tr
an

sf
er

po

si
tio

n
sw

itc
h

Insertion Press Extraction Press

The controller commands
the transfer of a part

containing a bearing into
the insertion press

A part with bearing is
transferred into the

insertion press

Physical
failure

Part_with_bearing

PosIn InFeed

Physical component
Failure.

Software
Fault.

Combination of software
faults and physical
component failure.

↑PosIn?,
InFeed==0 & Part_with_bearing,

--

↑InFeed?,
PosIn==1,

--
Fault

↓PosIn?, -, -

If M- before
Tran_pos

Erroneous commission of
carriage_to_left command
before transfer position is

reached

Tran_pos M-

↑M- ?, Tran_pos == 0, - FaultInitial

(a)

(b)

Fig. 10. Fault tree for “Omission of feeder retraction”
and timed automaton

The first one is a condition and is the output of the
temporal gate FORPASTn meaning that the sensor
signal PosOut is true now and for the last n time
units in the past. The cause in the right branch of the
tree is a fault of the controller which omits to deliver
the command OutFeed (NOT gate) either now or at
some instant within the last same n instants started
when PosOut is true. The temporal gate WITHINn
describes this situation.

As it is shown in the figure 10.b, an automaton
modelling the function of both temporal gates can be
used to represent the faulty behaviour. For the
integration the same clock t is used which is
automatically increased with the physical time. As
soon as PosOut happens (rising edge), t is initialized
and the time starts counting. This signal is used for
the synchronization of both automata. One transition
leads to an intermediate state where the value of the
clock must be smaller than or equal to n. Three
transitions are then possible: one leading back to
Initial depending whether the signal PosOut is
transient and becomes false before the clock reaches
the value n. The other one, also leading to Initial, if
the signal OutFeed becomes true (the controller sets
the command) before the clock reaches the value n,
i.e. at some instant within n. Finally, the third

transition leads to Fault if t equals n, and the signal
OutFeed is not produced at all .

6. CONCLUSIONS

The approach developed in this paper proposes to
facilitate formal properties elaboration by means of a
preliminary fault-tree analysis extended with
systematic faults coming from logic controller. An
important result of this work is the formal modelling
of temporal and timed gates behaviour using timed
automata. The global method presented in figure 1
has been used to verify logic controllers developed in
standardised languages like ladder diagram. The
model-checking tool employed in these experiments
was UPPAAL. Several prospects can be drawn from
this work. Consistency checking of fault trees
involving the same variables and minimal cut sets
computation including temporal and timed gates
based in automata composition are challenging ones.

REFERENCES

Alur, R. and D.L. Dill (1994). A Theory of Timed
Automata. Theoretical Computer Science, Vol.
126, pp. 183-235.

Barragan, I. And J.-M. Faure. From fault-tree
analysis to model-checking of controllers.
Proceedings of 16th IFAC World Congress,
CDROM paper n° 4596, Praha (CZ), July 4-8,
2005.

Behrmann, G. et al (2004). A Tutorial on UPPAAL.
Department of Computer Science, Aalborg
University, Denmark.

Bérard, B. et al (2001). Systems and Software
Verification. Model-Checking Techniques and
tools. Springer.

Bozzano, M. and A. Villafiorita (2003). Integrating
Fault Tree Analysis with Event Ordering
Information. In: Proceedings of ESREL 2003,
pp. 247-254, June 15-18, Maastricht, The
Netherlands.

Dugan, J.B. and K.J. Sullivan (1999). Developing a
low-cost, high-quality software tool for dynamic
fault tree analysis. Transactions on Reliability,
pp. 49-59.

Ortmeier, F. et al. (2004). Combining formal
methods and safety analysis – The ForMoSA
approach, LNCS 3147, pp 474-493.

Palshikar, G.K. (2003). Temporal Fault Trees.
Information and Software Technology, n° 44,
p137-150.

Reif, W. (2004). Integrated formal methods for
safety analysis of train systems, Proceedings of
IFIP WCC 2004, August, 22-27, 2004,
Toulouse, France.

Schäfer, A. (2003). Combining real-time model-
checking and fault-tree analysis, LNCS 2805, pp
522–541.

US Nuclear Regulatory Commission (1981). Fault
Tree Handbook. Technical Report NUREG-
0492, Washington, DC

Fault

Initial

↑PosOut?,-,t :=0

t<= n

-,t== n,-

↑OutFeed,-,-

↓PosOut ?,-,-

Omission of the feeder
retraction when

the carriage is in position

Signal of the position
sensor set

Command omitted
= /OutFeed

PosOut OutFeed

FORPAST n WITHIN n

(a)

(b)

