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Abstract: Fault Tree Analysis (FTA) is a technique widely used for fault forecasting of 
physical systems. Although FTA is considered a well established safety analysis 
technique, paradoxically classical Fault Trees include only random faults. However, in 
modern automated systems, undesirable events arise not only from random hardware 
faults but also from defects in the logic of software controllers that control the physical 
system. Faults generated by these software controllers are systematic faults caused by 
coding errors or misinterpretations of control requirements. This paper proposes an  
extension to the basic Fault Trees construction process which takes into account this 
category of faults and advocates the use of dynamic and temporal gates to model it. 
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1. INTRODUCTION 
 
Since its development in 1960 by Bell Labs, a large 
volume of technical and scientific work has been 
reported in the literature about FTA. Today, it is a 
well-known fault forecasting technique which is 
widely used in the design of safety critical systems. 
Fault Trees are commonly used to represent the 
effect that random hardware faults of components 
have on a system. One difficulty with applying this 
technique on modern automated systems is that such 
systems are the combination of logic controllers and 
controlled process (plants) where controllers receive 
and process inputs coming from the process and 
generate outputs to the process (see figure 1). 
Clearly, therefore, safety analysis of such systems 
must take into account not only the physical faults of 
components, including those of controllers, but also 
any faults caused by errors in the logic of those 
controllers.  
 
* The Mexican Council of Technology CONACYT 
finances Israel Barragan. 

In this paper, we focus on logic controller faults and 
we develop a method for their representation in FTA. 
Logic controller faults can be categorized in three 
classes depending on whether they are caused by: 
 
• Hardware failures of the controller 
• Unhanded deviations of controller inputs caused 

by failures of sensors connected to the controller  
• Design flaws in the logic (software) of the 

controller, either a result of coding errors or 
misinterpretation of control requirements.  

 
The first two classes of fault are currently considered 
in a classical FTA. Indeed in the course of such 
analysis, an erroneous output of a controller is 
typically attributed to primary and secondary 
hardware failures of the controller itself or to 
command failures typically deviations of controller 
inputs which are in turn caused by failures of 
connected sensors. The work developed here 
proposes to extend the FT method to integrate the 
analysis of the third class of faults in the above 
categorisation, i.e. those caused by design flaws. 



 

     

 
 
 
 
 
 
 
 
 
Fig. 1. Synthetic view of an automated system 
 
Such faults fall in the general category of systematic 
faults because they can be reproduced every time the 
conditions that trigger the error in the control logic 
are present. These conditions are typically sets of 
correct inputs which by triggering the embedded 
error result to a fault manifested as an omission or 
commission of controller outputs or deviations of 
outputs from correct timing or value. Identifying 
these kinds of faults, therefore, requires from 
analysts to assume that even with correct input 
information the controller fails, delivering no output 
or erroneous outputs.  
 
The integration, into the fault tree structure, of 
controller faults that can potentially be attributed to 
design flaws can assist the targeted investigation and 
eventual elimination of such flaws in relevant parts 
of the control logic. We should point out that 
although, in general, there may be large numbers of 
errors in a program, it is only a small portion of those 
errors that will trigger faults that can contribute to 
the hazard investigated as a top event in a particular 
fault tree. It is precisely those critical systematic 
faults that the proposed extension to FTA aims to 
identify. 
 
The purpose of identifying faults caused by design 
errors is to remove those errors. FTA is a simple and 
widely applied method, familiar to most safety 
engineers. Extending its application on software 
controlled systems, therefore, will be beneficial in 
terms of improved fault forecasting and fault 
removal in such systems.  
  
The inclusion of controller faults in fault trees 
requires an extended FTA vocabulary, in which the 
notions of time and event ordering exist and can be 
used to describe relationships among input 
conditions that trigger the fault and output conditions 
with which the fault is manifested. Managing that 
goal is an important point discussed here. 
 
This paper is structured as follows. Section 2 recalls 
fundamentals and standard construction rules of fault 
trees. Section 3 deals with the extension of FTA to 
include systematic faults. The use of dynamic and 
temporal gates to represent temporal relationships 
between events is developed in section 4. The 
method is illustrated with a simple example in 
section 5. Conclusions and prospects are discussed in 
the last section. 
 
 

2. FAULT TREE DESIGN 
 
2.1 Fault Tree fundamentals 
 
Fault Tree Analysis aims at identifying all sufficient 
and necessary combinations of basic events in a 
system that cause the top event of the fault tree which 
represents a hazardous system failure. These 
combinations of basic events are called Minimal Cut 
Sets. A basic event, typically a component fault, is a 
leaf node in the tree, i.e. an event that is not 
developed further in the analysis. The connections 
between the various identified basic events are 
carried out by means of logical gates. The two most 
commonly used gates are the AND-gate and the OR-
gate.  
 
Besides gates, several symbols are used to represent 
the fault events. Rectangles are used to describe 
intermediate events that result from the conjunction 
or disjunction of several basic events. Circles 
describe basic events that require no further 
development. Diamonds represent undeveloped 
events, which are conditions not further examined 
either because they are considered highly unlikely, 
and thus of no interest, or because information is 
unavailable. See figure 2. 
 
Several commercial software tools support manual 
fault tree construction and automate qualitative 
analysis (i.e. calculation of minimal cut sets) as well 
as quantitative estimation of system unavailability 
from probabilities of basic events. Methods for 
automatic construction of fault trees are described in 
(Papadopoulos et al., 2001) and (Laengst et al., 
2003). 
 
 
2.2 Fault Tree construction 
 
To provide a systematic way in which the 
construction of the fault tree may be approached is 
proposed in the fault tree handbook (US N.R. 
Commission, 1981). It is generally followed by 
analysts and has been included into other texts that 
provide guidance on construction such as (Andrews, 
2002). The approach requires events in the fault tree 
to be classified as state-of-component faults or state-
of-system faults. A state-of-component fault is one 
that can be caused by a single component failure. If a 
single component failure cannot cause the fault then 
it is classified as a state-of-system which behaves as 
an intermediate event. 
 
State-of-component faults, are then developed using 
the fault tree structure illustrated in figure 2. A 
primary fault represents the failure of a component 
due to its internal defects. It occurs in an 
environment for which the component is qualified. A 
secondary fault is a fault of a component caused by 
excessive environmental or operational stress. In 
other words, a secondary fault represents a situation 
in which the component fails in conditions that 
exceed the conditions for which it was designed. 
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Fig. 2. Classical Fault Tree construction 
 
Finally, a command fault describes a situation in 
which the component has not physically failed but 
operates in the wrong time or context. In such 
conditions, the component typically produces no 
output or incorrect output in response to 
inappropriate or misleading inputs received either 
from sensors or controllers that control its operation.  
 
Primary faults represent basic events of the fault tree. 
On the other hand, secondary faults can be further 
investigated in which case the causes of any 
excessive environmental conditions are identified. 
For example if the condition is unacceptably high 
temperature, a failure of a cooling subsystem may be 
identified as a cause. Finally, command faults 
represent intermediate events in the fault tree which 
are always investigated in order to establish how 
incorrect inputs or commands are generated by other 
components further upstream in the system. The fault 
tree structure is progressively created as secondary 
and command faults are further investigated. 
 
 

3. EXTENDING FTA TO ADDRESS 
SYSTEMATIC FAULTS 

 
The scheme of figure 2 investigates physical faults 
and command faults caused by deviant inputs but 
omits any assessment of design faults, e.g. errors in 
control logic. Because such faults are common in 
software controlled systems, their identification and 
removal is extremely important and therefore, in our 
view, the scheme of figure 2 must be extended to 
account for these faults. Programmable logic 
controllers are typically programmed in one or more 
languages standardized by IEC 61131-3 (IEC, 1993). 
A representation of a sample program expressed in 
Ladder Logic is sketched in figure 3. The program 
decides the state of controller output O1 by 
evaluating a logical combination of inputs I1 and I2  
and previous output states. 
 
 
 
 
 
 
 
Fig. 3. Example of simple logic controller 

In this system, a controller fault, i.e. an omitted or 
erroneous output, can be caused by a number of 
different failures. A hardware failure of the controller 
and its elements (e.g. input/output cards, processor, 
etc) is one possibility. A deviation on an input is a 
second possibility. If, for example, in the current 
state of the program of Fig.3, O1 is set (i.e. O1=1) and 
must be reset via I2, but the sensor which monitors I2 
is stuck at 0 then the result is an omission of reset 
output O1. This is a classic case of a command fault 
whereby a wrong input (WI) causes wrong output 
(WO). This can be symbolically represented as  (WI 

 WO) and describes a situation covered by the 
scheme of Fig.2.  
 
There is a third possibility to get an erroneous output 
in the example of Fig. 3 (and, indeed, in any control 
program). This is the situation where the controller 
produces an erroneous output in response to a set of 
correct inputs that trigger an error in the control 
logic. For instance, because a set dominant memory 
has been programmed instead of a reset dominant 
memory. This situation can be symbolically 
represented as (RI  WO, i.e. right inputs lead to 
wrong output) and is not covered by the scheme of 
Fig.2. 
 
To address this deficiency of classical FTA, and 
enable assessment of systematic faults, we propose 
an extension which maintains the guidelines 
summarised in section 2.2 and the scheme of Fig.2, 
but in the case of command faults introduces a 
variant of the traditional technique. Our approach is 
to differentiate between classical command faults 
caused by undetected deviant inputs (WI WO) and 
command faults coming from control algorithms 
executed in the controller itself (systematic faults, or 
RI WO). Fig.4 depicts the proposed structure of the 
new general fault tree construction template. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. General template 
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Overall, the result of applying the extended template 
in the course of fault tree construction, is fault trees 
which include five kinds of faults: physical faults 
(PF), classical command faults (CCF), systematic 
faults (SyF), secondary faults (SeF) and intermediate 
events that represent combinations of them (edged 
respectively by a dot line, a dot-dashed line, a double 
line, and a simple line for the last two kinds, see 
figure 4). 
 
 
4. DESCRIBING SYSTEMATIC FAULTS USING 

A VOCABULARY OF GATES 
 
Classical FTA assumes that the order in which the 
basic failures occur is irrelevant. However, especially 
in programmable systems, situations frequently arise 
in which the order of events is vital for the correct or 
faulty behavior of systems (Bozzano and Villafiorita, 
2003). In general, the representation of controller 
faults in fault trees requires mechanisms for 
specifications of temporal relationships among 
events. This temporal information is essential for the 
description both of the causes and the effects of such 
faults. A fault tree is called dynamic (Cepin and 
Mavko, 2002), if it enables the description of such 
dynamic information about events and their temporal 
relationships. This requires the use of gates which 
have come to be known as “dynamic”. Some of them 
modeling functional dependencies and primary-spare 
behavior have been proposed by (Dugan, 1999). 
 
In this work, we adopt the use of dynamic gates as a 
means of describing systematic faults but we focus 
on two dynamic gates original defined in the fault 
tree handbook: “Exclusive OR with condition” and 
“Priority AND”. The specification of these gates is 
given in Fig. 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Dynamic and temporal gates 

In the case of the PAND gate, the chronograms show 
that the output fault happens only if a and b occur, 
with a occurring before b. Here we include the 
important notion of “event persistence”, i.e. a must 
still be persistent when b appears. That means if a 
disappears before the appearance of b no fault will be 
detected in the output of the gate.  
 
Furthermore, the work developed by (Palshikar, 
2003) proposes the addition to the fault tree notation 
of other special gates to describe temporal systems. 
The term Temporal Fault Trees (TFT) is coined for 
this kind of fault trees. TFT allow the user to easily 
specify physical time conditions between events. 
There are several temporal gates but in this paper, we 
deal only with WHITHIN n and FORPAST n gates.  
The representation of these two gates is also included 
in figure 5. 
 
The extended vocabulary of gates illustrated in Fig.5 
can be used for the representation of potential 
systematic faults in fault trees. Such faults are 
described using the gates of Fig.5 as logical and 
temporal relationships between correct conditions on 
controller inputs and failure conditions on controller 
outputs which only become true in the presence of 
the systematic fault in question.  Conveniently, such 
relationships can then be derived from the tree and 
further model-checked to confirm or not the presence 
of the implied systematic faults that potentially 
contribute to the hazardous top event.   
 
 

5. EXAMPLE 
 
The proposed process is illustrated by an example 
derived from analysis of a pick-and-place 
manipulator (sketched in figure 6), which is part of 
an assembly line located at the Mechanical 
Engineering Department of the ENS Cachan. Two 
cases are analyzed: the first shows application of 
dynamic gates while the second focuses on temporal 
gates.  
 
The goal of this manipulator is to pick up gearwheels 
with suction cups and to transfer the gearwheels to 
gear housings using two single-acting pneumatic 
cylinders. A logic controller commands the global 
process. Inputs and outputs of the control program 
are also given in figure 6. Only automatic operations 
are being considered. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Pick-and-place manipulator 
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5.1 First analysis: The part falls down during the 
movement from the picking to the placing station 
 
The undesired event to analyse is “the part falls 
down during movement”. The first stage is shown in 
Fig.7. Four causes linked by an OR gate produce the 
fault. The first, “Suction device is broken” is a  
primary fault and, therefore, a basic event. The 
second, “Collision of the part with the environment”, 
is a secondary fault which for simplicity is not 
further developed here. The third, “Inadvertent 
commission of stop suction command”, represents a 
classical command fault caused by failures further 
upstream in the system. In this case the fault is 
produced if both position sensors (monitoring e2 and 
e4) are faulty, erroneously reporting to the controller 
that the arm is at the placing station. In such 
conditions, mislead by sensors failures, the controller 
inadvertently stops the suction. These sensors 
failures are primary faults and therefore become 
basic events which are connected to the command 
fault by an AND gate. 
 
Finally, the last cause of the top event represents the 
case of a systematic fault of the controller itself. In 
this case, although sensors are working correctly, the 
controller stops the suction before the manipulator 
reaches the correct place. This fault contradicts the 
specification which states that “suction must never 
be stopped before the manipulator is at the placing 
station”. The term “before” in the latter statement 
suggests a certain temporal order of events, and thus 
this portion of the tree is developed as a dynamic one 
(see Fig.8). The event ordering gate “Exclusive OR 
with condition” is used to model this fault. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Fault tree for “the part falls down” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Development of intermediate event “suction is 
stopped before the placing station” 
 
The behavior of this gate (see Fig.5) defines that the 
output fault occurs if the conditioned input appears 
before the other input (that can be produced later or 
not produced at all). The left input of the gate shows 
that the manipulator is in position at placing station 
(lower position and rightmost position, indicated by 
the correspondent sensors). The other gate input 
indicates that the controller sends the command to 
interrupt the suction. This is the conditioned input. 
The fault is produced if this input is true before the 
other one. Notice that we have used the signals as 
inputs events of the gate. They are normal events and 
not really faults. The fault comes from the erroneous 
order of these signal changes. 
 
 
5.2 Second analysis: Fault in vertical movement 
 
A further undesired event in this system is a fault in 
the vertical movement of the manipulator. The 
specification imposes that the vertical cylinder must 
remain one second at the picking station before 
leaving to the other station so as to catch the 
gearwheel. Here, the vertical cylinder stays less than 
the required time of 1 second at the picking station. 
The fault tree is shown in Fig.9 and shows that a 
physical failure, e.g. a leak into the cylinder, can 
produce its retraction and cause the undesired event. 
That is considered as a primary fault. Secondary 
faults caused by the environment are also possible 
but for simplicity are not further developed here.  
 
Instead we focus on the error in the operation of the 
directional valve that commutes and produces the 
retraction of the vertical cylinder. This fault must be 
seen as a systematic one because it can only be 
caused by an erroneous commission of the “commute 
command” issued by the control logic that operates 
the valve. In this case the “stop vertical movement 
command” is issued early and the cylinder retracts 
before the specified time. 

If /S3 appears

Manipulator at the 
placing station 

Lower 
position 

(e4) 

Rightmost 
position  

(e2) 

Commission  
of interrupting  

the suction  
(/S3) 

Suction is  
  stopped before the  

placing station 

The part falls down 
during movement 

Suction  
device is 
broken 

Inadvertent 
commission of stop 
suction command, 

issued by controller 
in response to 

failure in sensors 
e2&e4 reporting 

erroneous position  

Collision of the 
part with the 
environment 

Primary 

Secondary 

Classical 
command 

fault 

Fault in 
controller logic: 

Suction is 
stopped before 

the placing 
station 

e2 
failure 

e4 
failure 

Systematic 
fault 



 

     

 
Fig. 9. Fault tree for the vertical cylinder 
 
Once more this systematic fault can be modeled 
using the conditioned Exclusive OR (Fig.10). The 
left input of the gate defines that the manipulator is at 
the picking place (lower position and leftmost 
position) now and for the last second. To represent 
this timed condition the temporal gate FORPASTn is 
used. The right part of the tree shows that the 
controller issues the “stops vertical movement” 
command early, i.e. before the condition described 
by the left branch is reached. 
 
 

6. CONCLUSIONS 
 
The work presented in this paper proposes an 
extension to classical fault trees and their 
construction process which enables inclusion and 
analysis of systematic faults. The approach 
contributes to improve safety analysis of systems by 
integrating into the examination of causes of failure 
the potential controller faults caused by design flaws 
in control algorithms. Such faults are systematically 
identified and recorded in the fault tree structure 
every time a controller is encountered in the course 
of a systematic traversal of the system model from 
system outputs to system inputs, in the course of 
which the causes of failure are progressively further 
investigated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Further development of the systematic fault 

Once the potential systematic faults have been 
identified, the conditions that confirm their presence 
are then described using an extended fault tree 
vocabulary that contains classical, dynamic and 
temporal gates. In (Barragan and Faure, 2005), it has 
been shown that such fault trees can act as a useful 
tool for obtaining formal properties for timed model-
checking. We are currently looking into the problem 
of qualitative analysis and reduction of fault trees 
which include dynamic and temporal gates. This 
analysis will enable the identification of minimal 
sequences of systematic faults. Moreover, it could be 
possible to semi-automatically generate such fault 
trees in the context of HiP-HOPS, a recently 
proposed technique for model based synthesis of 
fault trees (Papadopoulos and Maruhn, 2001). Once 
the fault tree is constructed, it would be possible to 
automatically check the presence or not of systematic 
failures in the control code via model-checking of the 
conditions specified in the fault tree. 
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