
HAL Id: hal-00348072
https://hal.science/hal-00348072

Submitted on 17 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INCLUDING SYSTEMATIC FAULTS INTO FAULT
TREE ANALYSIS

Jean-Marc Faure, Israel Santiago Barragan, Yiannis Papadopoulos

To cite this version:
Jean-Marc Faure, Israel Santiago Barragan, Yiannis Papadopoulos. INCLUDING SYSTEMATIC
FAULTS INTO FAULT TREE ANALYSIS. SAFEPROCESS 06, Sep 2006, China. pp.811-816. �hal-
00348072�

https://hal.science/hal-00348072
https://hal.archives-ouvertes.fr

INCLUDING SYSTEMATIC FAULTS INTO FAULT TREE ANALYSIS

Israel BARRAGAN SANTIAGO* (1), Jean-Marc FAURE (1), (2) and Yiannis PAPADOPOULOS (3)

 (1) LURPA – ENS Cachan – 61, Avenue du President Wilson, 94230 Cachan, France
{barragan, faure}@lurpa.ens-cachan.fr

(2) Institut Supérieur de Mécanique de Paris (SUPMECA) – 3 rue Fernand Hainaut, 93407 Saint-Ouen, France
(3) Department of Computer Science, University of Hull – Hull HU6 7RX, UK

Abstract: Fault Tree Analysis (FTA) is a technique widely used for fault forecasting of
physical systems. Although FTA is considered a well established safety analysis
technique, paradoxically classical Fault Trees include only random faults. However, in
modern automated systems, undesirable events arise not only from random hardware
faults but also from defects in the logic of software controllers that control the physical
system. Faults generated by these software controllers are systematic faults caused by
coding errors or misinterpretations of control requirements. This paper proposes an
extension to the basic Fault Trees construction process which takes into account this
category of faults and advocates the use of dynamic and temporal gates to model it.

Keywords: Controller dependability, Event ordering, Fault tree analysis, Safety analysis,
Temporal fault tree.

1. INTRODUCTION

Since its development in 1960 by Bell Labs, a large
volume of technical and scientific work has been
reported in the literature about FTA. Today, it is a
well-known fault forecasting technique which is
widely used in the design of safety critical systems.
Fault Trees are commonly used to represent the
effect that random hardware faults of components
have on a system. One difficulty with applying this
technique on modern automated systems is that such
systems are the combination of logic controllers and
controlled process (plants) where controllers receive
and process inputs coming from the process and
generate outputs to the process (see figure 1).
Clearly, therefore, safety analysis of such systems
must take into account not only the physical faults of
components, including those of controllers, but also
any faults caused by errors in the logic of those
controllers.

* The Mexican Council of Technology CONACYT
finances Israel Barragan.

In this paper, we focus on logic controller faults and
we develop a method for their representation in FTA.
Logic controller faults can be categorized in three
classes depending on whether they are caused by:

• Hardware failures of the controller
• Unhanded deviations of controller inputs caused

by failures of sensors connected to the controller
• Design flaws in the logic (software) of the

controller, either a result of coding errors or
misinterpretation of control requirements.

The first two classes of fault are currently considered
in a classical FTA. Indeed in the course of such
analysis, an erroneous output of a controller is
typically attributed to primary and secondary
hardware failures of the controller itself or to
command failures typically deviations of controller
inputs which are in turn caused by failures of
connected sensors. The work developed here
proposes to extend the FT method to integrate the
analysis of the third class of faults in the above
categorisation, i.e. those caused by design flaws.

Fig. 1. Synthetic view of an automated system

Such faults fall in the general category of systematic
faults because they can be reproduced every time the
conditions that trigger the error in the control logic
are present. These conditions are typically sets of
correct inputs which by triggering the embedded
error result to a fault manifested as an omission or
commission of controller outputs or deviations of
outputs from correct timing or value. Identifying
these kinds of faults, therefore, requires from
analysts to assume that even with correct input
information the controller fails, delivering no output
or erroneous outputs.

The integration, into the fault tree structure, of
controller faults that can potentially be attributed to
design flaws can assist the targeted investigation and
eventual elimination of such flaws in relevant parts
of the control logic. We should point out that
although, in general, there may be large numbers of
errors in a program, it is only a small portion of those
errors that will trigger faults that can contribute to
the hazard investigated as a top event in a particular
fault tree. It is precisely those critical systematic
faults that the proposed extension to FTA aims to
identify.

The purpose of identifying faults caused by design
errors is to remove those errors. FTA is a simple and
widely applied method, familiar to most safety
engineers. Extending its application on software
controlled systems, therefore, will be beneficial in
terms of improved fault forecasting and fault
removal in such systems.

The inclusion of controller faults in fault trees
requires an extended FTA vocabulary, in which the
notions of time and event ordering exist and can be
used to describe relationships among input
conditions that trigger the fault and output conditions
with which the fault is manifested. Managing that
goal is an important point discussed here.

This paper is structured as follows. Section 2 recalls
fundamentals and standard construction rules of fault
trees. Section 3 deals with the extension of FTA to
include systematic faults. The use of dynamic and
temporal gates to represent temporal relationships
between events is developed in section 4. The
method is illustrated with a simple example in
section 5. Conclusions and prospects are discussed in
the last section.

2. FAULT TREE DESIGN

2.1 Fault Tree fundamentals

Fault Tree Analysis aims at identifying all sufficient
and necessary combinations of basic events in a
system that cause the top event of the fault tree which
represents a hazardous system failure. These
combinations of basic events are called Minimal Cut
Sets. A basic event, typically a component fault, is a
leaf node in the tree, i.e. an event that is not
developed further in the analysis. The connections
between the various identified basic events are
carried out by means of logical gates. The two most
commonly used gates are the AND-gate and the OR-
gate.

Besides gates, several symbols are used to represent
the fault events. Rectangles are used to describe
intermediate events that result from the conjunction
or disjunction of several basic events. Circles
describe basic events that require no further
development. Diamonds represent undeveloped
events, which are conditions not further examined
either because they are considered highly unlikely,
and thus of no interest, or because information is
unavailable. See figure 2.

Several commercial software tools support manual
fault tree construction and automate qualitative
analysis (i.e. calculation of minimal cut sets) as well
as quantitative estimation of system unavailability
from probabilities of basic events. Methods for
automatic construction of fault trees are described in
(Papadopoulos et al., 2001) and (Laengst et al.,
2003).

2.2 Fault Tree construction

To provide a systematic way in which the
construction of the fault tree may be approached is
proposed in the fault tree handbook (US N.R.
Commission, 1981). It is generally followed by
analysts and has been included into other texts that
provide guidance on construction such as (Andrews,
2002). The approach requires events in the fault tree
to be classified as state-of-component faults or state-
of-system faults. A state-of-component fault is one
that can be caused by a single component failure. If a
single component failure cannot cause the fault then
it is classified as a state-of-system which behaves as
an intermediate event.

State-of-component faults, are then developed using
the fault tree structure illustrated in figure 2. A
primary fault represents the failure of a component
due to its internal defects. It occurs in an
environment for which the component is qualified. A
secondary fault is a fault of a component caused by
excessive environmental or operational stress. In
other words, a secondary fault represents a situation
in which the component fails in conditions that
exceed the conditions for which it was designed.

Logic
controller

Controlled
process

n m

Inputs Outputs

Fig. 2. Classical Fault Tree construction

Finally, a command fault describes a situation in
which the component has not physically failed but
operates in the wrong time or context. In such
conditions, the component typically produces no
output or incorrect output in response to
inappropriate or misleading inputs received either
from sensors or controllers that control its operation.

Primary faults represent basic events of the fault tree.
On the other hand, secondary faults can be further
investigated in which case the causes of any
excessive environmental conditions are identified.
For example if the condition is unacceptably high
temperature, a failure of a cooling subsystem may be
identified as a cause. Finally, command faults
represent intermediate events in the fault tree which
are always investigated in order to establish how
incorrect inputs or commands are generated by other
components further upstream in the system. The fault
tree structure is progressively created as secondary
and command faults are further investigated.

3. EXTENDING FTA TO ADDRESS
SYSTEMATIC FAULTS

The scheme of figure 2 investigates physical faults
and command faults caused by deviant inputs but
omits any assessment of design faults, e.g. errors in
control logic. Because such faults are common in
software controlled systems, their identification and
removal is extremely important and therefore, in our
view, the scheme of figure 2 must be extended to
account for these faults. Programmable logic
controllers are typically programmed in one or more
languages standardized by IEC 61131-3 (IEC, 1993).
A representation of a sample program expressed in
Ladder Logic is sketched in figure 3. The program
decides the state of controller output O1 by
evaluating a logical combination of inputs I1 and I2
and previous output states.

Fig. 3. Example of simple logic controller

In this system, a controller fault, i.e. an omitted or
erroneous output, can be caused by a number of
different failures. A hardware failure of the controller
and its elements (e.g. input/output cards, processor,
etc) is one possibility. A deviation on an input is a
second possibility. If, for example, in the current
state of the program of Fig.3, O1 is set (i.e. O1=1) and
must be reset via I2, but the sensor which monitors I2
is stuck at 0 then the result is an omission of reset
output O1. This is a classic case of a command fault
whereby a wrong input (WI) causes wrong output
(WO). This can be symbolically represented as (WI

 WO) and describes a situation covered by the
scheme of Fig.2.

There is a third possibility to get an erroneous output
in the example of Fig. 3 (and, indeed, in any control
program). This is the situation where the controller
produces an erroneous output in response to a set of
correct inputs that trigger an error in the control
logic. For instance, because a set dominant memory
has been programmed instead of a reset dominant
memory. This situation can be symbolically
represented as (RI WO, i.e. right inputs lead to
wrong output) and is not covered by the scheme of
Fig.2.

To address this deficiency of classical FTA, and
enable assessment of systematic faults, we propose
an extension which maintains the guidelines
summarised in section 2.2 and the scheme of Fig.2,
but in the case of command faults introduces a
variant of the traditional technique. Our approach is
to differentiate between classical command faults
caused by undetected deviant inputs (WI WO) and
command faults coming from control algorithms
executed in the controller itself (systematic faults, or
RI WO). Fig.4 depicts the proposed structure of the
new general fault tree construction template.

Fig. 4. General template

Control algorithm in IEC 61131-3
language

I1

I2

In

O1

O2

Om

I1

O1

O1 I2

Command
fault

Component
Fault

Secondary
fault

Primary
fault

Intermediate
events

Basic
events

Undeveloped
events

Top level
event

Primary
fault
(PF)

Physical component
Failure.

Systematic
Fault.

Combination of physical,
classical command and
systematic faults.

Classical command
fault (CCF)

Classical command
fault

Inadvertent
operation due
to incorrect

signals coming
from sensors

failures

Inadvertent
operation due to
design flaws in

controller
logic

Component
fault

Secondary
fault (SF)

Overall, the result of applying the extended template
in the course of fault tree construction, is fault trees
which include five kinds of faults: physical faults
(PF), classical command faults (CCF), systematic
faults (SyF), secondary faults (SeF) and intermediate
events that represent combinations of them (edged
respectively by a dot line, a dot-dashed line, a double
line, and a simple line for the last two kinds, see
figure 4).

4. DESCRIBING SYSTEMATIC FAULTS USING

A VOCABULARY OF GATES

Classical FTA assumes that the order in which the
basic failures occur is irrelevant. However, especially
in programmable systems, situations frequently arise
in which the order of events is vital for the correct or
faulty behavior of systems (Bozzano and Villafiorita,
2003). In general, the representation of controller
faults in fault trees requires mechanisms for
specifications of temporal relationships among
events. This temporal information is essential for the
description both of the causes and the effects of such
faults. A fault tree is called dynamic (Cepin and
Mavko, 2002), if it enables the description of such
dynamic information about events and their temporal
relationships. This requires the use of gates which
have come to be known as “dynamic”. Some of them
modeling functional dependencies and primary-spare
behavior have been proposed by (Dugan, 1999).

In this work, we adopt the use of dynamic gates as a
means of describing systematic faults but we focus
on two dynamic gates original defined in the fault
tree handbook: “Exclusive OR with condition” and
“Priority AND”. The specification of these gates is
given in Fig. 5.

Fig. 5. Dynamic and temporal gates

In the case of the PAND gate, the chronograms show
that the output fault happens only if a and b occur,
with a occurring before b. Here we include the
important notion of “event persistence”, i.e. a must
still be persistent when b appears. That means if a
disappears before the appearance of b no fault will be
detected in the output of the gate.

Furthermore, the work developed by (Palshikar,
2003) proposes the addition to the fault tree notation
of other special gates to describe temporal systems.
The term Temporal Fault Trees (TFT) is coined for
this kind of fault trees. TFT allow the user to easily
specify physical time conditions between events.
There are several temporal gates but in this paper, we
deal only with WHITHIN n and FORPAST n gates.
The representation of these two gates is also included
in figure 5.

The extended vocabulary of gates illustrated in Fig.5
can be used for the representation of potential
systematic faults in fault trees. Such faults are
described using the gates of Fig.5 as logical and
temporal relationships between correct conditions on
controller inputs and failure conditions on controller
outputs which only become true in the presence of
the systematic fault in question. Conveniently, such
relationships can then be derived from the tree and
further model-checked to confirm or not the presence
of the implied systematic faults that potentially
contribute to the hazardous top event.

5. EXAMPLE

The proposed process is illustrated by an example
derived from analysis of a pick-and-place
manipulator (sketched in figure 6), which is part of
an assembly line located at the Mechanical
Engineering Department of the ENS Cachan. Two
cases are analyzed: the first shows application of
dynamic gates while the second focuses on temporal
gates.

The goal of this manipulator is to pick up gearwheels
with suction cups and to transfer the gearwheels to
gear housings using two single-acting pneumatic
cylinders. A logic controller commands the global
process. Inputs and outputs of the control program
are also given in figure 6. Only automatic operations
are being considered.

Fig. 6. Pick-and-place manipulator

Exclusive OR with condition on one of inputs

The fault occurs only if exactly b o ccurs and that before a

Priority AND

c

a b

b before a

c

b
 c

a

Fault c occurs if a occurs before b, and
if a remains true until b becomes
true

1

 0

 b

1

 0

1
 0
 c

a b

Temporal gates

c is true if a is true
now and for the last
n instants in the past

a

1

 0

1
0
1
0

a

FORPAST n
c

a

WITHIN

n

c

b
 c

a

1

 0

1
0
1
0

1

 0

 b

1

 0

1
 0 c

a

tk

aa a a
tk :current
instant (now)

tk

a

State
sequences

If n=3 If n=3

c is true if a is either true
now or at some instant
within the last n instants

Picking
station

Placing
station

S1
S2

e1 e2

e4

e3
INPUTS
Leftmost Position
Rightmost Position
Upper Position
Lower Position

OUTPUTS
Move to the Right
Move Down
Suction

e1
e2
e3
e4

S1
S2
S3
 Without suction

With suction

1s

5.1 First analysis: The part falls down during the
movement from the picking to the placing station

The undesired event to analyse is “the part falls
down during movement”. The first stage is shown in
Fig.7. Four causes linked by an OR gate produce the
fault. The first, “Suction device is broken” is a
primary fault and, therefore, a basic event. The
second, “Collision of the part with the environment”,
is a secondary fault which for simplicity is not
further developed here. The third, “Inadvertent
commission of stop suction command”, represents a
classical command fault caused by failures further
upstream in the system. In this case the fault is
produced if both position sensors (monitoring e2 and
e4) are faulty, erroneously reporting to the controller
that the arm is at the placing station. In such
conditions, mislead by sensors failures, the controller
inadvertently stops the suction. These sensors
failures are primary faults and therefore become
basic events which are connected to the command
fault by an AND gate.

Finally, the last cause of the top event represents the
case of a systematic fault of the controller itself. In
this case, although sensors are working correctly, the
controller stops the suction before the manipulator
reaches the correct place. This fault contradicts the
specification which states that “suction must never
be stopped before the manipulator is at the placing
station”. The term “before” in the latter statement
suggests a certain temporal order of events, and thus
this portion of the tree is developed as a dynamic one
(see Fig.8). The event ordering gate “Exclusive OR
with condition” is used to model this fault.

Fig. 7. Fault tree for “the part falls down”

Fig. 8. Development of intermediate event “suction is
stopped before the placing station”

The behavior of this gate (see Fig.5) defines that the
output fault occurs if the conditioned input appears
before the other input (that can be produced later or
not produced at all). The left input of the gate shows
that the manipulator is in position at placing station
(lower position and rightmost position, indicated by
the correspondent sensors). The other gate input
indicates that the controller sends the command to
interrupt the suction. This is the conditioned input.
The fault is produced if this input is true before the
other one. Notice that we have used the signals as
inputs events of the gate. They are normal events and
not really faults. The fault comes from the erroneous
order of these signal changes.

5.2 Second analysis: Fault in vertical movement

A further undesired event in this system is a fault in
the vertical movement of the manipulator. The
specification imposes that the vertical cylinder must
remain one second at the picking station before
leaving to the other station so as to catch the
gearwheel. Here, the vertical cylinder stays less than
the required time of 1 second at the picking station.
The fault tree is shown in Fig.9 and shows that a
physical failure, e.g. a leak into the cylinder, can
produce its retraction and cause the undesired event.
That is considered as a primary fault. Secondary
faults caused by the environment are also possible
but for simplicity are not further developed here.

Instead we focus on the error in the operation of the
directional valve that commutes and produces the
retraction of the vertical cylinder. This fault must be
seen as a systematic one because it can only be
caused by an erroneous commission of the “commute
command” issued by the control logic that operates
the valve. In this case the “stop vertical movement
command” is issued early and the cylinder retracts
before the specified time.

If /S3 appears

Manipulator at the
placing station

Lower
position

(e4)

Rightmost
position

(e2)

Commission
of interrupting

the suction
(/S3)

Suction is
 stopped before the

placing station

The part falls down
during movement

Suction
device is
broken

Inadvertent
commission of stop
suction command,

issued by controller
in response to

failure in sensors
e2&e4 reporting

erroneous position

Collision of the
part with the
environment

Primary

Secondary

Classical
command

fault

Fault in
controller logic:

Suction is
stopped before

the placing
station

e2
failure

e4
failure

Systematic
fault

Fig. 9. Fault tree for the vertical cylinder

Once more this systematic fault can be modeled
using the conditioned Exclusive OR (Fig.10). The
left input of the gate defines that the manipulator is at
the picking place (lower position and leftmost
position) now and for the last second. To represent
this timed condition the temporal gate FORPASTn is
used. The right part of the tree shows that the
controller issues the “stops vertical movement”
command early, i.e. before the condition described
by the left branch is reached.

6. CONCLUSIONS

The work presented in this paper proposes an
extension to classical fault trees and their
construction process which enables inclusion and
analysis of systematic faults. The approach
contributes to improve safety analysis of systems by
integrating into the examination of causes of failure
the potential controller faults caused by design flaws
in control algorithms. Such faults are systematically
identified and recorded in the fault tree structure
every time a controller is encountered in the course
of a systematic traversal of the system model from
system outputs to system inputs, in the course of
which the causes of failure are progressively further
investigated.

Fig. 10. Further development of the systematic fault

Once the potential systematic faults have been
identified, the conditions that confirm their presence
are then described using an extended fault tree
vocabulary that contains classical, dynamic and
temporal gates. In (Barragan and Faure, 2005), it has
been shown that such fault trees can act as a useful
tool for obtaining formal properties for timed model-
checking. We are currently looking into the problem
of qualitative analysis and reduction of fault trees
which include dynamic and temporal gates. This
analysis will enable the identification of minimal
sequences of systematic faults. Moreover, it could be
possible to semi-automatically generate such fault
trees in the context of HiP-HOPS, a recently
proposed technique for model based synthesis of
fault trees (Papadopoulos and Maruhn, 2001). Once
the fault tree is constructed, it would be possible to
automatically check the presence or not of systematic
failures in the control code via model-checking of the
conditions specified in the fault tree.

REFERENCES

Andrews, J. (2002). Fault Tree Analysis – Common

Misconceptions. Proceedings of the 20th
International System Safety Conference, pp. 401-
410, August 5-9, Denver, Colorado, USA.

Barragan, I. and J.M. Faure (2005). From Fault Tree
Analysis to Model Checking of controllers.
Proceedings of the 16th IFAC WC 2005, 6 pages,
July 4-8, Prague, Czech Republic.

Bozzano, M. and A. Villafiorita (2003). Integrating
Fault Tree Analysis with Event Ordering
Information. In: Proceedings of ESREL 2003,
pp. 247-254, June 15-18, Maastricht, The
Netherlands.

Cepin, M. and B. Mavko (2002). A dynamic fault
tree. Reliability Engineering and System Safety,
N° 75, pp. 83-91.

Dugan, J.B. and K.J. Sullivan (1999). Developing a
low-cost, high-quality software tool for dynamic
fault tree analysis. Transactions on Reliability,
pp. 49-59.

International Electrotechnical Committee (1993).
IEC 61131-3, Programmable controllers,
Programming languages.

Laengst, W., A. Lapp, K. Stuebbe, J. Schirmer, D.
Kraft and U. Kiencke (2003). Automated risk
estimation based on fault trees and fuzzy
probabilities. In: Proceedings of SAFEPROCESS
2003, pp. 51-56, June 9-11, Washington, D.C.,
USA.

Palshikar, G.K. (2003). Temporal Fault Trees.
Information and Software Technology, n° 44, pp.
137-150.

Papadopoulos, Y. and M. Maruhn (2001). Model-
based automated synthesis of fault trees from
Matlab-Simulink models. DSN’01, Int’l Conf. on
Dependable Systems and Networks. pp. 77–82.
Götenborg.

US Nuclear Regulatory Commission (1981). Fault
Tree Handbook. Technical Report NUREG-
0492, Washington, DC.

 The vertical cylinder
stays less than 1

second at the
picking station

Physica l
failure

Fault due to
environment

Primary Secondary

The controller
stops vertical

movement
before 1 second is

reached

If /S2 appears

FORPAST 1

Lower
position

(e4)

Leftmost
position

(e1)

Commission
of stop
vertical

movement
command

(/S2)

The controller stops vertical
movement before 1 second is

reached

Manipulator at the
picking station

