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Abstract

This article introduces a new class of constraints for spline varia-
tional modeling, which allows more flexible user specification, as a
constrained point can ”slide” along a spline curve. Such constraints
can, for example, be used to preserve correct parameterization of
the spline curve. The spline surface case is also studied. Efficient
numerical schemes are discussed for real-time solving, as well as
interactive visualization during the energy minimization process.
Examples are shown, and numerical results discussed.
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1 Introduction

Among the important properties often appreciated in geometric
modeling, stands the ability for a given model to be easily edited.
This property partially explains the popularity of models such as
splines [Piegl and Tiller 1997] and subdivision surfaces [Zorin and
Schroder 2000]. Yet, in some special cases, many degrees of free-
dom for a geometric model can be quite a drawback to design sim-
ple, natural shapes, for example. Such a manipulation can be quite
long and difficult for the user, making the model not suitable for
such a goal. In order to solve this problem, deformation tools [Co-
quillart 1990; Barr 1984] are often used in order to provide simple
edition for models with many degrees of freedom. Some mod-
els also have multiresolution features [Forsey and Bartels 1988;
Grisoni et al. 1999] that provide a control of the number of de-
grees of freedom used during manipulation. This way, the user only
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manipulates the model at the desired resolution, and can precisely
control the influence of the modifications.

Another possible solution is to use variational modeling [Welch
and Witkin 1992; Gortler and Cohen 1995; Witkin et al. 1987],
which principle is to combine initial condition to be respected, and
a physical solver that determines the shape fitting the conditions
and minimizing some energy criterion (classically, the global cur-
vature). Constraints can thus be defined dynamically on the model
to help the designer during the manipulation. The most popular
constraints are those which affect a specific point of a curve or a sur-
face (for instance, a fixed point, tangent, normal, etc...). Other con-
straints show themselves useful for direct manipulation like con-
straining a curve or surface to pass through a specific point (in free
space or on an object). This has been already proposed in the past
for particular objects.

It can be useful to easily define some sliding points on a shape,
i.e. ensure that some point of the shape is at a specified location
in space, whatever the corresponding parameter value of the point.
For example, some applications in direct edition process, by fix-
ing enough sliding points on the curve, we can entirely define its
shape by specifying a kind of path. Such a constraint ensures that
parameterization will also be taken into account during the energy
minimization step. Apart from the parameterization point discussed
above, such a constraint would offer additional degrees of freedom
to variational modeling. This article presents a method for handling
such constraints.

We use Lagrange formalism to describe our technique, and intro-
duce what we call smooth constraints 1. Classically in variational
modeling, a static resolution process is used during the energy mini-
mization step. This ensures a proper system resolution, but presents
the drawback that the user does not have any control during the res-
olution process. We propose another approach, that uses dynamic
resolution, and allows the user both to interact with the model dur-
ing energy minimization, and control the numerical evolution of the
system. In order to allow an efficient solving, we propose a modifi-
cation of the constraint equations.

The paper is organized as follows: Section 2 consists in an
overview of the previous work followed by section 3 presenting the
principle of variational modeling, including notations and general
equations. The spline case is especially developed in a sub-section.
The next two sections present the theory for smooth spline curve
constraints and the equations modifications needed to achieve high
performance real-time resolution. A set of smooth constraints for a
spline curve is then exposed in a section 6. Section 7 generalizes the
theory to spline surfaces. Finally, numerical results, and examples,
are presented in section 8 before concluding.

1It is to note that the term ’smooth constraint’ is used in [Robinson

2003], associated to a different meaning. In our context, ’smooth constraint’

refers to constraints specified without explicit parameter value (e.g. spline

curve that slides through static space point).



2 Previous Work

In a general way, variational modeling searches the ideal emplace-
ment of a model by minimizing an energy criterion (for example,
the thin plate energy employed by Pottmann et al. [2002] for an
active contour application). This approach can be done statically
[Witkin et al. 1987] or dynamically [Qin and Terzopoulos 1996].
The employed energy can be seen in term of constraints that can be
solved by a physical simulation. The interest in variational model-
ing resides in the possible constraints that can be applied to a model
to ease its manipulation by the end-user. But creating constraints
dynamically can yield some problems like discontinuity or an un-
solvable system due to the resolution process. In this perspective,
Gleicher [1992] proposed among others a direct edition method for
constraints definition.

Welch and Witkin [1992] characterize a surface with a spline
formulation and define an energy criterion based on a simplified
expression from Terzopoulos et al. [1987]. Then, they define ge-
ometric constraints, finite-dimensional constraints and also transfi-
nite constraints dealing with the entire surface (global energy). The
resolution process is static and such proposed constraints do not al-
low a specific point of one object to be locked on another object
surface (global consideration of the surface with evolving localiza-
tion).

Among convenient constraints, Witkin et al. [1987] proposed
higher levels tools. One of them obliges an object surface to pass
through a specific point without specifying the actual object point.
Their object can be defined by different ways, set of discrete points,
iso-surface of implicit functions. By this way, a specific point of an
object can easily be locked on the surface of another object defined
by its implicit form. This is a pioneering work and a fundamental
solution to the smooth constraint problem. The solution proposed a
very interesting form of constraint but it has the drawback that the
object defined by its implicit form is known by its surface. Nev-
ertheless, it is in no way a trivial purpose to define a curve by an
implicit form because it is not a natural way to create a 1D model
especially for a deformable model. Even the use of a distance map
brings computation time issues. Moreover, the static process of res-
olution needs energy local minima and thus the object configuration
can jump from a solution to another one discontinuously.

Qin and Terzopoulors [1996] proposed a dynamic NURBS to
simulate a curve and adapted it for geometric modeling by exploit-
ing force reaction to bring local deformation and gravity to help de-
signers. By a tensor product, they extend their tool to surface. They
enforce their constraint by the way of Lagrange multipliers and
Baumgarte stabilization scheme. They use augmented Lagrange
technique but constraints which are not localized on the model can
not be simulated by such method combination. The dynamic for-
malism proposed by Qin is interesting because it offers a temporal
coherence of the behavior and thus avoid jumps which occur in a
static process. We propose to complete this dynamic formalism in
order to take into account a new class of constraints.

3 Dynamic Variational Modeling

3.1 Generalities

Traditionally, variational modeling consists in considering an ob-
jective function to be minimized, along with some specific con-
straints [Welch and Witkin 1992]. The objective function is gener-
ally based on an energy expression of the curve, surface or volume.

All these considerations can be simulated thanks to the la-
grangian theory, that aims at minimizing the energy of a system
in a dynamic process. Moreover, it can be directly extended to
take into account some specific constraints, as in the classic way

of variational modeling, by use of the Lagrange multipliers. In or-
der to animate a curve, we consider this object as a set of degrees
of freedom introduced in a mechanical system. With these degrees
of freedom, we explain the mechanical law thanks to the lagrangian
equations [Lenoir et al. 2002; Rémion et al. 1999]:

{

∀i,
d ∂ K

∂ q̇i

dt + ∂ K
∂ qi

= Qi +LT .λ

φ(qi, q̇i) = 0
(1)

where K is the kinetic energy of the system, qi the degrees of free-
dom, Qi the power of the different potential forces. L is a matrix
defined using the different constraints (φ ) relatively to all degrees
of freedom [Rémion 2000]. λ are the Lagrange multipliers, each of
them is related to the force intensity needed to preserve an associ-
ated constraint.

Classically, equations (1) are derived into a linear system:

(

Mg LT

L 0

)(

A
−λ

)

=

(

B
E

)

(2)

where Mg is the generalized mass matrix of the system ones con-
siders (resulting from the kinetic energy term), L the constraints
matrix, A the acceleration of the degrees of freedom, B a vector that
sums the different contributions of all external and inertial forces
and finally E a vector coding the intensity of the violation of the
different constraints.

By this way, we can fix a constraint directly on the degrees of
freedom or anywhere on the object (degrees of freedom are not nec-
essarily on the object as in the BSpline case) or between different
objects present on the same dynamic system (like two patches with
a common edge).

3.2 Spline Variational Modeling

The chosen model is a spline geometry on which we apply the me-
chanical laws. For a 1D spline, the position of a point on the curve
is defined as a function of s (its parametric abscissa):

P(s,t) =
n

∑
i=1

qi(t).bi(s) (3)

where qi are the control points, n the number of control points, bi

the basis functions linked to the spline type, s the parametric ab-
scissa of the point and t the time (for our test, we used Catmull-Rom
spline, cubic uniform BSpline and non uniform BSpline).

To simulate a spline, we define the three coordinates qα
i of each

of its control points as the degrees of freedom2 of the dynamic sys-
tem which thus has a size of 3n. After some computations, we
obtain:

∀i,
d ∂ K

∂ q̇α
i

dt
= m.

n

∑
j=1

∫ 1

0
bi(s).b j(s).ds.q̈α

j (4)

∀i,
∂K

∂qα
i

= 0

where m is the mass of the object. We thus obtain a diagonal block
generalized mass matrix with the same block for each axis:

Mg =





M 0 0
0 M 0
0 0 M



 (5)

2thus, their accelerations are noted q̈α
i , which is equivalent to

d2qα
i

dt2



thanks to the equations (4), we easily define the components of M
by:

Mi j = m.
∫ 1

0
bi(s).b j(s).ds (6)

What we desire here is both the global and local modification
of the curve when the end user changes the configuration. We can
obtain a local modification by a direct edition of a point but the
global shape of the curve does not change. We need here an internal
energy permitting the propagation of the local modification to the
entire curve. Since, we are interested in doing variational modeling,
gravity is not involved. Qi represents the influence of some springs
that are associated to the curve for the internal energy [Lenoir et al.
2002], and the forces due to the interaction with the user. Those
equations can also add forces given by a scene collision detection
or self-collision process when needed.

The constraints are taken into account via the Lagrange multipli-
ers λ . They allow to constrain a system, by the way of its degrees
of freedom. We can thus constrain directly the degrees of freedom
or any point of the object (for a BSpline, the degrees of freedom are
the control points which do not belong to the curve). For example
we can fix coordinates of any point on the curve by applying:

FixedPointConstraint(s0,t) = P(s0,t)−A

which declines in three simpler constraints, one for each axis. By
the same way, constraints for fixing one or two coordinates are pos-
sible.

According to existing literature, such constraints can only be rel-
ative to a specific point of the curve (or more basically on the de-
grees of freedom themselves). We are thus not able to consider a
constraint onto the entire curve. With such constraints, it is not pos-
sible to constrain the curve to pass through a point in space without
specifying which constant point of the curve should be placed there.
The next section presents a solution to this problem.

4 Smooth spline constraints

We wish to give more flexibility to the constraints by making them
non localized on the curve. So that the effective point where the
constraint is applied depends on the dynamics itself.

One example, is the sliding point constraint, where some point
of the object must be at a specific location, but this curve point is
not always the same step after step, depending on the dynamics. In
this example, we just have to fix a point of the curve, considering
the fact that it is not always the same point that is fixed during the
process stabilization. As a curve point is defined by a parametric
abscissa s, the specific s parameter of the fixed point constraint must
be dynamic and thus depends on time : s(t).

Clearly, our constraint is a fixed point constraint based on a dy-
namic abscissa parameter. Such a constraint g is written:

g(q, q̇,t,s(t)) = P(s(t),t)−P0 (7)

This equation imposes that some point of the spline must be at the
position P0. But it is a dynamic system so, the s(t) will change over
time in order to find the right point of the curve that minimizes the
energy of the constrained system.

A problem occurs: The g equation demands to the system to
verify a condition but the system ensures that the constraint will
be fulfilled at a stable state but not necessarily immediately. This
introduces a numerical drift on the constraint over time. To take
into account this feature , we use the equation of g to formulate
a second order differential equation that gives us a damp solution

with a critical damping [Rémion et al. 1999; Baumgarte 1972]. This
leads to the constraint equation:

g̈+
2

δ t
ġ+

1

δ t2
g = 0 (8)

where δ t is the time step used during the simulation.

By considering the equation (7), we obtain the suitable constraint
equation:

d2P

dt2
+

2

δ t

dP

dt
+

1

δ t2
(P−P0) = 0 (9)

In the development of this equation (using expression of P given
by equation (3), new terms appear that do not exist for a simple
fixed point constraint:

n

∑
i=1

(q̈i(t).bi(s(t))+qi(t).b
′
i(s(t)).s̈(t)) = (10)

−

n

∑
i=1

(2.q̇i(t).b
′
i(s(t)).ṡ(t)+qi(t).b

′′
i (s(t)).ṡ(t)2)

−
2

δ t

n

∑
i=1

(q̇i(t).bi(s(t))+qi(t).b
′
i(s(t)).ṡ(t))

−
1

δ t2
(

n

∑
i=1

qi(t).bi(s(t))−P0)

In fact, we can see that the constraint equation needs the dynam-
ics of the s parameter. We thus have to consider it as an unknown
of our system. It will be numerically integrated step by step like all
other unknowns in order to determine its new position and veloc-
ity. This is a particular use of the lagrangian formulation because
we just define a new unknown that is neither a degree of freedom
nor a Lagrange multiplier. Because of this new unknown we have
to find an additional equation in order to entirely define the system
equation. This equation can give us an idea of the evolution of the s
parameter or explain a constraint, linking s to the physical system.

If we consider a perfect constraint without friction, the la-
grangian theory imposes that the virtual power of the strain due to
this link must be equal to zero. In other words, the force generated
by the Lagrange multipliers must not work in mechanical terms.
For that, the Lagrange multipliers λ of this constraint must verify
the equation:

λ .
∂g

∂ s
= 0 (11)

This theoretical framework is explained in more details in [Rémion
2003].

We obtain a global system:











M 0 0 0 LxT

0 M 0 0 LyT

0 0 M 0 LzT

0 0 0 0 LsT

Lx Ly Lz Ls 0





















Ax

Ay

Az

s̈
−λ











=











Bx

By

Bz

0
E











(12)

the new matrix Ls describes the different constraints according to
the new unknowns s̈. In other words, it introduces the sliding point
constraint into the system. Ls is composed by the terms of the con-
straint equations (10) where s̈ appears. For a single sliding point
constraint, Ls is a (3× 1) matrix composed by the column vector
∂ g
∂ s

.



5 Resolution

The equation system (12) is quite complex to solve because we do
not have a direct relation that gives the new value of s̈. For an inter-
active application, such a resolution can degrade the performance
and thus make the manipulation difficult because of the latency of
the animation. Consequently, we choose to consider equation (11)
in a different way.

We accept that the effective work of the force generated by the
Lagrange multipliers is not null and we represent it as an error. This
error is due to an incorrect value of s and is applied to correct the
dynamics of this parameter. This approach gives us an equation
slightly different from equation (11):

ε.s̈−λ .
∂g

∂ s
= 0 (13)

In order to stay close to the theoretical framework, we multiply the
acceleration of s by a factor ε close to zero. This little modification
of the equation gives this new system of equations:











M 0 0 0 LxT

0 M 0 0 LyT

0 0 M 0 LzT

0 0 0 ε LsT

Lx Ly Lz Ls 0





















Ax

Ay

Az

s̈
−λ











=











Bx

By

Bz

0
E











In this system, the matrix L is defined by its components: (LxLyLz).
Ls is an extension of L which permits to explain constraints on the
s̈ unknowns.

The equation (13) gives us a direct relation to find the value of
the s̈ unknown and thus accelerates the resolution process.

We decide to solve the system by decomposing the acceleration
in two parts, one of tendency and one of correction: A = At + Ac

[Rémion 2000]. The acceleration of tendency represents the ac-
celeration without any constraint and the other acceleration is the
correction due to the constraints. This leads us to this new equation
system:



























M.Ax
t = Bx

M.Ay
t = By

M.Az
t = Bz

Mg.Ac = LT .λ
ε.s̈ = LsT .λ
L.(At +Ac)+Ls.s̈ = E

We replace the terms Ac and s̈ in the sixth equation by their ex-
pression respectively in the fourth equation and the fifth equation.
These replacements yield an equation for λ :































M.Ax
t = Bx

M.A
y
t = By

M.Az
t = Bz

Ac = M−1
g .LT .λ

ε.s̈ = LsT .λ

L.M−1
g .LT .λ + Ls.LsT

ε .λ = E −L.At

We called n the number of control points of the spline so we have
M(n× n) and Mg(3n× 3n). c is the number of constraints in the
system, and thus is the height of L and Ls. And cg is the number of
new unknowns in the system, and thus is the width of Ls.

M is both constant over time and symmetric band matrix (cf.
equation (6)) due to the spline locality property, we thus pre-
compute an LU decomposition where L and U are two band ma-
trices too. The computation time of At is then linear (thus in O(n)).

We also can pre-compute the inverse matrix of M and use it to com-
pute M−1

g .LT then the matrix R = L.M−1
g .LT , this computation is

in O(c.n2 + c2.n). We complete R by the integration of the sliding

constraints part: Ls.LsT

ε . This completion is done in O(cg.c
2).

Finally, we solve the matrix equation R.λ = E−L.At which takes
a complexity of O(n.c + c) for the right term computation, O(c2)
for R decomposition and O(c2) for the final resolution. This gives
us the values of the Lagrange multipliers and permits us to compute
the correction accelerations Ac = M−1.LT .λ (resolution in O(n.c))
and the new value of the supplementary unknowns: ε.s̈ = LsT .λ
(resolution in O(c.cg)).

The trick employed in (13) permits to resolve the system in
O(c.n2 +c2.n+cg.c2).

For comparison, a direct resolution gives a complexity of O((n+
cg + c)3). By applying the same technique of acceleration decom-
position on the unmodified system (12), this yields three different
accelerations by dissociating the c constraints into c1 usual con-
straints and c2 smooth constraints (c = c1 + c2) [Rémion 2003].
This decomposition allows a resolution in the same order of com-
plexity as the above resolution, but takes more computation stages.
So the theoretical framework would be more time consuming.

6 Set of Smooth Constraints

Thanks to this free variables technique, a running knot can be easily
defined using the constraint equation:

g(q, q̇,t,s(t),s0) = P(s(t),t)−P(s0,t)

Such a constraint defines knot on a curve and also gives us the pos-
sibility to manipulate it easily, and change its position on the curve.

In the same way, a double sliding point constraint can be defined
on a spline by the equation:

g(q, q̇,t,s1(t),s2(t)) = P(s1(t),t)−P(s2(t),t)

This last constraint equation allows to manipulate a knot with the
desired piece of spline. This gives us much more freedom on the
manipulation but requires a second unknown.

Another application of this technique, is the reusing of the new
free variables in others constraints equations. For example, we can
imagine a sliding point constraint representing a surgical thread
during a suture. At the contact point, the curve tangent can be con-
strained perpendicularly to the organ surface. This can be done by
a tangent sliding point constraint equation:

g(q, q̇,t,s(t),s0) =
dP(s(t),t)

ds
−T (s0,t)

where T (s0,t) is the tangent vector wanted at the s(t) abscissa pa-
rameter.

We can imagine by the same way, a constraint on the normal
vector:

g(q, q̇,t,s(t),s0) =
d2P(s(t),t)

ds2
−C(s0,t)

with C(s0,t) is the curvature vector wanted at the s(t) abscissa pa-
rameter.

Many constraint equations can be created by this way and new
experimentation must be explored. Furthermore, this technique is
practicable in the 2D case.



7 Generalization to surface

This formulation can be easily generalized to a 2D object, we just
have a constraint based on the degrees of freedom. In this case,
we would have two free variables for defining a sliding constraint.
In terms of internal energies, we can apply some springs [Provot
1995] or trying a continuous energy [Terzopoulos et al. 1987; No-
cent and Rémion 2001]. For a 2D spline (of size n× n), we have
the expression:

P(u,v,t) =
n

∑
i=1

n

∑
j=1

qi j(t).bi(u).b j(v)

Then, the K term in the lagrangian equation gives us a much
more complex mass matrix than the 1D case:

∂K

∂ q̇i j
= (m.

n

∑
i1=1

n

∑
j1=1

∫ 1

0

∫ 1

0
bi(u)bi1 (u)b j(v)b j1(v)dudv)q̇i1 j1

As a result, M is composed of terms:

M(i1 j1),(i2 j2) = m.

∫ 1

0

∫ 1

0
bi1(u).bi2 (u).b j1(v).b j2(v).du.dv

by adopting the coding line/column, a point of index i is the
q(i/n)(i%n) point, it gives a more precise formulation:

Mi j = m.

∫ 1

0

∫ 1

0
bi/n(u).b j/n(u).bi%n(v).b j%n(v).du.dv

Such a matrix has a n2
× n2 size (for a patch of size n× n) and

a band structure thanks to the spline locality that localizes the in-
teractions between the control points in the 2D structure. A point
interacts with some neighbors that are on the same line or on the
neighbors line. These lines are localized in the matrix structure
closely to the current one. In conclusion, we obtain a band matrix
much larger than the 1D case.

Algorithms such as Cuthill Mckee also permit to re-organize the
structure of the matrix by giving a different numeration of the knot3.
It may enhance the resolution process by giving a more interesting
structure to the M matrix.

A sliding point constraint for a surface is defined by the equation:

g(u(t),v(t),t) = P(u(t),v(t),t)−A

this constraint needs two free variables u and v to define a single
sliding constraint. The computation will be more fastidious than
the 1D case but the process is very similar.

Such constraint permits to define a point on the tissue through
which the surface may slide while the user pulls it by an extremity.
In a manner similar to a tissue that would slide on a stake if a person
pulls it by one of its corner.

In term of complexity, the mass matrix grows to a n2
× n2 size

and always has a band property but with a larger band width. This
remark set apart, the complexity is the same as in the 1D case.

8 Results

All the tests have been performed on a Pentium IV, 2.4GHz and
512Mb.

We first show that our method is effective with this animation
example: A shoelace is pulled from one extremity (figure 1). The

3Boost Graph Library, Cuthill McKee Ordering.

http://www.boost.org/libs/graph/doc/cuthill mckee ordering.html

first image represents the initial situation where the shoelace is cor-
rectly put on the shoe, the holes are modeled using white spheres.
The second picture shows what happens when we just pull it slowly.
The shoelace slides along the sliding point constraints. The last
picture represents the state of the dynamic process later when the
shoelace passes through the two first holes. This last picture brings
up the interesting property that each constraint can be activated or
deactivated dynamically and automatically when the constraint be-
comes outside the curve, and can no longer be valid. The apparent
rigidity of the shoelace is due to the discretization we chose for the
spline (we could have a better movement by taking a much more
subdivided spline, at the cost of a longer computation). In this ex-
ample, the dynamic resolution process takes about 12ms for each
computation step.

The second result shows the advantage of this method in regard
of the distribution of the energy along the spline (figure 2). On
the picture, the user manipulates the curve thanks to a probe which
can be linked to a control point (which one can see in the second
and third images). The crosses symbolize the control points of the
spline in order to show their distribution. The first image is the ini-
tial situation where we take a spline on which we fix the extremities.
Starting from this, we either fix its middle point (second picture) or
define it as a sliding point (third picture). The result shows that
the manipulation changes the modeling of the spline but the fixed
point can be seen as two splines with constraint on the joining point,
which localize the manipulation on one of the two sub-splines and
some modification on the neighbor sub-spline due to the links con-
straint. For a sliding constraint, the spline is considered as a unique
spline that we ask to pass through a specific point. The sliding
process enables the spline to distribute its energy onto the entirely
curve by passing the sliding point. This allows the control points to
be evenly distributed along the curve.

The next example shows a slipknot constraint (figure 3). With
such a constraint, we can make a knot with a spline and manipulate
the spline in order to clamp the knot or on the contrary make it
wider.

A useful application of this proposition is the direct manipulation
of the sliding point constraint location. By this way, the model is
accessible by its control points and also by its sliding points. Thus
we impose that the curve passes through a point whose position is
interactively set by the end-user(figure 4).

In figure 5, snapshots of sliding point constraints simulations on
2D spline are shown. The first image shows a 7×7 patch with three
sliding points and one fixed point. The resolution process takes
about 20ms for each computation step. The second image shows
another configuration with the same patch but with only one sliding
point constraint. For this example, the computation time is about
14ms.

In the different pictures, a green sphere represents a fixed point
constraint and a white sphere represents a sliding point constraint.

9 Conclusion and Prospect

This article proposed a dynamic approach for the variational mod-
eling and shared a specific constraint on a point without specifying
explicitly the parameter of this point. With this type of constraint,
we are able to make a direct edition and then offer a new way of
modeling a spline.

This technique can be easily used in animation and could give
interesting results for simulating all sorts of threads, ropes, etc.

It would be interesting to adapt the resolution of the spline curve
depending on the constraints the user applies. Using multiresolu-
tion splines [Finkelstein and Salesin 1994] combined with auto-
matic decision criteria, would be a valuable tool. Such a work is
currently in progress.



Figure 1: A shoelace sliding on some shoe hole (white spheres)

Figure 2: Left: Initial spline - Middle: Tension created with a fixed point
right: Correct re parameterization with a sliding point - (Control points are shown by the red crosses)
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Figure 3: A rope for hang: a rope with a sliding point constraint linked to another point of the curve

Figure 4: Direct Edition with an interactive sliding point constraint

Figure 5: Application to 2D splines


