
HAL Id: hal-00348024
https://hal.science/hal-00348024v1

Submitted on 17 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive resolution of 1D mechanical B-spline
Julien Lenoir, Laurent Grisoni, Philippe Meseure, Christophe Chaillou

To cite this version:
Julien Lenoir, Laurent Grisoni, Philippe Meseure, Christophe Chaillou. Adaptive resolution of 1D
mechanical B-spline. International Conference on Computer Graphics and Interactive Techniques in
Australasia and South East Asia (Graphite), Dec 2005, Dunedin, France. pp.395-403. �hal-00348024�

https://hal.science/hal-00348024v1
https://hal.archives-ouvertes.fr


Adaptive resolution of 1D mechanical B-spline

Julien Lenoir∗

CIMIT, The SimGroup
Laurent Grisoni†

ALCOVE, INRIA Futurs, LIFL
Philippe Meseure‡

SIC, University of Poitiers
Christophe Chaillou§

ALCOVE, INRIA Futurs, LIFL

(a) Fixed resolution (b) Adaptive resolution (c) Cutting

Figure 1: Knot tying and cutting

Abstract

This article presents an adaptive approach to B-spline curve
physical simulation. We combine geometric refinement and
coarsening techniques with an appropriate continuous me-
chanical model. We thus deal with the (temporal and geo-
metric) continuity issues implied when mechanical adaptive
resolution is used. To achieve real-time local adaptation of
spline curves, some criteria and optimizations are shown.
Among application examples, real-time knot tying is pre-
sented, and curve cutting is also pointed out as a nice side-
effect of the adaptive resolution animation framework.

CR Categories: I.3.5 [Computing Methodologies]: COM-
PUTER GRAPHICS—Computational Geometry and Ob-
ject Modeling: Splines I.3.7 [Computing Methodologies]:
COMPUTER GRAPHICS—Three-Dimensional Graphics
and Realism: Animation I.6.0 [Computing Method-
ologies]: SIMULATION AND MODELING—General
I.6.8 [Computing Methodologies]: SIMULATION AND
MODELING—Types of Simulation: Continuous

Keywords: Adaptive resolution, Real-time simulation, Me-
chanical 1D model

∗e-mail: Julien.Lenoir@lifl.fr
†e-mail: Laurent.Grisoni@lifl.fr
‡e-mail: philippe.meseure@sic.sp2mi.univ-poitiers.fr
§e-mail: Christophe.Chaillou@lifl.fr

1 Introduction

Real thready objects have a spatial masses distribution but
mostly located along a skeleton. Usually, thready model is
defined as a 1D model representing the skeleton of the real
object, showing most common behavior of the real object.
Real time simulation implies to limit the computation time
of the model. But a model also has to have a certain number
of degrees of freedom to be able to exhibit complex behavior.
One way to deal with both limitations is to use an adaptive
model that changes locally and dynamically its own resolu-
tion.

In this paper, we propose a new approach to simulate adap-
tive B-splines with respect to physical properties and conti-
nuity during the simulation. Our main idea is to benefit from
the huge literature concerning spline’s subdivisions [Finkel-
stein and Salesin 1994] and adapt selected methods to me-
chanical purposes. Our main problem is thus to properly
define a mechanical model which can naturally endure both
refinement and coarsening operations. We will see that this
implies to define the physical properties such as mass, damp-
ing or elasticity in a continuous way. Deformations of the
model are not the main issue of this paper so that we only



deal with the stretching deformation introducing a physical
structure into the model. A Typical problem of adaptive 1D
model is to tie a knot. We show as a result that our propo-
sition permits to handle such a problem. We also point out
that our technique can be used to dynamically cut a curve at
any location.

This paper is organized in the following way. After the
presentation of related work in section (2), we expose the
spline subdivision technique and the physical simulation of
splines in section (3). In section (4), we show how we com-
bine these two techniques to get a mechanical adaptive sim-
ulation of curves. Section (5) shows results and some appli-
cations of our work before concluding the paper.

2 Related Work

Adaptive techniques are useful for 1D physical model in case
of extreme deformations like knot tightening. This special
manipulation of knot tying has been studied this last years.
For example, [Wang et al. 2005] propose a discrete model
based on point masses linked by a set of springs provid-
ing stretching, bending and twisting deformations. Unfor-
tunately, the model is not adaptive, so that a random tying
needs a very strong discretised thread. Another way to deal
with knot tying is to use a non physics based model, like
[Brown et al. 2004]. Their model is defined by a set of
points moving by "follow the leader" rules. Unfortunately,
this technique does not permit to take into account all phys-
ical behavior like [Wang et al. 2005] pointed out. Moreover,
this model is not adaptive so that it is also subjected to a
strong discretisation.

The mechanical multi-resolution technique has been stud-
ied for a few years to overcome the cost of computing the
behaviour of a huge number of points of a physical model.
A coarse model is progressively refined in order to increase
the number of points only where a high precision is needed,
generally where interactions occur. Two main kinds of ap-
proaches have been proposed depending on whether an ideal
continuous model exists or not.

The first methods do not rely on a continuous model and
describe only how the resolution of a discrete model can
be refined or coarsened. This process is applied depending
on the needed spatial or temporal frequencies of an interac-
tion [Luciani et al. 1995]. Such approaches have focused on
spring/mass nets [Hutchinson et al. 1996; Ganovelli et al.
1999]. They consist in adding or removing points of the
net, and connecting them with the points of the lower res-
olution. However, springs have drawbacks. Indeed, splitting
a spring into several implies higher elasticity constants (and
a less stable integration of the dynamics equations). In prac-
tice, a spring is usually split at its middle, and the elastic-
ity constants are doubled. This technique keeps the resolu-
tion away from an exact adaptation, leading to an iterative
process. Moreover, the distribution of masses between the
implied points is not straightforward. To avoid such distrib-

ution, Eberhardt et al. propose to use virtual particles [Etz-
muss et al. 2000]. [Phillips et al. 2002] used a similar model
to simulate knot tying. When the resolution changes, new
nodes are inserted or removed and the total mass and mo-
ment are kept. But, as springs are placed on the nodes, the
configuration changes during a changing resolution as does
the behaviour.

The second family of approaches relies on a continuous
"ideal" model which is discretised at different resolutions.
Finite-element or finite-difference methods are used [Astley
and Hayward 1997; Wu et al. 2001; Debunne et al. 2001].
Compared to the previous family, these methods guarantee
that the physical laws do not depend on the discretisation
level, since they refer to the continuous model. Nevertheless,
the finer the discretisation is, the more precise the behaviour
becomes (levels appear as low-band filters). To allow the
use of different levels depending on where the interaction
occurs, the different resolution levels must be linked. Thus,
these are defined by splitting elements or using higher order
basis functions [Grinspun et al. 2002], which allow to con-
trol geometric continuity between elements of different lev-
els. Debunne et al. proposed a method to link independently-
built discretisation levels together [Debunne et al. 2001]. An-
other way to build the different discretisation levels is to
use multi-resolution Free-Form Deformation [Nocent et al.
2001; Capell et al. 2002]. One of the major concerns of all
these methods is to ensure continuity when a switch occurs
between levels. What is more, all of these techniques usu-
ally involve some pre-computation on regular, pre-set, sub-
divisions of the initial model. Providing point insertion at
any location on the object usually involves dense refinement
around point location, and only provides approximate adap-
tivity. In other words, the adaptation is surely local, but not
sufficiently localised.

Our approach falls into the second family. Yet, in our
model, we do not have to deal with the continuity problems
between elements of different levels or during a level switch-
ing. The main idea is to rely on a continuous object which
is discretised by a variable number of degrees of freedom.
All the physical degrees of freedom are only based on the
geometry. By using methods which guarantee the geometric
invariance when adding or removing degrees of freedom, we
naturally ensure the temporal continuity of the shape and its
behaviour. As well, no pre-computation is needed, and as
is shown in this article, B-spline multi-resolution straightfor-
wardly provides insertion at any location. It can be pointed
out that our technique is not a multi-resolution one as it does
not deal with multiple resolutions at the same time. Our
model is based on one adaptive resolution.

3 B-spline curve physical simulation

In this section we first define the notation used in the remain-
der of this article, and recall some of the B-spline’s proper-
ties used to adapt the resolution. We then describe classi-



cal process for B-splines physical animation, and the general
framework we use.

3.1 B-spline curve definition and properties

A B-spline curve is defined using classical spline definition:

C(s) =
N

∑
i=0

qibi,d(s) (1)

In the above equation, qi are the control points of the curve
C. The functions bi,d are piecewise polynomials of degree d,
defined using a knot vector, sorted list of scalar values:

T = (s0,s1, . . . ,sM) with s0 ≤ s1 ≤ . . .≤ sM

From such a knot vector, classical Cox-DeBoor recursive de-
finition[Cox 1972; de Boor 1972] is used either to evaluate,
or symbolically calculate, B-spline basis functions.

B-splines have many numerical and geometrical prop-
erties [Farin 1990], among which exact knot insertion
[Prautzsch 1984; Schumaker 1981]. Precisely speaking, we
consider a first B-spline representation space, constructed us-
ing the known vector U = (u0, · · · ,un): the generated basis
functions of degree d, are written here F0

j,d . We also consider
a second B-spline space constructed using some knot vector
W = (w0, · · · ,wn+k) created from U inserting k knots, that
is, we suppose that there exists some injection σ, that maps
{0, · · · ,n} into {0, · · · ,n+ k}, such that:

∀i ∈ {0, · · · ,n},
{

i≤ σ(i)
ui = wσ(i)

(2)

Basis functions generated from W of degree d are written
F1

i,d . Theoretical knot insertion properties corresponds to the
existence of coefficients βd

i, j such that:

∀ j ∈ {0, · · · ,n−d}, ∀s, F0
j,d(s) =

n+k−d

∑
i=0

β
d
i, jF

1
i,d(s) (3)

The Oslo algorithm defines βd
i, j coefficients, using recur-

sive formula [Prautzsch 1984]:

β0
i, j =

{
1 if ui ≤ w j < ui+1
0 otherwise

and, for r = 0, · · · ,k−1:

β
r+1
i, j =

w j+r−ui

wi+r−ui
β

r
i, j +

ui+r+1−w j+r

ui+r+1−ui+1
β

r
i+1, j

(4)

Such an insertion process will be later in this article used in
its global matrix form:

F0 = β
T F1 (5)

where F0 is the vector composed of the functions F0
j,d , F1

the vector composed of the functions F1
i,d , and βT the trans-

pose of matrix β, matrix composed of the coefficients βd
i, j,

evaluated using eq. (3). It is to note that, in order to make
notation more readable, indexes representing spline degree d
will be removed from notation in the remainder of the arti-
cle (i.e bi,d becomes bi, etc...), as the spline degree is always
considered as constant. Among other things classical conse-
quences of knot insertion property, a curve, represented by a
control point sequence q0 on the knot vector U , will be rep-
resented on the knot vector W using control point sequence
q1 = βq0. It is important to understand that knot insertion
automatically entails control point insertion, and that the first
cannot be achieved without the second.

It is to note that in the cubic case, that is, without any
loss of generality about the presented results, the B-spline
example case we used, the insertion of a single knot value
only involves two non-zero values, i.e. in case of knot at
index i, βi,i and βi,i−1 = 1− βi,i. In that specific case, the
new control points are given by the simple relation:

q1
i = βi,iq0

i +(1−βi,i)q0
i−1

With such an insertion property, B-splines functions are said
to be refinable, which is the basic property for wavelet based
multi-resolution availability [Finkelstein and Salesin 1994;
Kazinnik and Elber 1997]. As B-spline functions are lo-
cal, insertion process is guaranteed to be in linear complex-
ity in term of spline degree, and independent of the number
of control points. The question to know which points can
be removed, or, on the contrary, to calculate parametric val-
ues where knot should be inserted, typically involves study-
ing the analytic structure of C(t), in order to isolate maxi-
mal and minimal curvature points. Many different tools ex-
ist for B-splines in regard of high-curvature point isolation:
interval analysis [Snyder 1992; Hart et al. 1998; Berchtold
et al. 2000], symbolic root-isolation [Elber and Cohen 1993],
wavelet decomposition using semi-orthogonal or biorthogo-
nal B-spline multi-resolution analysis [Kazinnik and Elber
1997]. Interval analysis provides quite an efficient way for
fast partitioning of curve into parts of different interests in
regard of curvature [Berchtold et al. 2000]. Symbolic root
finding is also efficient in spline context: B-spline basis func-
tions are piecewise polynomials, most of the time of accessi-
ble degree. Wavelets provide a good theoretical framework
for curve analysis. Yet, they are quite computationally ex-
pensive, and hardly affordable in a high-performance frame-
work.

From a theoretical point of view, several results and tech-
niques exist for B-spline knot removal [Eck and Hadenfeld
1995; Tiller 1992]. B-spline curve allow for exact knot re-
moval when such operation can be inverted, i.e. shape is
not modified and re-insertion of the removed knot provides
exactly the original curve configuration. Since the Oslo al-
gorithm moves existing control points, it is natural to also
expect modification of neighbour control points during knot
removal. [Eck and Hadenfeld 1995; Tiller 1992] provide a
general algorithm for B-spline knot removal. We detail here
the case we used for our tests, i.e. simple cubic case, that is



simple application of these algorithms. The removal process
must be the inverse function of the insertion (see eq. (3)).
We consider for the explanation a spline defined by a set of
control points q? and a knot vector t?. We also consider a
refined version of this curve, defined using control point q
and knot vector t, that only has one inserted point at abscissa
t j+d +δ.(t j+d+1− t j+d), with 0≤ δ≤ 1.

The insertion algorithm gives the following equations:
∀k < j, qk = q?

k
q j = β j, jq?

j +(1−β j, j)q?
j−1

q j+1 = β j+1, j+1q?
j+1 +(1−β j+1, j+1)q?

j
q j+2 = β j+2, j+2q?

j+2 +(1−β j+2, j+2)q?
j+1

∀k > j +2, qk = q?
k−1

(6)

During knot removal, q j+1 is suppressed and points q j and
q j+2 points are respectively changed into points q?

j and q?
j+1.

Equation (6) easily provides:
q?

j =
q j− (1−β j)q?

j−1

β j

q?
j+1 =

q j+2−β j+2q?
j+2

1−β j+2

(7)

3.2 Global animation process

The following algorithm presents the general algorithm used
to simulate the material B-spline curve.
MECHANICAL LOOP()
1 while 1
2 do
3 COLLISIONSDETECTION()
4 COLLISIONSRESPONSE()
5 for (All objects o)
6 do O->COMPUTEACCELERATION()
7 NUMERICALINTEGRATION()
8 UPDATEDATA()

Functions about collisions handling (i.e. collisionsDetec-
tion() and collisionsResponse()) contain very classical algo-
rithms and are not within the scope of this section, as they
will no further be discussed in the remainder of the arti-
cle. We refer the reader to [van den Bergen 2003] for pos-
sible techniques. For numericalIntegration() function, many
techniques are also available in literature [Witkin and Baraff
1997]. The main idea of this function is to determine the
new positions and velocities of the spline’s control points
from their acceleration. Each model just has to compute its
accelerations and update its data at the end of the mechanical
iteration. Only content of computeAcceleration() function is
discussed in this section.

To be able to animate the curve realistically, a physical
simulation is applied to it, which aim at computing the suc-
cessive positions of all the control points. To allow multi-
resolution, it is desirable to exploit the continuous property
inherent to the curve. So we avoid using a mass/spring
model, but choose a Lagrangian approach instead. This

method only requires the model to define a finite set of de-
grees of freedom and express its energies as a function of
them. Our curve is based on equation (1), thus the degrees
of freedom are the control point coordinates. The lagrangian
equation of the system can be derived into a linear system
[Lenoir et al. November 2002]: M 0 0

0 M 0
0 0 M

 Ax

Ay

Az

 =

 Bx

By

Bz

 (8)

with

Mg =

 M 0 0
0 M 0
0 0 M

 (9)

where A the degrees of freedom’s accelerations, B a vector
that sums the different contributions of all forces and internal
energies, and finally Mg the generalised mass matrix (result-
ing from the kinetic energy term) defined via the sub-matrix
M of size n×n:

∀(i, j) ∈ {1..n}×{1..n}, Mi j = m.
Z

R
bi(s).b j(s)ds (10)

with m the mass of the spline.
The resulting system size is 3n×3n where n is the number

of control points. For reasonable value of n, the simulation
can be done in real time thanks to a LU decomposition of the
M matrix [Lenoir et al. November 2002].

All interaction forces are inserted into the system by the
way of B. Moreover, the gravity is also taken into account
by this vector via the formula: Bα

i = Bα
i + m.gα

R 1
0 bi(s)ds

with α ∈ {x,y,z}. Also an internal energy of deformation E,
which quantifies the amount of energy needed to deform the
body, must be added in the vector B. This is done by com-
puting the variation of this energy relatively to each degree
of freedom: Bα

i = Bα
i −

∂E
∂qα

i
. In other words, this energy tends

to make the model behave in a homogenous way.
This energy can be, for example, defined thanks to springs

placed along the curve and giving it some elasticity in
stretching or bending. Yet, such a discrete approach is not
well suited to a changing resolution stage. A more conve-
nient way is to define a continuous energy, which is based
on the shape of the curve and not a finite set of points. This
type of energy takes advantage of the natural model’s conti-
nuity to be independent of the B-spline resolution. On a 1D
model, three types of deformation are interesting: stretch-
ing, bending and twisting [Terzopoulos et al. july 1987]. As
an example, the stretching deformation part is considered in
this paper as it provides consistency to the model. The main
idea is just to show how the adaptive process interacts with a
deformation process.

3.3 Continuous stretching energy definition

Deformation energy is classically expressed by the way of
a tensor product between a strain tensor and a stress tensor.



The strain tensor measures the deformation of the body while
the stress tensor computes the generated forces.

In the case of linear elasticity, Nocent and Remion [No-
cent and Remion 2001] propose the application of the Green-
Lagrange strain tensor to the spline curve simulation for high
deformation. By developing the equations, we obtain the re-
sulting energy term:

E(t) =
Y.r
8

Z end

begin
(γ(s, t)2−1)2.

∂l0(s)
∂s

ds (11)

with t the time, Y the Young modulus of the material, r
the area of a curve’s section (considered as constant), begin
and end the valid boundaries of the parametric abscissae (for
more readability, we suppose that this boundaries are respec-
tively 0 and 1), l0 the length of the curve in rest state and
finally γ(s, t) = ∂l(s,t)

∂s / ∂l0(s)
∂s with l(s, t) the current length of

the curve (so that γ(s, t) express the local dilatation factor in
stretching).

To introduce this energy in the system, its first derivative
with respect to the each degree of freedom qα

i has to be com-
puted [Nocent and Remion 2001]:

W α
i (t) =

Y.r
2

n

∑
m=1

qα
m(t)[Bim−

n

∑
p,q=1

Bimpq(qp.qq)] (12)

where

Bim =
Z 1

0
b′i(s)b

′
m(s)/

∂l0(s)
∂s

ds

Bimpq =
Z 1

0
b′i(s)b

′
m(s)b′p(s)b

′
q(s)/

∂l0(s)
∂s

3

ds

We state that such an energy can be used in a real-time
context. Indeed, even if these terms cannot be formally
computed, they can however be accurately evaluated since
they are constant over time for a given spline configuration.
Moreover, the locality of the spline model permits to elim-
inate some computation in equation (12). All sum terms in
the equation are controlled and constant (linked to the local-
ity parameter) boundaries. In consequence, the complexity
of this continuous energy computation is O(n).

4 Adaptive model

Our main idea is to apply the subdivision principles detailed
in section (3.1) to the spline animation of section (3.2). In
this section, we are interested in how the model is altered
when adding or removing a control point and when such op-
erations must be applied. Global adaptive process is first
described, and then energy factors update, as well as knot
insertion/removal criteria, are discussed.

4.1 Global animation algorithm description

The adaptive aspects are treated in the mechanical process
just after the numerical integration stage in order not to dis-

turb the numerical integration which calls the acceleration
computation of all objects:
ADAPTIVE MECHANICAL LOOP()
1 while 1
2 do
3 ...
4 NUMERICALINTEGRATION()
5 ADAPTATION()
6 UPDATEDATA()

the function adaptation() is organised as followed:
ADAPTATION()

1 while mustWeInsertPoint()
2 do insert knot and control point
3 modify control points positions and velocities
4 update matrices and vectors
5 update energy structure
6
7 while mustWeRemovePoint()
8 do remove knot
9 modify control points positions and velocities

10 remove control point
11 update matrices and vectors
12 update energy structure

After each numerical integration step, adaptive criteria
(see section (4.3)) are tested on the curve: curve resolution
is changed accordingly, and corresponding terms (especially
regarding mass matrix M, and energy expression) are recal-
culated.

The generalised mass matrix M (cf. equation (10)) is mod-
ified as well as its LU decomposition. As B-spline have lo-
cality property, most of the coefficient stay unchanged, and
matrix M is still a band structure of width 2d +1. The multi-
resolution process, for one knot insertion/removal, affects
d +2 basis functions and for each of them, 2d +1 basis func-
tions have a non null intersection support with it. Using the
fact that M is symmetrical, knot insertion/removal involves
(d + 2)(2d + 1) re-computation of terms within matrix M,
and the cost of such an operation is thus independent from
the spline curve complexity. Yet, LU decomposition of this
matrix needs to be recomputed. We presently do not update
the LU decomposition but compute it completely. In prac-
tice, it is not a real drawback, since the number of points is
rather small and adaptation provides a good means to keep
this number small. However, if an application should need a
high number of degrees of freedom, an update of the LU de-
composition should be proposed. Besides, it is important to
understand that the computation of a new mass matrix does
not imply a physical change of the model, since it is always
related to the same continuous mass distribution along the
curve.

The gravitation is also re-computed using relation Bα
i =

m.gα.
R 1

0 bi(s)ds. Again, thanks to the B-spline locality, only
the d + 2 basis functions affected by knot insertion/removal
are recomputed by this formula. This update is done once



again in O(1) in regard of number of control points. Defor-
mation energy must be also re-computed. As this term deals
with the behavior of the model, we focus on this computation
in the next section.

4.2 Adaptation of the stretching energy

The insertion at a specific abscissa affects the basis functions
whose supports contain this abscissa. For spline degree equal
to d, this affects d +2 basis functions.

Changing resolution affects the stretching energy (cf equa-
tion (12)) via the terms Bim and Bimpq. In these two terms,
the factor ∂l0(s)

∂s only depends on the original spline resolu-
tion. As a result, only the basis functions first derivative af-
fect the two terms during a resolution changes (either knot
insertion, or removal) stage. The two addressed terms are
updated slightly differently:

• As the expression of Bim is symmetrical in regard of in-
dexes i and m, we only store Bim for i and m such that
i ≥ m. For a given value of i, there are 2d + 1 consec-
utive values of m for which Bim is non-null, because of
the spline locality property. Using the commutativity
property, useful value for m only involves d + 1 val-
ues. And, as there are d +2 basis functions affected by
the insertion, the total number of elements to be recom-
puted is (d + 2)(d + 1). As a result, the update cost of
terms Bim is independent from spline complexity for a
given knot insertion/removal.

• Again, as the expression of Bimpq is symmetrical in
regard of indexes i, m, p and q, we only store Bimpq
for i, m, p and q such that i ≥ m ≥ p ≥ q. The re-
computed elements on knot insertion/removal are these
which have at least one index (between i, m, p and
q) matching an affected basis functions’s index. Once
again, it is easy to see that B-spline locality entails
modification cost that is only dependent on the spline
degree that is used. In order to minimize coefficients’
storage cost, we describe here the indexing technique
we used, that stores exactly the needed coefficients.
Indeed, Bimpq coefficients are included in a collection
that collects many null values, and heavily symmetrical
(all permutations of indexes i,m, p,q provide the same
value): storing such coefficients with a n4 sized array
would be wasteful. The choice we made is to use the
following value indexing process: we first use, for
indexing Bimpq (with i ≥ m ≥ p ≥ q), the integers q,
p− q, m− p, i−m. This, because of spline locality,
provides, for non-null Bimpq values, a set of four
integers that belong to {0, · · · ,n}×{0, · · · ,d}3, and that
can quite easily be enumerated: as a result, coefficients
are stored in an array, which size is linear in regard of
the number of control points.

Since our continuous stretching energy only de-
pends on the shape of the curve and since the insertion
or removal of a point does not imply any shape
alteration (see section (3.1)), we are assured that
deformations are continuous relatively to the time.

4.3 Adaptation criteria

There are two different cases when point should be inserted
on the spline curve during interactive manipulation:

• The first case is purely geometric. High curvature
points on B-splines curve naturally involve mechanical
limitation due to spline resolution. As a result, an in-
sertion is needed. [Grisoni and Marchal 2003] presents
a curvature evaluator adapted to high-performance, that
we need here. The i-th spline segment is assigned the
following value:

ci =
1
2
(

−−−→qi−1qi.−−−→qiqi+1

‖−−−→qi−1qi‖‖−−−→qiqi+1‖
+1) (13)

Such an expression practically appears to provide fast
criterion for B-spline segment maximal curvature eval-
uation: each spline segment connection can be, when
needed, associated with ci that measures the local con-
trol point disturbance. The curvature criterion of equa-
tion (13) is used for isolating high-curvature segments:
a knot value (hence, a control point on the spline curve)
is inserted at the middle of the i-th segment if and only
if ci and ci+1 are greater than some pre-set threshold
value.

• The second case is more mechanically involved. In
practice, for a spline curve with a constant, coarse, res-
olution, it is not possible to plausibly replicate action
one would have on real physical model, simply because
of resolution limitations. For example, acting on an
elastic model at any point would intuitively entail lo-
cal deformation. Such a deformation on a coarse res-
olution curve is not possible to simulate, because local
degrees of freedom density is not high enough. As a
result, we chose to insert some point each time user in-
teracts directly on the spline curve, the new knot value
being inserted at the parameter value where the action
is located.

The removal of a control point is more simple. In practice,
the curvature criterion defined in equation (13) is once again
used, but this time in order to detect low-curvature segment.
A point is removed when local curvature is low enough. Pre-
cisely speaking, control point qi is removed when ci is below
some pre-set threshold.

It can be pointed out that the insertion process can occur
anywhere without any condition. But the removal process
has to verify a geometric condition to be an exact algo-
rithm[Eck and Hadenfeld 1995]. We approximate this condi-
tion by the low curvature criterion. By this way, we are able



to tune the exactness of the removal process. For an exact
process, points are removed only when the curve is straight,
which happens essentially at an equilibrium state of the sim-
ulation.

5 Applications

All the presented tests have been performed on a PIV 2.4Ghz
512MB using fast implicit Euler integration scheme and a
virtual time step fixed to 1ms. Times announced in the differ-
ent sub-sections are the mechanical computation times and
thus only take into account the mechanical computation (in-
cluding the collision process and the numerical integration
stage), independently from visualisation time.

5.1 Application: B-spline curve cutting

It is known that B-spline continuity at a given knot value
equals the difference between polynomial degree and knot
multiplicity. This explains, among other things, that cubic B-
spline is the B-spline of lowest degree that allow C2 continu-
ity. It also has as a consequence that creating knot multiplic-
ity equal to d +1 for a spline of polynomial degree d creates
C−1 discontinuity, which means that the spline curve, even
when defined as a whole, will practically exist as two sepa-
rate pieces. As shown here, this property directly extends to
adaptive physical B-spline simulation. Knot insertion is used
to simulate curve cutting.

This operation is presented by figure (2) where an initial
spline of 12 control points is left hanging from its extremities
(figure (2(a))). Figure ((2(b))) shows the consequence, on the
simulation, of multiple knots insertion at arbitrary parametric
abscissa. Figure (2(c)) shows mechanical independence of
the two created pieces, a manipulation on the first piece, does
not affect the simulation of the second one. This simulation
takes about 4ms for each simulation step at the beginning of
the simulation (12 control points and 6 constraints to fix the
two extremities). At the end, the simulation step takes about
8ms with 16 control points and still 6 constraints.

Figure (3) points out the possibility to create multiple in-
dependent pieces. A curve is simulated with 10 control
points and 3 different cuttings are applied during the simula-
tion. The computation time begins at 1ms and finish around
20-30ms depending on collisions (for 22 control points).
Each piece interacts independently as shown in figure (3(d)).

We stress that this cutting procedure is only a direct ap-
plication of the adaptive animation technique, and involves
no other special treatment (such as re-meshing) unlike other
cutting techniques. This simple example illustrates that the
use of adaptive physically-based splines can be a powerful
tool.

(a) Initial configuration

(b) Arbitrary cutting

(c) Interaction on one piece

Figure 2: Example of curve cutting using mechanical B-
spline multi-resolution.

5.2 Application: knot tying

The second result demonstrates efficiency of adaptive B-
spline physical simulation on the classical case of knot ty-
ing. The initial spline configuration is composed with a pre-
formed knot and the two extremities are fixed. The spline is
then animated using simple gravity, in order to let the knot tie
under simple action of curve weight. Figure (4(a)) shows the
result of such animation with a fixed resolution and figure
(4(b)) shows the result with an adaptive resolution. Figure
(4(c)) zoom in the knot to be able to see the different inser-
tions in the knot area. On each left figure, spline segments
color have been alternatively changed, so that knot reparti-
tion (and implicitly knot insertion/removal) could be visible
on such pictures. On each right figure, control points are
shown.

On figure (4(a)), one can easily see uniform sampling lim-
its. The curve encounters a barrier due to the lack of control
implied by the limited number of degrees of freedom. This
spline requires 2.27ms computing time per mechanical iter-
ation. For the knot to be tightened, one would need a much
higher number of regularly distributed control points, in or-
der to get a sufficient control wherever the knot is tightened
on the curve. In practice, this leads to prohibitive compu-
tation time for real-time purposes (several seconds or even
minutes per simulation step).

On figures (4(b)) and (4(c)), the same simulation is done



(a) Initial configuration (b) Arbitrary cuttings

(c) 4 independent pieces (d) Evolution of each pieces

Figure 3: Example of curve cutting in multiple piece.

using an adaptive resolution. One can see that both knot re-
moval (see low curvature areas of the curve) and knot inser-
tion have been used for providing the shown result. The non
adaptive spline involves 11 control points, and the adaptive
one involves, at the end of the animation, 16 points. A me-
chanical iteration takes about 9.89ms.

The modifications, involving by the adaptive process, af-
fect the B-spline parametrization by the way of its knot vec-
tor. At the beginning of the simulation, this vector is:

T = { 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 }

During the simulation, 9 control points are inserted (at the
parametric abscissae 8.5, 5.5, 6.5, 7.5, 6.75, 7.75, 6.875,
7.25 and 7.625) followed by 4 control points removed (at the
parametric abscissae 4, 5.5, 9 and 10). The removal process
usually occurs when the simulation is stable and some spline
segments are quite aligned. These adaptive modifications re-
sult in the following knot vector at the equilibrium state:

T =
{ 0 1 2 3 5 6 6.5 6.75

6.875 7 7.25 7.5 7.625 7.75 8 8.5
11 12 13 14 }

The spline knot vector shows the locality of the process.
It presents large parametric segments on low curvature lo-
cations (before and after the knot) and smaller one on high
curvature case (in the knot area).

6 Conclusion and future work

We have presented in this paper an adaptive model of B-
spline physical simulation with continuous deformation en-
ergy allowing a continuity in physical movement during the
resolution changing. This method refines the model locally
around any arbitrary point on the curve and allows a finer
geometric adaptation, by the way of a higher number of de-
grees of freedom. This model presents interesting results for

(a) Knot at fixed resolution

(b) Knot with adaptive resolution

(c) Zoom in the knot with adaptive resolution

Figure 4: Example of knot tying.

some applications like simulation of curve cutting (for ex-
ample during a surgical simulation) or knot tying.

This work could be improved by studying new terms like
bending and twisting (continuous) energies permitting to
treat specific curves as surgical threads. Another related
work is the treatment of self collision by robust methods as
Lagrange multipliers instead of penalty methods thanks to
dedicated constraints.

It is also interesting to point the fact that, in order to pro-
vide efficient adaptive physical simulation, both geometric
and mechanical aspects need to be taken into account. How-
ever, the link between geometric adaptation and the need for
a mechanical refinement is obviously less simple than one
could expect at first, and would also deserve closer study.



References
ASTLEY, O., AND HAYWARD, V. 1997. Real-time finite elements

simulation of general visco-elastic materials for haptic presenta-
tion. In IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS).

BERCHTOLD, J., VOICULESCU, I., AND BOWYER, A. 2000. In-
terval arithmetic applied to multivariate bernstein-form polyno-
mials. Tech. Report 31/98, School of Mechanical Engineering,
Univ. of Bath, October.

BROWN, J., LATOMBE, J., AND MONTGOMERY, K. 2004. Real-
time knot-tying simulation. The Visual Computer 20, 2-3 (May),
165–179.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND

POPOVIC, Z. 2002. A multiresolution framework for dynamic
deformations. In ACM Symposium on Computer Animation.

COX, M. G. 1972. The Numerical Evaluation pf B-Splines. In J.
Inst. Mathematics and Applications, vol. 10, 134–149.

DE BOOR, C. 1972. On Calculating with B-Splines. J. Approxi-
mation Theory 6, 1 (July), 50–62.

DEBUNNE, G., DESBRUN, M., CANI, M., AND BARR, A. 2001.
Dynamic real-time deformations using space and time adaptive
sampling. In SIGGRAPH’01 Conference Proceedings, Com-
puter Graphics annual conference series.

ECK, M., AND HADENFELD, J. 1995. Knot removal for B-spline
curves. Computer Aided Geometric Design 12, 3, 259–282.

ELBER, G., AND COHEN, E. 1993. Second order surface analysis
using hybrid symbolic and numeric operators. ACM Transaction
on Graphics 12, 2 (April), 160–178.

ETZMUSS, O., EBERHARDT, B., AND HAUTH, M. 2000. Colli-
sion adaptive particle systems. In Pacific Graphics’2000 Con-
ference.

FARIN, G. 1990. Curves and Surfaces for Computer Aided Geo-
metric Design, inc. second ed. Academic Press.

FINKELSTEIN, A., AND SALESIN, D. H. 1994. Multiresolution
curves. Computer Graphics 28, Annual Conference Series, 261–
268.

GANOVELLI, F., CIGNONI, P., AND SCOPIGNO, R. 1999. Intro-
ducing multiresolution representation in deformable object mod-
eling. In Spring Conference on Computer Graphics, 149–158.

GRINSPUN, E., KRYSL, P., AND SCHRÖDER, P. 2002. Charms:
a simple framework for adaptive simulation. In SIGGRAPH’02
Conference Proceedings, Computer Graphics annual conference
series, 281–290.

GRISONI, L., AND MARCHAL, D. 2003. High Performance Gen-
eralized Cylinder Visualization. In Proc. Shape Modeling Inter-
national ’03, IEEE Computer Society Press, 257–263.

HART, J. C., DURR, A., AND HARSH, D. 1998. Critical points of
polynomial metaballs. Implicit Surface’98 Proc., 69–76.

HUTCHINSON, D., PRESTON, M., AND HEWITT, T. 1996. Adap-
tive refinement for mass/spring simulations. In EUROGRAPH-
ICS Workshop on Animation and Simulation, 31–45.

KAZINNIK, R., AND ELBER, G. 1997. Orthogonal decomposition
of non-uniform bspline spaces using wavelets. Eurographics’97
Proc. (August), 27–38.

LENOIR, J., MESEURE, P., GRISONI, L., AND CHAILLOU, C.
November 2002. Surgical thread simulation. Modelling and Sim-
ulation for Computer-aided Medecine and Surgery.

LUCIANI, A., HABIBI, A., AND MANZOTTI, E. 1995. A multi-
scale model of granular materials. In Graphics Interface’95 Con-
ference, 136–146.

NOCENT, O., AND REMION, Y. 2001. Continuous deformation en-
ergy for dynamic material splines subject to finite displacements.
Eurographics CAS’2001.

NOCENT, O., NOURRIT, J., AND RÉMION, Y. 2001. Toward
mechanical level of detail for knitwear simulation. In WSCG’01
Conference, 252–259.

PHILLIPS, J., LADD, A., AND KAVRAKI, L. 2002. Simulated knot
tying. In International Conference on Robotics and Automation,
841–846.

PRAUTZSCH, H. 1984. A short proof of the oslo algorithm. Com-
puter Aided Geometric Design 1, 95–96.

SCHUMAKER, L. L. 1981. Spline Functions: Basic Theory. John
Willey & Sons, New York.

SNYDER, J. 1992. Interval analysis for computer graphics. Com-
puter Graphics (SIGGRAPH Proc.) 26, 2 (July), 121–130.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
july 1987. Elastically deformable models. Computer Graphics.

TILLER, W. 1992. Knot-removal algorithms for nurbs curves and
surfaces. CAD 24, 8, 445–453.

VAN DEN BERGEN, G. 2003. Collision Detection. Morgan Kauf-
mann, November. ISBN:155860801X.

WANG, F., BURDET, E., DHANIK, A., POSTON, T., AND TEO, C.
2005. Dynamic thread for real-time knot-tying. In World Haptic
Conference, 507–508.

WITKIN, A., AND BARAFF, D. 1997. Physically based modeling:
Principles and practice. In Siggraph ’97 Course notes.

WU, X., DOWNES, M., GOKETIN, T., AND TENDICK, F. 2001.
Adaptive nonlinear finite elements for deformable body simu-
lation using dynamic progressive meshes. Computer Graphics
Forum 20, 3 (Sept.), 349–358.


	Introduction
	Related Work
	B-spline curve physical simulation
	B-spline curve definition and properties
	Global animation process
	Continuous stretching energy definition

	Adaptive model
	Global animation algorithm description
	Adaptation of the stretching energy
	Adaptation criteria

	Applications
	Application: B-spline curve cutting
	Application: knot tying

	Conclusion and future work

