
HAL Id: hal-00348009
https://hal.science/hal-00348009

Submitted on 17 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelisation of quasi-static simulations of moving
system: Application to the optimization of magnetic

micro switch
Benoît Delinchant, Laurent Gerbaud, Frédéric Wurtz

To cite this version:
Benoît Delinchant, Laurent Gerbaud, Frédéric Wurtz. Parallelisation of quasi-static simulations of
moving system: Application to the optimization of magnetic micro switch. 6ème Conférence Eu-
ropéenne sur les méthodes numériques en Electromagnétisme (NUMELEC 2008), Dec 2008, Liège,
Belgium. pp.Pages 84-85. �hal-00348009�

https://hal.science/hal-00348009
https://hal.archives-ouvertes.fr

Parallelization of quasi-static simulations of moving system:
Application to the optimization of magnetic micro switch

B. DELINCHANT, L. GERBAUD, F. WURTZ

G2ELab, Grenbole Electrical Engineering Laboratory
 BP 46 - 38402 Saint-Martin-d'Hères Cedex FRANCE

E-mail: Benoit.Delinchant@G2ELab.inpg.fr

Abstract  The aim of this paper is to improve simulation time
of a moving system, especially for optimization needs. The
solution provided here is applicable when displacement is
known before simulations and very interesting if several
computers are available for task parallelization. The proposed
method is applied for the optimization of magnetic micro
actuator switching time.

I. INTRODUCTION

System design often needs optimization procedure to
reach specifications and to improve the solution regarding
competitors. For dynamic systems, a temporal simulation is
required to extract values like average value, maximal
value, final simulation value, etc. which are then
constrained or optimized.

II. HOW TO REACH PARALLELIZATION

A. Time domain simulation

In the case of moving system, the dynamic equation (1)
defines the differential equation for the position state to
solve (2) (here in one dimension).

xx mF Γ= . (1)

x
dt

d
mFx 2

2

.= (2)

Where Fx is the static force along x axis, m the mass, ∆x
the acceleration, and x the position.

To solve this simple differential equation, 2 initial values
are required, x0 and v0, the initial position and initial
velocity. In our application domain, force computation
depending on the position is the more consuming time than
integration of the differential equation.

The issue of a simulation, like any iterative method, is
the dependence between iterations. In this formulation, the
dependence between time steps requires to wait
computation of the next position, to compute next force
value.

B. Space domain simulation

Considering force constant during a step, the symbolic
integration of equation (2) is easy, indeed, with initial
values (v0, x0) it gives the following result (3) for the first
step, which can be written simply by (4).

00
20

1 ..
.2

xtvt
m

F
x +∆+∆= (3)

0..
.2 0

20 =∆−∆+∆ xtvt
m

F
 (4)

From this expression, ∆t can be extracted as defined by
second order polynomial solutions of (4).










 ∆+±−=∆
m

xF
vv

F

m
t

.2
. 02

00
0

 (5)

From this expression, a space-domain simulation can be

done (descritizing space instead of time). It gives time
depending on position instead of position depending on
time. It is the required to know positions of moving part,
but most of time, moving parts are guided in the structure
(allowing few degree of freedom like 1-axis rotation or 1-
axis translation).

C. Parallelization

Algorithm:
1. Define N positions (x)
2. Computes N forces (F) on N computer in parallel
3. Initialization of velocity (v) and time (t) vectors
4. For i=1 to N : compute equation (6) and (7)

0
02

00
0

1

.2
. t

m

xF
vv

F

m
t +








 ∆++−= (6)

() 001
0

1 vtt
m

F
v +−= (7)

In many applications, step ‘2’ is the only step which
consumes time, even with parallelizing. Then total
simulation cost is divided by N.

III. APPLICATION TO THE OPTIMIZATION OF
ELECTROMAGNTIC MICRO SWITCH

A. Electromagnetic switch design

The application can not be detailed in a 2 pages abstract.
It can just be mentioned that design specifications are to
constrain sizes and performances such as maximal choc on
fixed positions and to minimize switching time. This last
specification requires a simulation during an actuation from
one position to the other. This MEMS is based on an
electromagnetic actuation detailed in [1].

B. Simulation code distribution

From modelling equations, software component
dedicated to optimization is built [2] to ensure diffusion,
composition and reuse. Encapsulation of simulation code is
very useful especially for our needs of parallelization with
the distribution of simulation code to distant computers. A
computer program acting as a service has been deployed on
each computer of our network, waiting for a client call. A
client is a program able to ask for available servers and able
to send the software component to distant computers.

C. Simulation code parallelization

Each computer is able to compute force acting on the
moving magnet depending on a predefined position. The
client software (Fig 3.) is then acting as a supervisor; it
defines N positions, and calls a computation for each of the
N parallel computers. A listener mechanism is used to
monitor then end of each computation and then to go to the
next step of space-domain discretizing algorithm.

IV. RESULTS

A. Parallelization results

20 force computations have been done to compute force
according to the position. The time average of force
computation is about 5.7 seconds on a standard PC
(Pentium 1.6 GHz – RAM 1Go). In the case of “time
discretizing” method, 20 computations leads to a total time
of 115 seconds. In the case of parallelization, it depends on
the number of available computers. Parallelizing on two
computers leads to about 68 seconds, which is not equal to
115/2=57.5 because network management has a cost. By
extrapolation, if 20 computers are available for 20
computations, it will lead to a total computation time of
about 7s. Indeed, as it can be seen on figure 1, when a
computation is not distributed the time cost is equal to 5.7s,
but parallelization add a time cost to reach approximately 7
seconds per force divided by computers number. It can be
noticed that our experiment shows big value dispersions in
the case of parallelizing on few computers.

5

5,5

6

6,5

7

7,5

1 2 3 4 5
computer number

T
im

e
av

er
ag

e
(s

)
fo

r
o

n
e

co
m

p
u

ta
ti

o
n

 d
iv

id
ed

 b
y

co
m

p
u

te
r

n
u

m
b

er

Fig. 1. Time average (with min/max) of a force computation depending on

computer number parallelizing, divided by computer numbers

B. Space integration results

On figure 2, “time discretizing” and “space discretizing”
curves are very close but not superposed. The difference
comes from the hypothesis of the integration which
considers a constant force between points.

-5

-4

-3

-2

-1

0

1

2

3

4

0 0,1 0,2 0,3 0,4 0,5

Time (ms)

P
os

it
io

n
(m

m
)

time discretizing

space discretizing

Fig. 2. space and time integration for time and space discretizing.

To improve the accuracy of “space discretizing”
integration result, an interpolation procedure can be done
on computed array of forces in order to decrease the
integration step. To compare this new result, a fine
simulation was done considered now as the reference
results. In figure 3, it is shown on a zoom that last two
curves are similar.

0

0,5

1

1,5

2

2,5

3

3,5

0,375 0,4 0,425 0,45Time (ms)

P
os

iti
on

 (m
m

)

TD: time discretizing
SD: space discretizing
TD+: accurate time discretizing
SD+: space discretizing with interpolation

Fig. 3. Zoom on space and time integration for time and space

discretizing adding a more accurate time and space discretizing.

TABLE 1: COMPUTATION TIME FOR 20 FORCE COMPUTATIONS

 Characteristics duration (s)

TD : Step=0.25ms 115
SD : Step=0.4mm, 5 Computers 28
TD+ : Step=0.10ms 226
SD+ : Step=0.4mm, 5 Computers

1 interpolation point
28

V. CONCLUSIONS

The design of engineering systems, require optimization
procedure which needs very fast models. This paper has
shown that a drastic reduction of extracting simulation post-
processing results is possible. It has been shown that a
parallelization procedure can be done easily with a software
component architecture. In out application, a ratio
reduction of 8 was obtained only with 5 computers
parallelizing.

We would like to acknowledge Dhia SEFSAFI for its
work on software development during this study.

REFERENCES

[1] J. Stepanek, H. Rostaing, J. Delamare, O. Cugat, “Fast dynamic
modeling of magnetic micro-actuator”, Journal of Magnetism and
Magnetic Materials, Volumes 272-276, May 2004, Pages 669-671.

[2] B. Delinchant, D. Duret, L. Estrabaut, L. Gerbaud, H. Nguyen Huu,
B. DuPeloux, H.L. Rakotoarison, F. Verdiere, F. Wurtz, “An
optimizer using the software component paradigm for the
optimization of engineering systems”, COMPEL vol.26, nb.2, 2007

