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Universal convex coverings

In every dimension d ≥ 1, we establish the existence of a constant v d > 0 and of a discrete subset U d of R d such that the following holds:

U d contains at most log(r) d-1 r d points at distance at most r from the origin, for every large r. 1

Introduction

Fix a dimension d ≥ 1 and consider the volume associated to the standard Lebesgue measure on R d . Given v > 0, a subset U of R d is a v-universal convex covering of R d if we have C + U = R d for every convex subset C of R d of volume strictly greater than v. Here, C + U denotes the set of all points of the form P + Q with P in C and Q in U.

For every positive t, a subset U of R d is a v-universal convex covering if and only if tU is a (t d v)-universal convex covering. The properties in which we are interested are thus independent of the particular value of v. We call U a universal convex covering of R d if U is a v-universal convex covering of R d for some v > 0.

Our main result is the following. Theorem 1.1. Let d ≥ 1. Up to translation and rescaling, any universal convex covering of the Euclidean vector space R d has at least ℓ d (r) = r d points at distance at most r from the origin. There exists a universal convex covering U d of R d with at most u d (r) = log(r) d-1 r d points at distance at most r from the origin, for every large r.

The first part of theorem 1.1 is obvious since, in any dimension d, one can consider the unit cube as the convex set C. In dimension d = 1, the second part is obvious too since I + Z = R for every interval I of length strictly Call a subset S of R n uniformly discrete if there exists a neighbourhood O of the origin such that x -y ∈ O for every pair (x, y) of distinct elements in S.

As long as the answer to question 1.2 is unknown or if the answer is NO, the following question and its higher-dimensional generalisations is also interesting.

Question 1.3. Does the complement of a uniformly discrete subset S of the plane necessarily contain triangles of arbitrarily large area?

Universal convex coverings are related to sphere coverings, see [START_REF] Conway | Sphere packings, lattices and groups[END_REF] for an overview, or more generally to coverings of R d by translates of a fixed convex body. Rogers proved in [START_REF] Rogers | A note on coverings[END_REF] that every convex body of R d covers R d with density at most d(5 + log d + log log d) for a suitable covering. Erdös and Rogers in [START_REF] Erdös | Covering space with convex bodies[END_REF] showed the existence of such a covering which furthermore covers no point with multiplicity exceeding ed(5 + log d + log log d). Chapter 31 of [START_REF] Gruber | Convex and discrete geometry[END_REF] contains an account of subsequent developpements.

There appears to be no result in the literature closely related to universal convex coverings and featuring results similar to theorem 1.1.

This paper is organized as follows. In section 2 we collect some preliminary facts. In section 3 we construct recursively a sequence of sets (U d ) d≥1 such that U 1 = Z and U d ⊂ R d for every d ≥ 1, and we show, by induction on d ≥ 1, that U d is a universal convex covering of R d . In section 4, we define growth classes of functions and we introduce a natural equivalence relation on them, which is compatible with the natural partial order on increasing positive functions. Finally, we show in section 5 that the growth class of the universal convex covering U d constructed in section 3 is represented by u d . This implies theorem 1.1 by rescaling U d suitably.

Preliminaries

For any subset S of R d , let

-S = {-Q ∈ R d | Q ∈ S}
denote the set of all opposite vectors.

Proposition 2.1. Choose v > 0. A subset U of R d is a v-universal convex covering if and only if every convex subset of R d with volume at least v intersects U non-trivially. Proof. Consider a convex subset C of R d with volume at least v. Then -C is a convex set of the same volume. For any point Q in R d , Q belongs to C + U if and only if the convex set -C + Q intersects U.
The growth function f S of a subset S ⊂ R d without accumulation points is defined as follows: for r an arbitrary positive real number, f S (r) denotes the number of points of S at distance at most r from the origin.

Universal convex coverings are stable under affine bijections and v-universal convex coverings are stable under affine bijections which preserve the volume. Thus we consider the growth class with respect to the equivalence relation ∼ defined as follows: for any increasing non-negative functions f and g, we have f ∼ g if there exists a real number t ≥ 1 such that f (r) ≤ g(tr) ≤ f (t 2 r) for every r ≥ t.

Growth functions of sets without accumulation points related by affine bijections are equivalent under this equivalence relation.

For any nonzero integer n, let v 2 (n) denote the 2-valuation of n: this is the unique integer k such that n is 2 k times an odd integer. Write any point x of R d as x = (x i ) 1≤i≤d , use the coordinate functions π i defined by π i (x) = x i and let ρ (i) denote the projection of R d onto R d-1 obtained by erasing the i-th coordinate x i and defined by

ρ (i) (x 1 , . . . , x d ) = (x 1 , . . . , x i-1 , xi , x i+1 , . . . , x d ) .
3 From dimension d to dimension d + 1

Let U denote a subset of R d . For every 1

≤ i ≤ d+1, let ϕ d i (U) denote the set of points x = (x j ) 1≤j≤d+1 in R d+1 such that x i ∈ Z \ {0} and 2 v 2 (x i )/d ρ (i) (x) 3 belongs to U. Finally, let ϕ d (U ) = d+1 i=1 ϕ d i (U ).
For example, ϕ 1 (Z) ⊂ R 2 is the set of all points (x, y) ∈ (Z[ 1 2 ]) 2 such that xy ∈ Z\{0} or xy = 0 and x+y ∈ Z\{0}. Otherwise stated, a point (x, y) of ϕ 1 (Z) is either a non-zero element of Z 2 or it has two non-zero coordinates and belongs to the set

∞ n=0 (2 n Z) × (2 -n Z) ∪ (2 -n Z) × (2 n Z) . Proposition 3.1. Let U be a v-universal convex covering of R d . Then ϕ d (U) is a v ′ -universal covering of R d+1 with v ′ given by v ′ = 4 d+1 max(1, 4v).
The value of v ′ in proposition 3.1 is not optimal and can easily be improved.

Let (U d ) d≥1 denote the sequence of sets defined recursively by U 1 = Z and, for every d ≥ 1, 

U d+1 = ϕ d (U d ).
(C) ≤ 4 d+1 ≤ v ′ .
The remaining case is when L > 4. Hence we assume that L > 4 and we must show that the volume vol(C) of C is at most 4 d+2 v.

Note that there exists an index 1

≤ i ≤ d + 1 such that π i (C) =]a, b[⊂ R is an open interval of length L.
Thus one can pick two real numbers α and β such that

a < a + L 4 ≤ α < α + L 4 ≤ β < β + L 4 ≤ b
and αβ ≥ 0 (or, equivalently, α and β are of the same sign).

Then the interval ]α, β[ contains an integer k such that |k| = 2 m ≥ L/8. This implies that

C ′ = π -1 i ({k}) is a convex set of R d which does not intersect 2 -m/d U. By proposition 2.1, the volume vol(C ′ ) of C ′ is at most v/2 m ≤ 8v/L.
Let C -denote the set of points x in C such that x i ≤ k, and let C + denote the set of points x in C such that x i ≥ k. Then,

vol(C -) ≤ (k -a) vol(C ′ ) b -a b -k d ≤ L 8v L L L/4 d ≤ 2 • 4 d+1 v.
The same inequality holds for vol(C + ). Since

vol(C) = vol(C + ) + vol(C -), we have vol(C) ≤ 4 d+2 v ≤ v ′ .

Growth classes

Let G 0 denote the set of positive and increasing functions f defined on an interval [M (f ), +∞[, where M (f ) is a finite real number which may depend on f . Then G 0 is equipped with a preorder relation defined by f g if there exists t ≥ 1 such that f (x) ≤ g(tx) for every x ≥ t.

The set G of (affine) growth classes is the quotient set of G 0 by the equivalence relation ∼ defined by f ∼ g if there exists t ≥ 1 such that, for every

x ≥ t, g(x) ≤ f (tx) ≤ g(t 2 x).
The preorder relation on G 0 induces a partial order on G.

Recall that for every a > 0 and x > 0, ℓ a (x) = x a , hence ℓ a ∈ G 0 . A function f ∈ G is polynomially bounded if there exists a > 0 such that f ℓ a . If f is polynomially bounded, f has critical exponent a > 0 if ℓ b f ℓ c for every positive b and c such that b < a < c. Additionally, a non-zero function f has critical exponent 0 if f ℓ b for every b > 0.

Equivalently, a function

f ∈ G is polynomially bounded if lim sup x→∞ log(f (x)) log(x) < ∞ and we have a = lim x→∞ log(f (x)) log(x) if f ∈ G is polynomially bounded with critical exponent a.
It can happen that a polynomially bounded function has no critical exponent. This is the case

if sup{a | ℓ a f } < inf{a | f ℓ a }.
Any function f with critical exponent a can be written as f = ℓ a h, where the (not necessarily eventually increasing) function h is such that, for every b > 0, there exists a finite

x b such that x -b ≤ h(x) ≤ x b for every x ≥ x b .
The notions of polynomial boundedness and critical exponent of functions in G 0 are well behaved with respect to the preorder relation on G 0 , hence these can also be defined on suitable growth classes in G.

Given S ⊂ R d without accumulation points, the choice of a (not necessarily Euclidean) norm on R d yields an increasing non-negative function f S such that f S (r) is the number of elements of S whose norm is at most r. The growth class of f S is independent of the norm, hence one can call it the growth class of S. Two subsets of R d related by a translation belong to the same growth class. Growth classes are invariant under the action of the group of affine bijections of R d .

A set S ⊂ R d is sparse if its growth class is strictly smaller than ℓ d . We say that S ⊂ R d is nearly uniform if it has a polynomially bounded growth class of critical exponent d. The growth class of a nearly uniform set can be represented by a function hℓ d , where h encodes the "asymptotic density" of S up to affine bijections.

For example, Z d and N d are both nearly uniform sets and in the same growth class ℓ d .

A more concise and less precise reformulation of theorem 1.1 is as follows.

Theorem 4.1. In every dimension, there exist nearly uniform universal convex coverings.

We conclude this section with a remark. We work with the L ∞ norm x ∞ already encountered in section 3. Using the fact that growth classes are increasing and that bounded factors in u d+1 can be neglected, it is enough to compute the growth function Neglecting boundary effects and using the fact that the set {1, . . . , 2 m -1} contains exactly 2 m-n-1 integers of the form 2 n (1 + 2N), we have

One can also define growth classes for measurable subsets

β(r) = ♯ B ∩ {x ∈ R d+1 | x ∞ < r}
β(2 m ) ∼ m-1 n=0 2 m-n-1 u d (2 m+n/d ) ∼ m-1 n=0 2 m-n-1 m + n d d-1 2 dm+n ∼ m d 2 (d+1)m
which shows that β is in the growth class of u d+1 .

  A ⊂ R d and for any given measure µ and norm on R d , by replacing f A by the function f µ A such that f µ A (r) denotes the µ measure of the intersection of A with the ball of radius r centered at the origin. 5 Growth class of U d Recall that u d (r) = log(r) d-1 r d for every r ≥ 1. Proposition 5.1. The universal convex covering U d defined in corollary 3.2 belongs to the growth class of u d . Proof of theorem 1.1. By proposition 5.1, there exists a constant c d such that the set U d constructed in corollary 3.2 has at most c d u d (r) elements at distance at most r from the origin. Considering the rescaled set tU d for t > c 1/d d ends the proof. Proof of proposition 5.1. We proceed by induction on the dimension d. For d = 1, u 1 (r) = r hence U 1 = Z belongs to the growth class of u 1 . Before starting the proof of the induction step, let us remark that the growth class of the function u d contains all functions in G which can be written as λ(r)u d (r) where r -→ λ(r) is a bounded function. This fact allows to neglect bounded factors involved in u d or u d+1 . We assume now that U d is of growth class u d for some d ≥ 1. Up to a bounded factor, the growth class of U d+1 is described by the set B ⊂ N × R d defined as B = m≥1 (m, 2 -v 2 (m)/d U d ) = n≥0 (2 n (1 + 2N), 2 -n/d U d ).

  counting elements of B in open balls of radius a power of 2.

  1 greater than 1, hence one can choose U 1 = Z. However, in dimension d ≥ 2, there is a factor of log d-1 between the easy lower bound ℓ d and the upper bound u d . Whilst it is surely possible to improve these results, I would be very surprised by the existence of universal coverings in dimension d achieving the lower bound ℓ d for d ≥ 2. Proposition 2.1 below suggests thus the following question. Question 1.2. Let S be a discrete subset of the Euclidean plane R 2 such that ♯{x ∈ S | x ≤ R} ≤ R
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+ 1 for all R ≥ 0. Does the complement R 2 \ S of S necessarily contain triangles of arbitrarily large area? By Proposition 2.1, the anwser to question 1.2 (which has an obvious generalization to the case of dimension d > 2) is YES if and only if there is no universal covering of the plane achieving the lower bound ℓ 2 for d = 2.
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