Universal convex coverings

Roland Bacher

To cite this version:

Roland Bacher. Universal convex coverings. 2009. hal-00347942v2

HAL Id: hal-00347942 https://hal.science/hal-00347942v2

Preprint submitted on 5 Jan 2009 (v2), last revised 1 Jul 2009 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Universal convex coverings

Roland Bacher

January 5, 2009

Abstract

In every dimension $d \geq 1$, we establish the existence of a positive finite constant v_{d} and of a subset \mathcal{U}_{d} of \mathbb{R}^{d} such that the following holds: $\mathcal{C}+\mathcal{U}_{d}=\mathbb{R}^{d}$ for every convex set $\mathcal{C} \subset \mathbb{R}^{d}$ of volume at least v_{d} and \mathcal{U}_{d} contains at most $\log (r)^{d-1} r^{d}$ points at distance at most r from the origin, for every large r. $]$

1 Introduction

Fix a dimension $d \geq 1$ and consider the volume associated to the standard Lebesgue measure on \mathbb{R}^{d}. For any positive v, a subset \mathcal{U} of \mathbb{R}^{d} is a universal convex covering of \mathbb{R}^{d} for the volume v if, for every convex subset \mathcal{C} of \mathbb{R}^{d} of volume strictly greater than $v, \mathcal{C}+\mathcal{U}=\mathbb{R}^{d}$, where $\mathcal{C}+\mathcal{U}$ denotes the set of points $P+Q$ with P in \mathcal{C} and Q in \mathcal{U}.
For every positive t, a subset \mathcal{U} of \mathbb{R}^{d} is a universal convex covering for the volume v if and only if $t \mathcal{U}$ is a universal convex covering for the volume $t^{d} v$. The value of v is thus irrelevant for the properties we are interested in. We call \mathcal{U} a universal convex covering of \mathbb{R}^{d} if there exists a positive v such that \mathcal{U} is a universal convex covering of \mathbb{R}^{d} for the volume v.

Our main result is the following.
Theorem 1.1. Let $d \geq 1$. Any universal convex covering of \mathbb{R}^{d} has at least a multiple of $\ell_{d}(r)=r^{d}$ points at distance at most r from the origin. There exists a universal convex covering \mathcal{U}_{d} of \mathbb{R}^{d} with at most a multiple of $u_{d}(r)=\log (r)^{d-1} r^{d}$ points at distance at most r from the origin, for every large r.

The first part of theorem 1.1 is obvious since, in any dimension d, one can consider the unit cube as the convex set \mathcal{C}. In dimension $d=1$, the second part is obvious as well since $\mathcal{I}+\mathbb{Z}=\mathbb{R}$ for every interval \mathcal{I} of length strictly

[^0]greater than 1 , hence one can choose $\mathcal{U}_{1}=\mathbb{Z}$. But in dimension $d \geq 2$, there is a gap of $\log ^{d-1}$ between the easy lower bound ℓ_{d} and the upper bound u_{d}.
It is surely possible to lower this gap somewhat but I would be very surprised by the existence of universal coverings in dimension d achieving the lower bound ℓ_{d} for $d \geq 2$.
I am not aware of any results in the literature closely related to theorem 1.1. Universal convex coverings have of course some common points with sphere coverings, see [1] for an overview. There is also some literature on possible densities and multiplicities for a convex covering of \mathbb{R}^{d} with a given fixed convex shape, see for example [3] and [2].
This paper is organized as follows. In section 2 we collect some preliminary facts. In section 3 we construct recursively a sequence of sets $\left(\mathcal{U}_{d}\right)_{d \geq 1}$ such that $\mathcal{U}_{1}=\mathbb{Z}$ and $\mathcal{U}_{d} \subset \mathbb{R}^{d}$ for every $d \geq 1$, and we show by induction on $d \geq 1$ that \mathcal{U}_{d} is a universal convex covering of \mathbb{R}^{d}. In section 1 , we define growth classes of functions and we introduce a natural equivalence relation on them, which is compatible with the natural partial order on increasing positive functions. Finally, we show in section 5 that the growth class of the universal convex covering \mathcal{U}_{d} of section 3 is represented by u_{d}, a fact which implies theorem 1.1 by a suitable scaling of \mathcal{U}_{d}.

2 Preliminaries

For any subset \mathcal{S} of \mathbb{R}^{d}, let $-\mathcal{S}$ denote the opposite set of \mathcal{S}, that is,

$$
-\mathcal{S}=\left\{-Q \in \mathbb{R}^{d} \mid Q \in \mathcal{S}\right\}
$$

Proposition 2.1. Choose a positive v and a subset \mathcal{U} of \mathbb{R}^{d}. Then, \mathcal{U} is a universal convex covering for the volume v if and only if every convex subset of \mathbb{R}^{d} with volume at least v intersects \mathcal{U} non-trivially.

Proof. Let \mathcal{C} denote a convex set with volume at least v. Then $-\mathcal{C}$ is a convex set of the same volume. For any point Q in \mathbb{R}^{d}, Q belongs to $\mathcal{C}+\mathcal{U}$ if and only if $-\mathcal{C}+Q$ intersects \mathcal{U}.

The growth function $f_{\mathcal{S}}$ of subset $\mathcal{S} \subset \mathbb{R}^{d}$ without accumulation points is defined as follows: for r an arbitrary positive real number, $f_{\mathcal{S}}(r)$ denotes the number of points of \mathcal{S} at distance at most r from the origin.

Universal convex coverings are stable under affine bijections. Universal convex coverings for a given volume are stable under affine volume-preserving bijections. Thus we consider the growth class with respect to the equivalence relation \sim defined as follows: for any increasing nonnegative functions
f and $g, f \sim g$ if there exists a real number $t \geq 1$ such that, for every $r \geq t$, $f(r) \leq g(t r) \leq f\left(t^{2} r\right)$.
Growth functions of sets without accumulation points related by affine bijections are equivalent under this equivalence relation.
For any nonzero integer $n, v_{2}(n)$ denotes the 2 -valuation of n : this is the unique nonzero integer k such that n is 2^{k} times an odd integer. Write any point x of \mathbb{R}^{d} as $x=\left(x_{i}\right)_{1 \leq i \leq d}$, use the coordinate functions π_{i} defined as $\pi_{i}(x)=x_{i}$ and let $\rho^{(i)}(x)$ denote the point of \mathbb{R}^{d-1} such that $\rho^{(i)}(x)=$ $\left(x_{j}\right)_{j \neq i}$.

3 From dimension d to dimension $d+1$

Let \mathcal{U} denote a subset of \mathbb{R}^{d}. For every $1 \leq i \leq d+1$, let $\varphi_{i}^{d}(\mathcal{U})$ denote the set of points $x=\left(x_{j}\right)_{1 \leq j \leq d+1}$ in \mathbb{R}^{d+1} such that $x_{i} \in \mathbb{Z} \backslash\{0\}$ and $2^{v_{2}\left(x_{i}\right) / d} \rho^{(i)}(x)$ belongs to \mathcal{U}. Finally, let

$$
\varphi_{d}(U)=\bigcup_{i=1}^{d+1} \varphi_{i}^{d}(U)
$$

For example, $\varphi_{1}(\mathbb{Z}) \subset \mathbb{R}^{2}$ is the set of all points $(x, y) \in\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)^{2}$ such that $x y \in \mathbb{Z} \backslash\{0\}$ or $x y=0$ and $x+y \in \mathbb{Z} \backslash\{0\}$. Otherwise stated, a point (x, y) of $\varphi_{1}(\mathbb{Z})$ is either a non-zero element of \mathbb{Z}^{2} or it has two non-zero coordinates and belongs to the set $\bigcup_{n=0}^{\infty}\left(2^{n} \mathbb{Z}\right) \times\left(\frac{1}{2^{n}} \mathbb{Z}\right) \cup\left(\frac{1}{2^{n}} \mathbb{Z}\right) \times\left(2^{n} \mathbb{Z}\right)$.

Proposition 3.1. Let \mathcal{U} denote any universal convex covering of \mathbb{R}^{d} for the volume v. Then $\varphi_{d}(\mathcal{U})$ is a universal covering of \mathbb{R}^{d+1} for the volume

$$
v^{\prime}=4^{d+1} \max (1,4 v)
$$

The value of v^{\prime} in proposition 3.1 is not optimal and can easily be improved. Let $\left(\mathcal{U}_{d}\right)_{d \geq 1}$ denote the sequence of sets defined recursively by $\mathcal{U}_{1}=\mathbb{Z}$ and, for every $d \geq 1$,

$$
\mathcal{U}_{d+1}=\varphi_{d}\left(\mathcal{U}_{d}\right)
$$

Proposition 3.1 implies the following result.
Corollary 3.2. For every $d \geq 1, \mathcal{U}_{d}$ is a universal convex covering of \mathbb{R}^{d}.

Proof of proposition 3.1. By proposition 2.1, it is enough to show that the volume of any convex set \mathcal{C} which does not intersect $\varphi_{d}(\mathcal{U})$ is bounded by v^{\prime}. Without loss of generality, we assume that \mathcal{C} is open. Let L denote the diameter of \mathcal{C} with respect to the L^{∞} norm of \mathbb{R}^{d+1} defined by $\|x\|_{\infty}=$ $\max _{1 \leq i \leq d+1}\left(\left|x_{i}\right|\right)$. Two cases arise.

First, if $L \leq 4$, the volume of \mathcal{C} is $|\mathcal{C}| \leq 4^{d+1} \leq v^{\prime}$.
The remaining case is when $L>4$. Hence we assume that $L>4$ and we must show that the volume $|\mathcal{C}|$ of \mathcal{C} is at most $4^{d+2} v$.
Note that there exists an index $1 \leq i \leq d+1$ such that $\left.\pi_{i}(\mathcal{C})=\right] a, b[\subset \mathbb{R}$ is an interval of length L. Thus one can pick two real numbers α and β such that

$$
a<a+\frac{L}{4} \leq \alpha<\alpha+\frac{L}{4} \leq \beta<\beta+\frac{L}{4} \leq b
$$

and $\alpha \beta \geq 0$ (or, equivalently, α and β are of the same sign).
Then the interval $] \alpha, \beta\left[\right.$ contains an integer k such that $|k|=2^{m} \geq L / 8$. This implies that $\mathcal{C}^{\prime}=\pi_{i}^{-1}(\{k\})$ is a convex set of \mathbb{R}^{d} which does not intersect $2^{-m / d} \mathcal{U}$. By proposition 2.1, the volume $\left|\mathcal{C}^{\prime}\right|$ of \mathcal{C}^{\prime} is at most $v / 2^{m} \leq 8 v / L$.

Let \mathcal{C}_{-}denote the set of points x in \mathcal{C} such that $x_{i} \leq k$, and let \mathcal{C}_{+}denote the set of points x in \mathcal{C} such that $x_{i} \geq k$. Then,

$$
\left|\mathcal{C}_{-}\right| \leq(k-a)\left|\mathcal{C}^{\prime}\right|\left(\frac{k-a}{b-k}\right)^{d}<L \frac{8 v}{L}\left(\frac{L}{L / 4}\right)^{d} \leq 2 \cdot 4^{d+1} v
$$

The same bound holds for $\left|\mathcal{C}_{+}\right|$. Since $|\mathcal{C}|=\left|\mathcal{C}_{+}\right|+\left|\mathcal{C}_{-}\right|$, this implies that $|\mathcal{C}| \leq 4^{d+2} v \leq v^{\prime}$, which concludes the proof.

4 Growth classes

Let \mathcal{G}_{0} denote the set of positive and increasing functions f defined on an interval $[M(f),+\infty[$, where $M(f)$ is a finite real number which may depend on f. Then \mathcal{G}_{0} is equipped with a preorder relation \preceq defined by $f \preceq g$ if there exists $t \geq 1$ such that $f(x) \leq g(t x)$ for every $x \geq t$.

The set \mathcal{G} of (affine) growth classes is the quotient set of \mathcal{G}_{0} by the equivalence relation \sim defined by $f \sim g$ if there exists $t \geq 1$ such that, for every $x \geq t$,

$$
g(x) \leq f(t x) \leq g\left(t^{2} x\right)
$$

The preorder relation \preceq on \mathcal{G}_{0} induces a partial order on \mathcal{G}.
Recall that for every $a>0$ and $x>0, \ell_{a}(x)=x^{a}$, hence $\ell_{a} \in G_{0}$. A function $f \in \mathcal{G}$ is polynomially bounded if there exists $a>0$ such that $f \preceq \ell_{a}$. If f is polynomially bounded, f has critical exponent $a>0$ if $\ell_{b} \preceq f \preceq \ell_{c}$ for every positive b and c such that $b<a<c$. Additionally, a non-zero function f has critical exponent 0 if $f \preceq \ell_{b}$ for every $b>0$.
Equivalently, a function $f \in \mathcal{G}$ is polynomially bounded if $\limsup _{x \rightarrow \infty} \frac{\log (f(x))}{\log (x)}<$ ∞ and we have $\alpha=\lim _{x \rightarrow \infty} \frac{\log (f(x))}{\log (x)}$ if $f \in \mathcal{G}$ is polynomially bounded with critical exponent α.

Polynomially bounded functions can have no critical exponent. This happens when $\sup \left\{a \mid \ell_{a} \preceq f\right\}<\inf \left\{a \mid f \preceq \ell_{a}\right\}$. Any function f with critical exponent a can be written as $f=\ell_{a} h$, where the (not necessarily ultimately increasing) function h is such that, for every $b>0$, there exists a finite x_{b} such that $x^{-b} \leq h(x) \leq x^{b}$ for every $x \geq x_{b}$.
The notions of polynomial boundedness and critical exponent of functions in \mathcal{G}_{0} are well behaved with respect to the preorder relation \preceq on \mathcal{G}_{0}, hence these can also be defined on suitable growth classes in \mathcal{G}.
Given $\mathcal{S} \subset \mathbb{R}^{d}$, the choice of a (not necessarily Euclidean) norm on \mathbb{R}^{d} yields an increasing non-negative function $f_{\mathcal{S}}$ such that $f_{\mathcal{S}}(r)$ is the number of elements of \mathcal{S} whose norm is at most r. The growth class of $f_{\mathcal{S}}$ is independent of the norm, hence one can call it the growth class of \mathcal{S}. Two subsets of \mathbb{R}^{d} related by a translation belong to the same growth class. Growth classes are invariant under the action of the group of affine bijections of \mathbb{R}^{d}.
A set $S \subset \mathbb{R}^{d}$ is sparse if its growth class is strictly smaller than ℓ_{d}. We say that $\mathcal{S} \subset \mathbb{R}^{d}$ is nearly uniform if it has a polynomially bounded growth class of critical exponent d. The growth class of a nearly uniform set can be represented by a function $h \ell_{d}$, where h encodes the "asymptotic density" of \mathcal{S} up to affine bijections.
For example, \mathbb{Z}^{d} and \mathbb{N}^{d} are both nearly uniform sets and in the same growth class ℓ_{d}.
A more concise and less precise reformulation of theorem 1.1 is as follows.
Theorem 4.1. In every dimension, there exists nearly uniform universal convex coverings.

We conclude this section with a remark.
One can also define growth classes for measurable subsets $\mathcal{A} \subset \mathbb{R}^{d}$ and for any given measure μ and norm on \mathbb{R}^{d}, by replacing $f_{\mathcal{A}}$ by the function $f_{\mathcal{A}}^{\mu}$ such that $f_{\mathcal{A}}^{\mu}(r)$ denotes the μ measure of the intersection of \mathcal{A} with the ball of radius r centered at the origin.

5 Growth class of \mathcal{U}_{d}

Recall that $u_{d}(r)=\log (r)^{d-1} r^{d}$ for every $r \geq 1$.
Proposition 5.1. The universal convex covering \mathcal{U}_{d} defined in corollary 3.4 belongs to the growth class of u_{d}.

Proof of theorem 1.1. By proposition 5.1, there exists a constant c_{d} such that the set \mathcal{U}_{d} constructed in corollary 3.2 has at most $c_{d} u_{d}(r)$ elements
at distance at most r from the origin. Considering the rescaled set $t \mathcal{U}_{d}$ for $t>c_{d}^{1 / d}$ ends the proof.

Proof of proposition 5.1. We proceed by induction on the dimension d. For $d=1, u_{1}(r)=r$ hence $\mathcal{U}_{1}=\mathbb{Z}$ belongs to the growth class of u_{1}.

Before starting the proof of the induction step, let us remark that the growth class of the function u_{d} contains all functions in \mathcal{G} which can be written as $\lambda(r) u_{d}(r)$ where $r \longmapsto \lambda(r)$ is a bounded function. This fact allows to neglect bounded factors involved in u_{d} or u_{d+1}.
We assume now that \mathcal{U}_{d} is of growth class u_{d} for some $d \geq 1$. Up to a bounded factor, the growth class of \mathcal{U}_{d+1} is described by the set $\mathcal{B} \subset \mathbb{N} \times \mathbb{R}^{d}$ defined as

$$
\mathcal{B}=\bigcup_{m \geq 1}\left(m, 2^{-v_{2}(m) / d} \mathcal{U}_{d}\right)=\bigcup_{n \geq 0}\left(2^{n}(1+2 \mathbb{N}), 2^{-n / d} \mathcal{U}_{d}\right)
$$

We work with the L^{∞} norm $\|x\|_{\infty}$ already encountered in section 3. Using the fact that growth classes are increasing and that bounded factors in u_{d+1} can be neglected, it is enough to compute the growth function

$$
\beta(r)=\sharp\left\{\mathcal{B} \cap\left\{x \in \mathbb{R}^{d+1} \mid\|x\|_{\infty}<r\right\}\right\}
$$

counting elements of \mathcal{B} in open balls of radius a power of 2 .
Neglecting boundary effects and using the fact that the set $\left\{1, \ldots, 2^{m}-1\right\}$ contains exactly 2^{m-n-1} integers of the form $2^{n}(1+2 \mathbb{N})$, we have

$$
\begin{gathered}
\beta\left(2^{m}\right) \sim \sum_{n=0}^{m-1} 2^{m-n-1} u_{d}\left(2^{m+n / d}\right) \\
\sim \sum_{n=0}^{m-1} 2^{m-n-1}\left(m+\frac{n}{d}\right)^{d-1} 2^{d m+n} \sim m^{d} 2^{(d+1) m}
\end{gathered}
$$

which shows that β is in the growth class of u_{d+1}.

Acknowledgements I thank D. Piau for many helpful remarks improving the exposition and Y. Colin de Verdière for an interesting discussion.

References

[1] Conway, J. H.; Sloane, N. J. A. Sphere packings, lattices and groups. Third edition. Springer-Verlag, New York, 1999.
[2] Erdös, P.; Rogers, C. A. Covering space with convex bodies, Acta Arith. 7 1961/1962 281-285.
[3] Rogers, C. A. A note on coverings, Mathematika 4 (1957), 1-6.

Roland BACHER

INSTITUT FOURIER
Laboratoire de Mathématiques
UMR 5582 (UJF-CNRS)
BP 74
38402 St Martin d'Hères Cedex (France)
e-mail: Roland.Bacher@ujf-grenoble.fr

[^0]: ${ }^{1}$ Keywords: Convex set, Covering. Math. class: 11H06, 52A21, 52C17

