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Abstract

In every dimension d ≥ 1, we establish the existence of a positive
finite constant vd and of a subset Ud of R

d such that the following
holds: C + Ud = R

d for every convex set C ⊂ R
d of volume at least vd

and Ud contains at most log(r)d−1rd points at distance at most r from
the origin, for every large r.1

1 Introduction

Fix a dimension d ≥ 1 and consider the volume associated to the standard
Lebesgue measure on R

d. For any positive v, a subset U of R
d is a universal

convex covering of R
d for the volume v if, for every convex subset C of R

d

of volume strictly greater than v, C + U = R
d, where C + U denotes the set

of points P + Q with P in C and Q in U .

For every positive t, a subset U of R
d is a universal convex covering for the

volume v if and only if tU is a universal convex covering for the volume tdv.
The value of v is thus irrelevant for the properties we are interested in. We
call U a universal convex covering of R

d if there exists a positive v such that
U is a universal convex covering of R

d for the volume v.

Our main result is the following.

Theorem 1.1. Let d ≥ 1. Any universal convex covering of R
d has at

least a multiple of ℓd(r) = rd points at distance at most r from the origin.
There exists a universal convex covering Ud of R

d with at most a multiple of
ud(r) = log(r)d−1rd points at distance at most r from the origin, for every
large r.

The first part of theorem 1.1 is obvious since, in any dimension d, one can
consider the unit cube as the convex set C. In dimension d = 1, the second
part is obvious as well since I +Z = R for every interval I of length strictly

1Keywords: Convex set, Covering. Math. class: 11H06, 52A21, 52C17
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greater than 1, hence one can choose U1 = Z. But in dimension d ≥ 2, there
is a gap of logd−1 between the easy lower bound ℓd and the upper bound ud.

It is surely possible to lower this gap somewhat but I would be very surprised
by the existence of universal coverings in dimension d achieving the lower
bound ℓd for d ≥ 2.

I am not aware of any results in the literature closely related to theorem 1.1.
Universal convex coverings have of course some common points with sphere
coverings, see [1] for an overview. There is also some literature on possible
densities and multiplicities for a convex covering of R

d with a given fixed
convex shape, see for example [3] and [2].

This paper is organized as follows. In section 2 we collect some preliminary
facts. In section 3 we construct recursively a sequence of sets (Ud)d≥1 such
that U1 = Z and Ud ⊂ R

d for every d ≥ 1, and we show by induction on
d ≥ 1 that Ud is a universal convex covering of R

d. In section 4, we define
growth classes of functions and we introduce a natural equivalence relation
on them, which is compatible with the natural partial order on increasing
positive functions. Finally, we show in section 5 that the growth class of the
universal convex covering Ud of section 3 is represented by ud, a fact which
implies theorem 1.1 by a suitable scaling of Ud.

2 Preliminaries

For any subset S of R
d, let −S denote the opposite set of S, that is,

−S = {−Q ∈ R
d | Q ∈ S}.

Proposition 2.1. Choose a positive v and a subset U of R
d. Then, U is a

universal convex covering for the volume v if and only if every convex subset
of R

d with volume at least v intersects U non-trivially.

Proof. Let C denote a convex set with volume at least v. Then −C is a
convex set of the same volume. For any point Q in R

d, Q belongs to C + U
if and only if −C + Q intersects U .

The growth function fS of subset S ⊂ R
d without accumulation points is

defined as follows: for r an arbitrary positive real number, fS(r) denotes
the number of points of S at distance at most r from the origin.

Universal convex coverings are stable under affine bijections. Universal con-
vex coverings for a given volume are stable under affine volume-preserving
bijections. Thus we consider the growth class with respect to the equiva-
lence relation ∼ defined as follows: for any increasing nonnegative functions
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f and g, f ∼ g if there exists a real number t ≥ 1 such that, for every r ≥ t,
f(r) ≤ g(tr) ≤ f(t2r).

Growth functions of sets without accumulation points related by affine bi-
jections are equivalent under this equivalence relation.

For any nonzero integer n, v2(n) denotes the 2-valuation of n: this is the
unique nonzero integer k such that n is 2k times an odd integer. Write
any point x of R

d as x = (xi)1≤i≤d, use the coordinate functions πi defined
as πi(x) = xi and let ρ(i)(x) denote the point of R

d−1 such that ρ(i)(x) =
(xj)j 6=i.

3 From dimension d to dimension d + 1

Let U denote a subset of R
d. For every 1 ≤ i ≤ d+1, let ϕd

i (U) denote the set
of points x = (xj)1≤j≤d+1 in R

d+1 such that xi ∈ Z \{0} and 2v2(xi)/dρ(i)(x)
belongs to U . Finally, let

ϕd(U) =

d+1
⋃

i=1

ϕd
i (U).

For example, ϕ1(Z) ⊂ R
2 is the set of all points (x, y) ∈ (Z[12 ])2 such that

xy ∈ Z\{0} or xy = 0 and x+y ∈ Z\{0}. Otherwise stated, a point (x, y) of
ϕ1(Z) is either a non-zero element of Z

2 or it has two non-zero coordinates
and belongs to the set

⋃∞
n=0(2

n
Z) × ( 1

2n Z) ∪ ( 1
2n Z) × (2n

Z).

Proposition 3.1. Let U denote any universal convex covering of R
d for the

volume v. Then ϕd(U) is a universal covering of R
d+1 for the volume

v′ = 4d+1 max(1, 4v).

The value of v′ in proposition 3.1 is not optimal and can easily be improved.

Let (Ud)d≥1 denote the sequence of sets defined recursively by U1 = Z and,
for every d ≥ 1,

Ud+1 = ϕd(Ud).

Proposition 3.1 implies the following result.

Corollary 3.2. For every d ≥ 1, Ud is a universal convex covering of R
d.

Proof of proposition 3.1. By proposition 2.1, it is enough to show that the
volume of any convex set C which does not intersect ϕd(U) is bounded by
v′. Without loss of generality, we assume that C is open. Let L denote the
diameter of C with respect to the L∞ norm of R

d+1 defined by ‖ x ‖∞=
max1≤i≤d+1(|xi|). Two cases arise.
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First, if L ≤ 4, the volume of C is |C| ≤ 4d+1 ≤ v′.

The remaining case is when L > 4. Hence we assume that L > 4 and we
must show that the volume |C| of C is at most 4d+2v.

Note that there exists an index 1 ≤ i ≤ d + 1 such that πi(C) =]a, b[⊂ R is
an interval of length L. Thus one can pick two real numbers α and β such
that

a < a +
L

4
≤ α < α +

L

4
≤ β < β +

L

4
≤ b

and αβ ≥ 0 (or, equivalently, α and β are of the same sign).

Then the interval ]α, β[ contains an integer k such that |k| = 2m ≥ L/8. This
implies that C′ = π−1

i ({k}) is a convex set of R
d which does not intersect

2−m/dU . By proposition 2.1, the volume |C′| of C′ is at most v/2m ≤ 8v/L.

Let C− denote the set of points x in C such that xi ≤ k, and let C+ denote
the set of points x in C such that xi ≥ k. Then,

|C−| ≤ (k − a) |C′|

(

k − a

b − k

)d

< L
8v

L

(

L

L/4

)d

≤ 2 · 4d+1v.

The same bound holds for |C+|. Since |C| = |C+| + |C−|, this implies that
|C| ≤ 4d+2v ≤ v′, which concludes the proof.

4 Growth classes

Let G0 denote the set of positive and increasing functions f defined on an
interval [M(f),+∞[, where M(f) is a finite real number which may depend
on f . Then G0 is equipped with a preorder relation � defined by f � g if
there exists t ≥ 1 such that f(x) ≤ g(tx) for every x ≥ t.

The set G of (affine) growth classes is the quotient set of G0 by the equiva-
lence relation ∼ defined by f ∼ g if there exists t ≥ 1 such that, for every
x ≥ t,

g(x) ≤ f(tx) ≤ g(t2x).

The preorder relation � on G0 induces a partial order on G.

Recall that for every a > 0 and x > 0, ℓa(x) = xa, hence ℓa ∈ G0. A function
f ∈ G is polynomially bounded if there exists a > 0 such that f � ℓa. If f is
polynomially bounded, f has critical exponent a > 0 if ℓb � f � ℓc for every
positive b and c such that b < a < c. Additionally, a non-zero function f
has critical exponent 0 if f � ℓb for every b > 0.

Equivalently, a function f ∈ G is polynomially bounded if lim supx→∞
log(f(x))

log(x) <

∞ and we have α = limx→∞
log(f(x))

log(x) if f ∈ G is polynomially bounded with
critical exponent α.
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Polynomially bounded functions can have no critical exponent. This hap-
pens when sup{a | ℓa � f} < inf{a | f � ℓa}. Any function f with critical
exponent a can be written as f = ℓa h, where the (not necessarily ultimately
increasing) function h is such that, for every b > 0, there exists a finite xb

such that x−b ≤ h(x) ≤ xb for every x ≥ xb.

The notions of polynomial boundedness and critical exponent of functions
in G0 are well behaved with respect to the preorder relation � on G0, hence
these can also be defined on suitable growth classes in G.

Given S ⊂ R
d, the choice of a (not necessarily Euclidean) norm on R

d yields
an increasing non-negative function fS such that fS(r) is the number of
elements of S whose norm is at most r. The growth class of fS is independent
of the norm, hence one can call it the growth class of S. Two subsets of R

d

related by a translation belong to the same growth class. Growth classes
are invariant under the action of the group of affine bijections of R

d.

A set S ⊂ R
d is sparse if its growth class is strictly smaller than ℓd. We

say that S ⊂ R
d is nearly uniform if it has a polynomially bounded growth

class of critical exponent d. The growth class of a nearly uniform set can be
represented by a function hℓd, where h encodes the “asymptotic density” of
S up to affine bijections.

For example, Z
d and N

d are both nearly uniform sets and in the same growth
class ℓd.

A more concise and less precise reformulation of theorem 1.1 is as follows.

Theorem 4.1. In every dimension, there exists nearly uniform universal
convex coverings.

We conclude this section with a remark.

One can also define growth classes for measurable subsets A ⊂ R
d and for

any given measure µ and norm on R
d, by replacing fA by the function fµ

A

such that fµ
A(r) denotes the µ measure of the intersection of A with the ball

of radius r centered at the origin.

5 Growth class of Ud

Recall that ud(r) = log(r)d−1rd for every r ≥ 1.

Proposition 5.1. The universal convex covering Ud defined in corollary 3.2
belongs to the growth class of ud.

Proof of theorem 1.1. By proposition 5.1, there exists a constant cd such
that the set Ud constructed in corollary 3.2 has at most cdud(r) elements
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at distance at most r from the origin. Considering the rescaled set tUd for

t > c
1/d
d ends the proof.

Proof of proposition 5.1. We proceed by induction on the dimension d. For
d = 1, u1(r) = r hence U1 = Z belongs to the growth class of u1.

Before starting the proof of the induction step, let us remark that the growth
class of the function ud contains all functions in G which can be written as
λ(r)ud(r) where r 7−→ λ(r) is a bounded function. This fact allows to neglect
bounded factors involved in ud or ud+1.

We assume now that Ud is of growth class ud for some d ≥ 1. Up to a
bounded factor, the growth class of Ud+1 is described by the set B ⊂ N×R

d

defined as

B =
⋃

m≥1

(m, 2−v2(m)/dUd) =
⋃

n≥0

(2n(1 + 2N), 2−n/dUd).

We work with the L∞ norm ‖ x ‖∞ already encountered in section 3. Using
the fact that growth classes are increasing and that bounded factors in ud+1

can be neglected, it is enough to compute the growth function

β(r) = ♯{B ∩ {x ∈ R
d+1 | ‖ x ‖∞< r}}

counting elements of B in open balls of radius a power of 2.

Neglecting boundary effects and using the fact that the set {1, . . . , 2m − 1}
contains exactly 2m−n−1 integers of the form 2n(1 + 2N), we have

β(2m) ∼

m−1
∑

n=0

2m−n−1ud(2
m+n/d)

∼

m−1
∑

n=0

2m−n−1
(

m +
n

d

)d−1
2dm+n ∼ md2(d+1)m

which shows that β is in the growth class of ud+1.
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