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Abstract. In this paper, we provide upper bounds on several Rubinstein-
type distances on the configuration space equipped with the Poisson measure.
Our inequalities involve the two well-known gradients, in the sense of Malli-
avin calculus, which can be defined on this space. Actually, we show that
depending on the distance between configurations which is considered, it is
one gradient or the other which is the most effective. Some applications to
distance estimates between Poisson and other more sophisticated processes
are also provided, and an application of our results to tail and isoperimetric
estimates completes this work.

1. Introduction

. Let Λ be a σ-compact metric space and ΓΛ be the space of configurations on
Λ equipped with a Poisson measure µ. Defining and evaluating some distances
between probability measures on ΓΛ is an important problem, both theoretical
and for applications, since it is equivalent to defining distances between point
processes (see for instance Chapters 2 and 3 of [17] for a thorough discussion and
references about this topic). Among the large class of distances one may consider,
the one we want to study relies on an optimal transportation problem. Letting ρ
be a lower semi-continuous distance on ΓΛ and two configurations ω, η ∈ ΓΛ, we
understand the quantity ρ(ω, η) as the cost for transporting one unit of mass from
ω to η. Hence the optimal transportation cost between µ and some probability
measure ν on ΓΛ is given by

Tρ(µ, ν) = inf
γ∈Σ(µ,ν)

∫

ΓΛ

∫

ΓΛ

ρ(ω, η) dγ(ω, η),

where Σ(µ, ν) is the set of probability measures on ΓΛ ×ΓΛ with marginals µ and
ν. Such a quantity is called the Rubinstein distance between µ et ν. Being defined
by a variational formula, its explicit expression is of difficult access in general but
might be estimated from above: the construction of any coupling between µ and
ν yields a bound on the Rubinstein distance between µ and ν. In particular, a
convenient upper bound ensures its finiteness, which is not guaranteed a priori.
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. Another interesting property of Tρ is its rich duality. More precisely, the Kanto-
rovich-Rubinstein duality allows us to rewrite the Rubinstein distance as

Tρ(µ, ν) = sup
F∈ρ−Lip1

∫

ΓΛ

F d(µ− ν),

where ρ − Lip1 denotes the set of 1-Lipschitz functions on ΓΛ with respect to
the distance ρ. This means that Tρ depends crucially on the distance on the
configuration space as it changes the set of Lipschitz functions, hence incorporates
a lot of information on the geometry of ΓΛ. Using the dual definition of the
Rubinstein distance instead of the original one can be very relevant in some cases.
. Given a probability measure ν with density L with respect to the Poisson refe-
rence measure µ, our purpose in the present paper is to control from above the
Rubinstein distance Tρ(µ, ν) in terms of convenient (and easily computable) quan-
tities involving the density L. Such inequalities belong to the domain of functional
inequalities, which is by now a wide field of research with numerous methods of
proofs. See for instance the very complete monograph [18] and particularly Chap-
ters 21 and 22 for a large panorama on this topic, with precise references and
credit.
. To derive our inequalities, the two main ingredients at work are other repre-
sentations of the Rubinstein distance and the Rademacher property. On the one
hand, such representations can be obtained either by embedding the two probabi-
lity measures into the evolution of a Markov semi-group, or by using the so-called
Clark formula. On the other hand, the Rademacher property formally states that
given a distance ρ, there exists a notion of gradient such that its domain contains
the set ρ − Lip1 and any function in ρ − Lip1 has a gradient whose norm is less
than 1, i.e., that we can proceed as in finite dimension.
. For these two steps, we need a notion of gradient. In the setting of configuration
spaces, such a notion does exist within the Malliavin calculus. In fact, we even
have two notions of gradient: a “differential” gradient (see [1, 15]) and a gradient
expressed as a finite difference operator (see [13]). We show that depending on
the distance ρ chosen on the configuration space, one gradient or the other is more
convenient, i.e., the Rademacher property holds with one notion of gradient, or
the other.
. The paper is organized as follows. After the preliminaries of Section 2, we pro-
vide in Section 3 various upper bounds on the Rubinstein distance Tρ(µ, ν), where
ρ is the total variation distance, the Wasserstein distance or the trivial distance
on the configuration space ΓΛ. Based on a semi-group approach, the first abstract
upper bound involves the gradient associated to our given distance ρ in the sense
of the Rademacher property. When dealing with the total variation distance on
the one hand, such an estimate has a simplified expression, contained in our first
main result, Theorem 3.2, which can be retrieved by using an alternative method,
namely the Clark formula. On the other hand, when the configuration space is
equipped with the Wasserstein distance, the upper bound we give in our second
main result, Theorem 3.4, relies on a time-change argument together with the Gir-
sanov Theorem. Finally, the last Section 4 is devoted to numerous applications of
these two inequalities: by choosing the probability measure ν as the distribution
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of a given process, we are able to estimate from above distances between Poisson
processes, between Poisson and Cox processes, between Poisson and Gibbs pro-
cesses, etc. We thus hope to give a systematic treatment of the various situations
one may encounter in applications. We conclude this work by providing another
consequence of Theorem 3.2 to tail and isoperimetric estimates. In particular, we
obtain sharp deviation inequalities for the total variation distance and also a new
estimate of the classical isoperimetric constant, which is asymptotically sharp as
the total mass of Λ is small.

2. Preliminaries

. Let X be a Polish space and ρ a lower semi-continuous distance on X×X , which
does not necessarily generate the topology on X . Given two probability measures
µ and ν on X , the optimal transportation problem associated to ρ consists in
evaluating the distance

Tρ(µ, ν) = inf
γ∈Σ(µ,ν)

∫

X

∫

X

ρ(x, y) dγ(x, y), (2.1)

where Σ(µ, ν) is the set of probability measures on X ×X with first (respectively
second) marginal µ (respectively ν). By Theorem 4.1 in [18], there exists at least
one probability measure γ for which the infimum is attained. According to the
celebrated Kantorovitch-Rubinstein duality theorem, cf. Theorem 5.10 in [18], this
minimum is equal to

Tρ(µ, ν) = sup
F∈ρ−Lip1

F∈L1(µ+ν)

∫

X

F d(µ− ν), (2.2)

where ρ−Lipm is the set of bounded Lipschitz continuous functions F from X to
R with Lipschitz constant m:

|F (x)− F (y)| ≤ mρ(x, y), x, y ∈ X.

In the context of optimal transportation, Tρ is considered as a Rubinstein distance
since the cost function is already a distance (see for instance the bibliographical
notes at the end of Chapter 6 in [18]).
. In this paper, we consider the situation where X = ΓΛ is the configuration space
on a σ-compact metric space Λ with Borel σ-algebra B(Λ), i.e.,

ΓΛ = {ω ⊂ Λ : ω ∩K is a finite set for every compact K ∈ B(Λ)}.
Here the σ-compactness means that Λ can be partitioned into the union of coun-
tably many compact subspaces. We identify ω ∈ ΓΛ and the positive Radon
measure

∑
x∈ω εx, where εa is the Dirac measure at point a. Throughout this

paper, ΓΛ is endowed with the vague topology, i.e., the weakest topology such
that for all f ∈ C0(Λ) (continuous with compact support on Λ), the following
maps

ω 7→
∫

Λ

f dω =
∑

x∈ω

f(x)

are continuous. When f is the indicator function of a subset B, we will use the
shorter notation ω(B) for the integral of 1B with respect to ω. We denote by
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B(ΓΛ) the corresponding Borel σ-algebra. Let M(Λ) be the space of positive and
diffuse Radon measures on B(Λ) endowed with the corresponding Borel σ-field and
equipped with the topology of vague convergence. Given a measure σ ∈ M(Λ), the
probability space under consideration in the remainder of this paper will be the
Poisson space (ΓΛ,B(ΓΛ), µσ), where µσ is the Poisson measure of intensity σ, i.e.,
the probability measure on ΓΛ fully characterized by

Eµσ

[
exp

(∫

Λ

f dω

)]
= exp

{∫

Λ

(ef − 1) dσ

}
,

for all f ∈ C0(Λ). Here Eµσ
stands for the expectation under the measure µσ.

2.1. Distances on the configuration space ΓΛ. Actually, several distance
concepts are available between elements of the configuration space ΓΛ, cf. for
instance [17] for a thorough discussion about this topic. We introduce only three
of them which will be useful in the sequel. Let ω and η be two configurations in
ΓΛ.

Trivial distance: The trivial distance is simply given by

ρ0(ω, η) = 1{ω 6=η}.

Total variation distance: The total variation distance is defined as

ρ1(ω, η) =
∑

x∈Λ

|ω({x})− η({x})|

= ω∆η(Λ) + η∆ω(Λ),

where ω∆η = ω\(ω ∩ η).
Wasserstein distance: If Λ = R

k and κ is the Euclidean distance, the
Wasserstein distance is given by

ρ2(ω, η) = inf
β∈Σ(ω,η)

√∫

Λ

∫

Λ

κ(x, y)2 dβ(x, y),

where Σ(ω, η) denotes the set of configurations β ∈ ΓΛ×Λ having marginals
ω and η, see [6, 15].

. Let us comment on these notions of distance on the configuration space ΓΛ.
First, the total variation distance ρ1 is nothing but the number of different atoms
between two configurations. In particular, we allow them to be infinite so that
the total variation distance might take infinite values. Note that our definition is
a straightforward generalization of the classical notion of total variation distance
between probability measures, since it coincides with the usual definition when
the configurations are normalized by their total masses.
. As the total variation distance ρ1, the Wasserstein distance ρ2 also shares the
property that it might takes infinite values. Indeed, if the total masses of two con-
figurations ω and η are finite but differ, then there exists no coupling configuration
β in Σ(ω, η), hence the distance should be infinite. If ω(Λ) = η(Λ) < +∞ with
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ω =
∑ω(Λ)

j=1 δxj
and η =

∑η(Λ)
j=1 δyj

, we can also write

ρ2(ω, η)
2 = inf

τ∈Sω(Λ)

ω(Λ)∑

j=1

κ(xj , yτ(j))
2,

where Sω(Λ) denotes the symmetric group on the finite set {1, 2, . . . , ω(Λ)}. As
such ρ2 appears as the dimension-free generalization of the Euclidean distance.
. In order to use the Kantorovich-Rubinstein duality Theorem, the lower semi-
continuity of the distances ρi, i ∈ {0, 1, 2}, is required. This is the object of the
next lemma.

Lemma 2.1. For any i ∈ {0, 1, 2}, the distance ρi is lower semi-continuous on
the product space ΓΛ × ΓΛ equipped with the product topology.

Proof. It is immediate for the trivial distance ρ0 and it is proved in Lemma 4.1 in
[15] for the Wasserstein distance ρ2. To verify this property for the total variation
distance ρ1, let α be a real number and consider Jα defined by

Jα = {(ω, η) ∈ ΓΛ × ΓΛ : ρ1(ω, η) ≤ α}.
Let ((ωn, ηn), n ≥ 1) converge vaguely to (ω, η) and such that for any n, (ωn, ηn)
belongs to Jα. By the triangular inequality, we have for any compact set K and
any n:

ρ1(πKω, πKη) ≤ ρ1(πKω, πKωn) + α+ ρ1(πKηn, πKη),

where πK denotes the restriction to K of a configuration. Hence using the vague
convergence, we obtain that (πKω, πKη) ∈ Jα. Finally, since the metric space Λ
is σ-compact, the monotone convergence theorem for an exhaustive sequence of
compacts (Kp)p∈N entails that

ρ1(ω, η) = lim
p→+∞

ρ1(πKp
ω, πKp

η) ≤ α,

hence the set Jα is vaguely closed. �

. Let us mention that Lemma 2.1 entails the lower semi-continuity of the Rubin-
stein distance Tρi

, i ∈ {0, 1, 2}, with respect to the weak topology on the space of
probability measures on ΓΛ, cf. for instance Remark 6.12 in [18]. In particular,
since the space M(Λ) is equipped with the vague topology, then the application
σ 7→ µσ is continuous so that the mapping σ 7→ Tρi

(µσ, ν), i ∈ {0, 1, 2}, is lower
semi-continuous for any given probability measure ν on ΓΛ. However for i ∈ {1, 2},
the Rubinstein distances Tρi

is not continuous and might be infinite since the dis-
tance ρi is very often infinite itself, as in the Wiener space situation of [9].
. Actually, we mention that our definitions do not coincide with some of the usual
definitions of (bounded) distances between point processes, see for instance [2,
3, 17]. As mentioned above, it is customary to use the classical notion of total
variation by considering normalized configurations, i.e.,

ρ̃1(ω, η) = ρ1

(
ω

ω(Λ)
,

η

η(Λ)

)
,

provided both configurations have finite total masses. It should be noted that since
ρ̃1 is not lower semi-continuous, the Kantorovich-Rubinstein duality Theorem is
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no longer satisfied, so that we cannot use the identity (2.2) in our framework. For
instance, let Λ = R, ω = ε0 and η = ε1. Choose ωn = ε0 + εn and ηn = ε1 + εn.
As n goes to infinity, ωn and ηn tend vaguely to ω and η respectively. However,
we have ρ̃1(ω, η) = 2 whereas ρ̃1(ωn, ηn) = 1, for any integer n ≥ 2.
It is also customary to replace ρ2 by ρ̃2 defined by

ρ̃2(ω, η) =

{
1

ω(Λ) ρ2(ω, η) if ω(Λ) = η(Λ) 6= 0,

|ω(Λ)− η(Λ)| otherwise.

The normalization by the inverse of ω(Λ) shrinks the ρ2 distance by a factor
roughly equal to the expectation of ω(Λ)−1, see [6]. More importantly, the term
|ω(Λ)− η(Λ)| has no dimension (in the sense of dimensional analysis) whereas the
term involving ρ2 has the dimension of a length. Furthermore, the distance ρ2
has interesting geometric properties of the space ΓΛ like the Rademacher property
(see Lemma 2.5 below), not shared by ρ̃2.

2.2. Malliavin derivatives and the Rademacher property. Before intro-
ducing the so-called Rademacher property on the configuration space ΓΛ, we need
some additional structure.

Hypothesis 2.2. Assume now that we have:

• A kernel Q on ΓΛ ×Λ, i.e. Q(·, A) is measurable as a function on ΓΛ for
any A ∈ B(Λ) and Q(ω, ·) is a positive Radon measure on B(Λ) for any
ω ∈ ΓΛ. We set dα(ω, x) = Q(ω, dx) dµσ(ω).

• A gradient/Malliavin derivative ∇, defined on a dense subset Dom∇ of
L2(µσ), such that for any F ∈ Dom∇,

∫

ΓΛ

∫

Λ

|∇xF (ω)|2 dα(ω, x) < +∞,

i.e., the domain of the gradient is Dom∇ = {F ∈ L2(µσ) : ∇F ∈ L2(α)}.
. We say that a process u = u(ω, x) belongs to Dom δ whenever there exists a
constant c such that for any F ∈ Dom∇,

∣∣∣∣
∫

ΓΛ

∫

Λ

∇xF (ω)u(ω, x) dα(ω, x)

∣∣∣∣ ≤ c‖F‖L2(µσ).

For such a process, we define the operator δ by duality:
∫

ΓΛ

∫

Λ

∇xF (ω)u(ω, x) dα(ω, x) =

∫

ΓΛ

F (ω) δu(ω) dµσ(ω). (2.3)

Denote the self-adjoint operator L = δ∇ acting on its domain DomL ⊂ Dom∇
and let (Pt)t≥0 be the associated Ornstein-Uhlenbeck semi-group, i.e. the semi-
group whose infinitesimal generator is −L.
. Once the stochastic gradient has been introduced, let us relate it to the geometry
of the configuration space ΓΛ.

Definition 2.3. Given a distance ρ and a gradient ∇ on ΓΛ, we say that the
couple (∇, ρ) has the Rademacher property whenever

ρ− Lip1 ⊂ Dom∇ and |∇xF (ω)| ≤ 1, α-a.e. (2.4)
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. To investigate the Rubinstein distance associated to a distance on ΓΛ, it will
be of crucial importance to find the convenient notion of gradient for which the
Rademacher property holds.
. Discrete gradient on configuration space. Given a functional F ∈ L2(µσ),
the discrete gradient of F , denoted by ∇♯F , is defined by

∇♯
xF (ω) = F (ω + εx)− F (ω), (ω, x) ∈ ΓΛ × Λ.

In particular, Dom∇♯ is the subspace of L2(µσ) random variables such that

Eµσ

[∫

Λ

|∇♯
xF |2 dσ(x)

]
< +∞.

We set Q♯(ω, dx) = dσ(x) so that α♯ = µσ ⊗ σ. The n-th multiple stochastic
integral of a real-valued square-integrable symmetric function fn ∈ L2(σ⊗n) is
defined as

Jn(fn) =

∫

∆n

fn(x1, . . . , xn) d(ω − σ)(x1) . . . d(ω − σ)(xn),

where ∆n = {(x1, . . . , xn) ∈ Λn, xi 6= xj , i 6= j}. As a convention, we identify
L2(σ⊗0) to R and let J0(f0) = f0, f0 ∈ L2(σ⊗0) ≃ R. We have the isometry
formula

Eµσ
[Jn(fn)Jm(fm)] = n!1{n=m}

∫

Λn

fn fm dσ⊗n. (2.5)

According to [16, 13], the Chaotic Representation Property holds on the configu-
ration space, i.e., every functional F ∈ L2(µσ) can be written as

F = Eµσ
[F ] +

+∞∑

n=1

Jn(fn).

Moreover, if F ∈ Dom∇♯, then the discrete gradient acts on multiple stochastic
integrals as

∇♯
xF =

+∞∑

n=1

nJn−1(fn(·, x)), α♯-a.e.

Denote δ♯ the adjoint operator of ∇♯ in the sense of (2.3). Then the self-adjoint
number operator L♯ = δ♯∇♯ has the following expression in terms of chaos:

L♯F =
+∞∑

n=1

nJn(fn),

whenever F ∈ DomL♯, and the associated Ornstein-Uhlenbeck semi-group (P ♯
t )t≥0

is given by

P ♯
t F = Eµσ

[F ] +

+∞∑

n=1

e−ntJn(fn).

Hence the invariance property of the Poisson measure µσ with respect to the

semi-group reads as Eµσ
[P ♯

t F ] = Eµσ
[F ]. Moreover, we have the commutation
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property between gradient and semi-group, which will be useful in the sequel: if
F ∈ Dom∇♯,

∇♯
xP

♯
t F = e−tP ♯

t ∇♯
xF, x ∈ Λ, t ≥ 0. (2.6)

By the isometry formula (2.5), the semi-group is exponentially ergodic in L2(µσ)
with respect to the Poisson measure µσ, i.e., for any t ≥ 0,

‖PtF − Eµσ
[F ] ‖2L2(µσ)

=
∑

n≥1

e−2nt
Eµσ

[
Jn(fn)

2
]

≤ e−2t ‖F − Eµσ
[F ] ‖2L2(µσ)

.

. Using the discrete gradient, the distances of interest on ΓΛ are the trivial distance
ρ0 and the total variation distance ρ1, as illustrated by the following Lemma.

Lemma 2.4. Assume that the intensity measure σ is finite on Λ. Then the couples
(∇♯, ρ0) and (∇♯, ρ1) satisfy the Rademacher property (2.4).

Proof. Letting F ∈ ρi − Lip1, i ∈ {0, 1}, we have by the very definition of the
discrete gradient:

|∇♯
xF (ω)| = |F (ω + εx)− F (ω)| ≤ ρi(ω + εx, ω) ≤ 1.

Since σ is finite, it follows that
∫

Λ

|∇♯
xF (ω)|2 dσ(x) ≤ σ(Λ),

hence that F belongs to Dom∇♯. The proof is achieved. �

. Note that the converse direction holds for the total variation distance ρ1. Indeed,
consider two configurations ω and η. If ρ1(ω, η) = +∞, there is nothing to prove.
If ρ1(ω, η) is finite, then since |∇♯

xF (ω)| ≤ 1, α♯-a.e., we get

|F (η) − F (ω)| ≤ |F (η ∩ ω ∪ η∆ω)− F (η ∩ ω)|+ |F (η ∩ ω ∪ ω∆η)− F (η ∩ ω)|
≤ (η∆ω)(Λ) + (ω∆η)(Λ)

= ρ1(η, ω).

. Differential gradient on configuration space. Let us introduce another
stochastic gradient on the configuration space ΓΛ which is a derivation, see [1, 15].
Given the Euclidean space Λ = R

k, let V (Λ) be the space of C∞ vector fields on
Λ and V0(Λ) ⊂ V (Λ), the subspace consisting of all vector fields with compact
support. For v ∈ V0(Λ), for any x ∈ Λ, the curve

t 7→ Vv
t (x) ∈ Λ

is defined as the solution of the following Cauchy problem
{

d
dtVv

t (x) = v(Vv
t (x)),

Vv
0 (x) = x.

(2.7)

The associated flow (Vv
t , t ∈ R) induces a curve (Vv

t )
∗ω = ω ◦ (Vv

t )
−1, t ∈ R, on

ΓΛ: if ω =
∑

x∈ω εx then (Vv
t )

∗ω =
∑

x∈ω εVv
t (x)

. We are then in position to define
a notion of differentiability on ΓΛ. We take Qc(ω, dx) = dω(x) =

∑
y∈ω dεy(x)
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and dαc(ω, x) = dω(x) dµσ(ω). A measurable function F : ΓΛ → R is said to be
differentiable if for any v ∈ V0(Λ), the following limit exists:

lim
t→0

F (Vv
t (ω))− F (ω)

t
.

We denote ∇c
vF (ω) the preceding quantity. The domain of ∇c is then the set of

integrable and differentiable functions such that there exists a process (ω, x) 7→
∇c

xF (ω) which belongs to L2(αc) and satisfies

∇c
vF (ω) =

∫

Λ

∇c
xF (ω)v(x) dω(x).

We denote by δc the adjoint operator of ∇c in the sense of (2.3). Note that the
integration in the left-hand-side of the duality formula (2.3) is made with respect
to a configuration ω, whereas the intensity measure σ is involved in the case of
the discrete gradient. Given the self-adjoint operator Lc = δc∇c, the associated
Ornstein-Uhlenbeck semi-group (P c

t )t≥0 is ergodic in L2(µσ) with respect to the
Poisson measure µσ, cf. Theorem 4.3 in [1]. However, in contrast to the case of
the discrete gradient, there is no known commutation relationship between the
gradient ∇c and the semi-group P c

t .
. The distance we focus on in this part is the Wasserstein distance ρ2. We have
the following lemma.

Lemma 2.5. The couple (∇c, ρ2) satisfies the Rademacher property (2.4).

Proof. The proof is straightforward. Indeed, letting F ∈ ρ2 −Lip1, we know from
Theorem 1.3 in [15] that F ∈ Dom∇c and that

∑

x∈ω

|∇c
xF (ω)|2 =

∫

Λ

|∇c
xF (ω)|2 dω(x) ≤ 1, µσ-a.s.

Hence we obtain |∇c
xF (ω)| ≤ 1, αc-a.e., in other words the Rademacher property

(2.4) is satisfied. �

3. Upper bounds on Rubinstein distances

3.1. An abstract upper bound on Rubinstein distances. Let us establish
first an abstract upper bound on the Rubinstein distance by using a semi-group
method, provided the associated couple gradient/distance satisfies the Rademacher
property (2.4). Denote ρ a lower semi-continuous distance on the configuration
space ΓΛ and assume that Hypothesis 2.2 is fulfilled.

Proposition 3.1. Assume that the couple (∇, ρ) satisfies the Rademacher property
(2.4). Let L be the density of an absolutely continuous probability measure ν with
respect to µσ. Then provided the inequality makes sense, the following upper bound
on the Rubinstein distance holds:

Tρ(µσ, ν) ≤
∫

ΓΛ

∫

Λ

∣∣∣∣
∫ +∞

0

∇xPtL(ω) dt

∣∣∣∣ dα(ω, x). (3.1)
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Proof. The proof follows the approach emphasized by Houdré and Privault in
[11] to derive covariance identities and then concentration inequalities. Letting
F ∈ ρ− Lip1, we have by reversibility and using Fubini’s Theorem:

∫

ΓΛ

F d(µσ − ν) =

∫

ΓΛ

(∫

ΓΛ

F dµσ − F

)
L dµσ

=

∫

ΓΛ

(∫ +∞

0

d

dt
PtF dt

)
L dµσ

= −
∫

ΓΛ

∫ +∞

0

PtLF L dt dµσ

= −
∫

ΓΛ

∫ +∞

0

δ∇F PtL dt dµσ

= −
∫

ΓΛ

∫

Λ

∇xF

∫ +∞

0

∇xPtL dt dα(·, x).

Using then the Rademacher property (2.4), the result holds by taking the supre-
mum over all functions F ∈ ρ− Lip1. �

. Note that the upper bound in the inequality (3.1) is interesting in its own right,
but seems to be somewhat difficult to compute in full generality. Hence we turn
in the sequel to more concrete situations, i.e., when the gradient of interest is the
discrete gradient ∇♯ or the differential one ∇c and is associated to the convenient
distance ρi, i ∈ {0, 1, 2}, in the sense of the Rademacher property (2.4).

3.2. A qualitative upper bound on Tρ1 . Once the abstract estimate (3.1) has
been obtained, one notices that it might be simplified whenever a commutation
relation between gradient and semi-group holds. To the knowledge of the authors,
such a property is only verified in the case of the discrete gradient, so that we
focus in this part on the couple (∇♯, ρ1). Here is one of the two main results of
the paper.

Theorem 3.2. Let L be the density of an absolutely continuous probability measure
ν with respect to µσ, and assume that L ∈ Dom∇♯ and ∇♯L ∈ L1(µσ ⊗ σ). Then
we get the following estimate:

Tρ1(µσ, ν) ≤ Eµσ

[∫

Λ

|∇♯
xL| dσ(x)

]
. (3.2)

The same inequality also holds under the distance ρ0.

Proof. Since the case of a general intensity measure σ ∈ M(Λ) might be established
by a simple limiting procedure (use the σ-compactness of the metric space Λ and
the lower semi-continuity of the application σ 7→ Tρ1(µσ, ν)), let us assume that σ
is finite, so that the Rademacher property stated in Lemma 2.4 is satisfied by the
couple (∇♯, ρ1). Hence Proposition 3.1 above entails the inequality

Tρ1 (µσ, ν) ≤ Eµσ

[∫

Λ

∣∣∣∣
∫ +∞

0

∇♯
xP

♯
t L dt

∣∣∣∣ dσ(x)

]
.
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Using now the commutation relation (2.6), we have:

Tρ1(µσ, ν) ≤ Eµσ

[∫

Λ

∣∣∣∣
∫ +∞

0

e−tP ♯
t ∇♯

xL dt

∣∣∣∣ dσ(x)

]
(3.3)

≤ Eµσ

[∫

Λ

∫ +∞

0

e−tP ♯
t |∇♯

xL| dt dσ(x)
]

= Eµσ

[∫

Λ

∫ +∞

0

e−t|∇♯
xL| dt dσ(x)

]

= Eµσ

[∫

Λ

|∇♯
xL| dσ(x)

]
,

where we have used Jensen’s inequality and the invariance property of the Poisson

measure µσ with respect to the semi-group P ♯
t . The desired inequality (3.2) is thus

established.
. Finally, the case of the trivial distance ρ0 is similar since the couple (∇♯, ρ0) also
satisfies the Rademacher property, cf. Lemma 2.4. The proof is achieved in full
generality. �

. Actually, the well-known relationship between semi-group and generator states
that for any G ∈ L2(µσ),

∫ +∞

0

e−tP ♯
t G dt = (Id+L♯)−1G.

Applying then such an identity in the inequality (3.3) above gives the following
bound:

Tρ1 (µσ, ν) ≤ Eµσ

[∫

Λ

|(Id+L♯)−1∇♯
xL| dσ(x)

]
. (3.4)

It seems theoretically slightly better than the upper bound of Theorem 3.2 but
often yields to intractable computations, except when the chaos representation of
L is given, as noticed in Section 4.1 below. Note that the very analog of (3.4) on
Wiener space was proved by a different though related way in Theorem 3.2 of [9].
. Let us provide another method leading to Theorem 3.2 which is based on the
so-called Clark formula. Instead of considering configurations in ΓΛ, the idea is
to use multivariate Poisson processes, i.e., point processes on [0, 1] with marks in
the σ-compact metric space Λ. Borrowing an idea of [19], we first explain how to
embed a Poisson process into a multivariate Poisson process.
. Let µ̂ be the Poisson measure of intensity λ⊗ σ on the new configuration space

ΓΛ̂, where the enlarged state space is Λ̂ = [0, 1]× Λ, and λ denotes the Lebesgue
measure on [0, 1]. Any generic element ω̂ ∈ ΓΛ̂ has the form ω̂ =

∑
(t,x)∈ω̂ εt,x.

The canonical filtration is defined for any t ∈ [0, 1] as

Ft = σ {ω̂([0, s]×B), 0 ≤ s ≤ t, B ∈ B(Λ)} .
Let us recall the Clark formula, cf. for instance [7] or Lemma 1.3 in [19], which
states that every functional G : ΓΛ̂ → R belonging to Dom∇♯ might be written as

G = Eµ̂ [G] +

∫ 1

0

∫

Λ

Eµ̂

[
∇♯

t,xG |Ft−

]
d(ω̂ − λ⊗ σ)(t, x), (3.5)
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where ∇♯
t,x denotes the discrete gradient on the enlarged configuration space ΓΛ̂.

. For an element ω̂ ∈ ΓΛ̂, we define by πω̂ its projection on ΓΛ, i.e.,

πω̂(B) = ω̂([0, 1]×B), B ∈ B(Λ),

and given F : ΓΛ → R, we define the functional F̂ as

F̂ : ΓΛ̂ −→ R

ω̂ 7−→ F (πω̂).

In particular, we have clearly ∇♯
t,xF̂ (ω̂) = ∇♯

xF (πω̂) for any (t, x) ∈ Λ̂. Moreover,

we have Eµ̂[F̂ ] = Eµσ
[F ] since the image measure of µ̂ by π is µσ.

. The total variation distance on ΓΛ̂ is defined as

ρ̂1(ω̂, η̂) =
∑

(t,x)∈Λ̂

|ω̂({t, x})− η̂({t, x})|.

The key point is the following lemma.

Lemma 3.3. For any F ∈ ρ1 − Lip1, the functional F̂ belongs to ρ̂1 − Lip1.

Proof. Given F ∈ ρ1 − Lip1, we have for any ω̂, η̂ ∈ ΓΛ̂:

|F̂ (ω̂)− F̂ (η̂)| = |F (πω̂)− F (πη̂)|
≤ ρ1(πω̂, πη̂)

=
∑

x∈Λ

|πω̂({x})− πη̂({x})|

=
∑

x∈Λ

∣∣∣∣∣∣

∑

t∈[0,1]

ω̂({t, x})− η̂({t, x})

∣∣∣∣∣∣

≤
∑

(t,x)∈Λ̂

|ω̂({t, x})− η̂({t, x})|

= ρ̂1(ω̂, η̂).

The proof is complete. �

. Now we are able to give a second proof of Theorem 3.2 by means of the Clark
formula (3.5) and Lemma 3.3.

Proof. Letting ν̂ be the measure with density L̂ with respect to µ̂, we obtain:

Tρ1(µσ, ν) = sup
F∈ρ1−Lip1

Eµσ
[F (L− 1)]

= sup
F∈ρ1−Lip1

Eµ̂[F̂ (L̂− 1)]

= sup
F∈ρ1−Lip1

Eν̂ [F̂ ]− Eµ̂[F̂ ].
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Now using the Clark formula (3.5) and taking expectation with respect to ν̂,

Eν̂ [F̂ ] = Eµ̂[F̂ ] + Eν̂

[∫ 1

0

∫

Λ

Eµ̂

[
∇♯

t,xF̂ |Ft−

]
d(ω̂ − λ⊗ σ)(t, x)

]

= Eµ̂[F̂ ] + Eµ̂

[
L̂

∫ 1

0

∫

Λ

Eµ̂

[
∇♯

t,xF̂ |Ft−

]
d(ω̂ − λ⊗ σ)(t, x)

]

= Eµ̂[F̂ ] + Eµ̂

[∫ 1

0

∫

Λ

Eµ̂

[
∇♯

t,xF̂ |Ft−

]
∇♯

t,xL̂ dt dσ(x)

]
,

where in the second line we also used the Clark formula (3.5) applied to the

functional L̂. By Lemma 2.4, the couple (∇♯, ρ̂1) satisfies the Rademacher property
(2.4) on ΓΛ̂. Hence Lemma 3.3 implies that for F ∈ ρ1 − Lip1, the quantity∣∣∣Eµ̂

[
∇♯

t,xF̂ |Ft−

]∣∣∣ is bounded by 1, µ̂⊗ λ⊗ σ-a.e., so that we obtain finally

Tρ1(µσ, ν) ≤ Eµ̂

[∫ 1

0

∫

Λ

|∇♯
t,xL̂| dt dσ(x)

]

= Eµσ

[∫

Λ

|∇♯
xL| dσ(x)

]
.

The second proof of Theorem 3.2 is thus complete. �

3.3. A qualitative upper bound on Tρ2 by time-change. Recall that by
Lemma 2.5, the couple (∇c, ρ2) satisfies the Rademacher property (2.4). Hence
Proposition 3.1 entails an upper bound on the Tρ2 Rubinstein distance as follows:
if L denotes the density of an absolutely continuous probability measure ν with
respect to µσ, then we have

Tρ2(µσ, ν) ≤
∫

ΓΛ

∫

Λ

∣∣∣∣
∫ +∞

0

∇c
xP

c
t L(ω) dt

∣∣∣∣ dω(x) dµσ(ω),

provided the inequality makes sense. However, despite its theoretical interest, such
an inequality is not really tractable in practise, since no commutation relation has
been established yet between the differential gradient ∇c and the semi-group P c

t .
Hence the purpose of this section is to provide another estimate on Tρ2 through a
different approach relying on a time-change argument together with the Girsanov
Theorem.
. We consider the notation of Section 3.2 above, with the difference that the state

space is now Λ̂ := [0,∞)×Λ, where Λ is the space Rk equipped with the Euclidean
distance κ. In this part, the distance of interest on the enlarged configuration space
ΓΛ̂ is the Wasserstein distance:

ρ̂2(ω̂, η̂)
2 = inf

β∈Σ(ω̂,η̂)

∫

Λ̂

∫

Λ̂

(κ(x, y)2 + |t− s|2) dβ((s, x), (t, y)).

The following theorem is our second main result.

Theorem 3.4. Let L be the (positive) density of an absolutely continuous proba-
bility measure ν̂ with respect to µ̂. Then provided the inequality makes sense, we
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get the following upper bound on the Rubinstein distance Tρ̂2
(µ̂, ν̂):

Tρ̂2
(µ̂, ν̂)2 ≤ Eµ̂

[
L

∫

Λ

∫ +∞

0

∣∣∣∣
∫ t

0

u(s, z) ds

∣∣∣∣
2

(1 + u(t, z)) dt dσ(z)

]

= Eµ̂

[
L

∫

Λ

∫ +∞

0

∣∣r − v−1(r, z)
∣∣2 dr dσ(z)

]
,

(3.6)

where u(t, z) > −1 is the following predictable process:

u(t, z) =
E

[
∇♯

t,zL|Ft−

]

E [L|Ft− ]
, v(t, z) := t+

∫ t

0

u(s, z) ds, z ∈ Λ,

and v−1(·, z) is the inverse of the increasing mapping t 7→ v(t, z).

. Note that for z ∈ Λ fixed, the term
∫ +∞

0

∣∣r − v−1(r, z)
∣∣2 dr can be inter-

preted as a generalized Wassertein distance between the infinite measures dr
and (1 + u(r, z)) dr, see [18]. Then, the Tρ̂2

distance is bounded from above by
the expectation under ν̂ of this generalized distance integrated over Λ according
to the marks distribution.

Proof. By the Girsanov Theorem, there exists a predictable process u such that
for any compact set K ∈ B(Λ), the process

t 7→ ω̂([0, t]×K)−
∫ t

0

∫

K

(1 + u(s, z)) ds dσ(z),

is a ν̂-martingale. Moreover, the conditional expectation Lt := E [L|Ft] might be
identified as follows:

Lt = exp

{∫ t

0

∫

Λ

ln(1 + u(s, z)) dω̂(s, z)−
∫ t

0

∫

Λ

u(s, z) ds dσ(z)

}

= E
(∫ t

0

∫

Λ

u(s, z) d(ω̂ − λ⊗ σ)(s, z)

)

= 1 +

∫ t

0

∫

Λ

Ls−u(s, z) d(ω̂ − λ⊗ σ)(s, z),

where E denotes the classical Doléans-Dade exponential. On the other hand, the
Clark formula (3.5) extended to the set (0,+∞) induces that

Lt = 1 +

∫ t

0

∫

Λ

E
[
∇♯

s,zLt|Fs−
]
d(ω̂ − λ⊗ σ)(s, z).

By identification, we obtain:

u(s, z) =
E
[
∇♯

s,zLt|Fs−
]

Ls−
=

E
[
∇♯

s,zL|Fs−
]

Ls−
,

since for any s ∈ (0, t) a commutation relation holds between the discrete gradient
∇♯

s,z and the conditional expectation knowing Ft, cf. for instance Lemma 3.2 in
[13]. Define on ΓΛ̂ the time-change configuration τω̂ by

τω̂ =
∑

(ti,zi)∈ω̂

εv(ti,zi),zi ,
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where v(t, z) is given above. By Theorem 3 in [5], the distribution of τω̂ under ν̂ is
nothing but the law of the configuration ω̂ under µ̂. Hence using Cauchy-Schwarz’
inequality in the second line below, we obtain:

Tρ̂2
(µ̂, ν̂) ≤ Eν̂ [ρ̂2(ω̂, τ ω̂)]

≤ Eν̂

[∫

Λ

∫ +∞

0

|t− v(t, z)|2 dω̂(t, z)

]1/2

= Eν̂

[∫

Λ

∫ +∞

0

|t− v(t, z)|2 dv

dt
(t, z) dt dσ(z)

]1/2
,

where we used the classical compensation formula for stochastic integrals with
respect to Poisson random measures. Finally, the change of variable r = v(t, z)
for z ∈ Λ being fixed allows us to obtain the desired inequality (3.6). �

4. Applications

4.1. Distance estimates between processes. The purpose of the present part
is to apply our main results Theorems 3.2 and 3.4 to provide distance estimates
between a Poisson process and several other more sophisticated processes, such as
Cox or Gibbs processes. See for instance the pioneer monograph [3] or also [2, 17]
for similar results with respect to another (bounded) distances on the configuration
space ΓΛ. The three first examples below rely on the total variation distance ρ1,
whereas in the last one the Wasserstein distance ρ2 is considered.
. Poisson processes. Here the probability measure ν is supposed to be another
Poisson measure on ΓΛ, where Λ is a σ-compact metric space.

Proposition 4.1. Let µτ be a Poisson measure on ΓΛ of intensity τ . We assume
that τ admits a density p with respect to σ such that p− 1 ∈ L1(σ). Then we have

Tρ1(µσ, µτ ) ≤
∫

Λ

|p(x)− 1| dσ(x). (4.1)

Proof. Since µτ is a Poisson measure on ΓΛ of intensity τ , it is well known that it
is absolutely continuous with respect to µσ and the density L is given by

L(ω) = exp

{∫

Λ

log p(x) dω(x) +

∫

Λ

(1 − p(x)) dσ(x)

}
.

It is then straightforward that ∇♯
xL = L(p(x)− 1), hence by Theorem 3.2,

Tρ1(µσ, µτ ) ≤ Eµσ

[
L

∫

Λ

|p(x)− 1| dσ(x)
]
=

∫

Λ

|p(x) − 1| dσ(x).

The proof is achieved. �

. Note that in this very simple situation, the inequality (3.4) yields the same
bound. Indeed, since p is deterministic, the density L has the following chaos
representation

L = 1 +
∞∑

n=1

1

n!
Jn

(
(p− 1)⊗n

)
,
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cf. identity (7) in [16], so that we have

((Id+L♯)−1∇♯
xL = (p(x)− 1)

∞∑

n=1

1

(n− 1)!
Jn−1

(
(p− 1)⊗n−1

)
= (p(x) − 1)L.

Actually, one might obtain the inequality (4.1) by using another very intuitive
approach. Indeed, let ω0, ω1 and ω2 be three independent configurations in ΓΛ

with respective intensities

dσ0 := (p ∧ 1) dσ, σ1 := σ − σ0, σ2 := τ − σ0.

Then ω0 +ω1 and ω0 +ω2 have respective distribution µσ and µτ . Hence we have

Tρ1(µσ, µτ ) = inf {E [ρ1(ω, ω̄)] : ω ∼ µσ, ω̄ ∼ µτ}
≤ E [ρ1(ω0 + ω1, ω0 + ω2)]

= E [(ω1 + ω2)(Λ)]

=

∫

Λ

|p(x) − 1| dσ(x).

. Cox processes. A Cox process is a Poisson process with a random intensity.
To construct a Cox process, we need to enlarge our probability space. Recall
that M(Λ) is the space of positive and diffuse Radon measures on Λ endowed
with the vague topology and the corresponding Borel σ-field. Given an arbitrary
probability measure PM on M(Λ), we denote by M the canonical random variable
on (M(Λ),PM ), i.e. M given by M(m) = m has distribution PM . On the space
ΓΛ ×M(Λ), we consider the probability measures

dµ′
M (ω,m) := dµm(ω) dPM (m) and dµ′

σ(ω,m) := dµσ(ω) dPM (m).

Note that the second one is the distribution of the independent couple (N,M),
where N is the canonical random variable on ΓΛ with distribution µσ.
. As noticed in Section 2.1, the application m 7→ Tρ1(µm, µσ) is lower semi-conti-
nuous, hence measurable. The distribution µ′

M on ΓΛ is said to be Cox whenever
for any function f ∈ C0(Λ),

Eµ′

M

[
exp

(∫

Λ

f dω

) ∣∣∣∣M
]
= exp

{∫

Λ

(ef − 1) dM

}
.

In the definition of the distance between µ′
M and µ′

σ, we do not include any
information on M , so that the distance ρ1 remains the same and we have:

Tρ1(µ
′
σ, µ

′
M ) = sup

F∈ρ1−Lip1

∫

ΓΛ×M(Λ)

F (ω) dµ′
σ(ω,m)−

∫

ΓΛ×M(Λ)

F (ω) dµ′
M (ω,m)

= sup
F∈ρ1−Lip1

∫

M(Λ)

(∫

ΓΛ

F (ω) d(µσ − µm)(ω)

)
dPM (m).

Proposition 4.2. Assume that µ′
σ-a.s., the measure M is absolutely continuous

with respect to σ and that there exists a measurable version of dM/ dσ and such
that dM/ dσ − 1 ∈ L1(µ′

σ ⊗ σ). Then we have

Tρ1(µ
′
σ, µ

′
M ) ≤ Eµ′

σ

[∫

Λ

∣∣∣∣
dM

dσ
(x) − 1

∣∣∣∣ dσ(x)

]
.
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Proof. We have:

Tρ1(µ
′
σ, µ

′
M ) ≤

∫

M(Λ)

sup
F∈ρ1−Lip1

(∫

ΓΛ

F (ω) d(µσ − µm)(ω)

)
dPM (m)

=

∫

M(Λ)

Tρ1(µσ, µm) dPM (m)

≤
∫

M(Λ)

∫

Λ

∣∣∣∣
dm

dσ
(x) − 1

∣∣∣∣ dσ(x) dPM (m),

where the last inequality follows from Proposition 4.1. �

. Gibbs processes. Let Λ = R
k and assume that the measure ν is a Gibbs

measure on ΓΛ with respect to the reference measure µσ, i.e. the density of ν with
respect to µσ is of the form L = e−V , where

V (ω) :=

∫

Λ

∫

Λ

φ(x − y) dω(x) dω(y) < +∞, µσ − a.s.,

and where the potential φ : Λ → (0,+∞) is such that φ(x) = φ(−x) and

∫

Λ

∫

Λ

φ(x − y) dσ(x) dσ(y) < +∞.

We have the following result.

Proposition 4.3. The Rubinstein distance Tρ1 between the Poisson measure µσ

and the Gibbs measure ν is bounded as follows:

Tρ1(µσ, ν) ≤ 2

∫

Λ

∫

Λ

φ(x − y) dσ(x) dσ(y).

Proof. Since V is µσ-a.s. finite, so does
∫
Λ
φ(x − y) dω(y) for any x. We have:

∇♯
xL(ω) = −L(ω)

(
1− exp

{
−2

∫

Λ

φ(x − y) dω(y)

})
, x ∈ Λ.

Since 0 ≤ L ≤ 1, Theorem 3.2 together with the inequality 1− e−u ≤ u imply:

Tρ1 (µσ, ν) ≤ Eµσ

[
L

∫

Λ

(
1− exp

{
−2

∫

Λ

φ(x − y) dω(y)

})
dσ(x)

]

≤ Eµσ

[
L

∫

Λ

2

∫

Λ

φ(x − y) dω(y) dσ(x)

]

≤ 2Eµσ

[∫

Λ

∫

Λ

φ(x − y) dω(y) dσ(x)

]

= 2

∫

Λ

∫

Λ

φ(x − y) dσ(x) dσ(y).

The proof is complete. �
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. Poisson processes on the half-line. In this example, we give a bound on the
Rubinstein distance between Poisson processes, with respect to the Wasserstein
distance ρ2. Consider to simplify Poisson processes on R+ (the generalization
to multivariate Poisson processes is straightforward). Letting U : R+ → R be
a continuously differentiable function vanishing at infinity and with U(0) = 0,
we also assume that U ∈ L2(λ), where λ is the Lebesgue measure, and that its
derivative U ′ is valued in (−1,+∞). A typical example of such a function is
U(t) = t/(1 + t3), t ≥ 0. Then we obtain by Theorem 3.4 the following result.

Proposition 4.4. Let µλ be the Poisson measure of Lebesgue intensity λ on the
configuration space ΓR+, and consider the Poisson measure ν of intensity (1 +
U ′) dλ. Then we have the upper bound on Tρ2(µλ, ν):

Tρ2 (µλ, ν) ≤ ‖U‖L2(λ) .

4.2. Tail and isoperimetric estimates. The aim of this final part is to de-
rive several consequences of Theorem 3.2 above in terms of tail estimates and
isoperimetric inequalities.
. Tail estimates. Our main result Theorem 3.2 allows us to obtain a first tail
estimate as follows. Let F ∈ ρ1 − Lip1 be centered and let λ > 0. Denote
Zλ = Eµσ

[
eλF

]
and consider νλ the absolutely continuous probability measure

with density eλF /Zλ with respect to µσ. Using a somewhat similar argument as
in [11], we have:

d

dλ
logZλ =

∫

ΓΛ

F dνλ

≤ Tρ1(µσ, ν
λ)

≤ Eµσ

[∫

Λ

|∇♯
xe

λF | dσ(x)
]

≤ (eλ − 1) ‖∇♯F‖1,∞,

where in the last inequality we used the fact that the function x 7→ (ex − 1)/x is
non-decreasing on (0,+∞). Here the notation ‖∇♯F‖1,∞ stands for

‖∇♯F‖1,∞ := µσ − esssup

∫

Λ

|∇♯
xF | dσ(x).

Hence we obtain the following bound on the Laplace transform:

Eµσ

[
eλF

]
= Zλ ≤ exp

{
‖∇♯F‖1,∞ (eλ − λ− 1)

}
, λ > 0.

Finally using Chebychev’s inequality, we get the deviation inequality available for
any r ≥ 0:

µσ (F ≥ r) ≤ exp

{
r − (r + ‖∇♯F‖1,∞) log

(
1 +

r

‖∇♯F‖1,∞

)}
. (4.2)

. Note that such a tail estimate is somewhat similar to that established for instance
by Wu and Houdré-Privault in [19, 11]. However, in contrast to their results, we
do not exhibit at the denominator the sharp variance term

‖∇♯F‖22,∞ := µσ − esssup

∫

Λ

|∇♯
xF |2 dσ(x),
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since our method relies on the L1-inequality (3.2). In particular, if we apply (4.2)
for instance to the centered function F ∈ ρ1 − Lip1 given by F (ω) = (ω − σ)(K),
where K is some compact subset of Λ, we obtain the inequality

µσ (ω(K) ≥ σ(K) + r) ≤ er−(r+σ(K)) log(1+ r
σ(K) ).

Unfortunately, neither (4.2) nor the results emphasized in [19, 11] are sharp in
terms of the deviation level r since the following asymptotic estimate holds, cf. for
instance p.1225 of Houdré [10]:

µσ (ω(K) ≥ σ(K) + r) = µσ (ω(K) ≥ [σ(K) + r])

∼
r→+∞

e[σ(K)+r]−σ(K)−[σ(K)+r] log( [σ(K)+r]
σ(K) )

√
2π[σ(K) + r]

,

where [R] := inf{N ∈ N∗ : N ≥ R} denotes the upper integer part of any positive
real number R. Hence the purpose of this part is to recover this multiplicative
polynomial factor by means of a simple use of Theorem 3.2. We proceed as follows.
Let ν be the absolutely continuous probability measure with density with respect
to µσ:

L :=
1

µσ (ω(K) ≥ [σ(K) + r])
1{ω(K)≥[σ(K)+r]}, r > 0.

Using Theorem 3.2, we compute as follows:

µσ (ω(K) ≥ σ(K) + r)

= µσ (ω(K) ≥ [σ(K) + r])

≤ 1

[σ(K) + r]

(∫

ΓΛ

ω(K)L(ω) dµσ(ω)

)
µσ (ω(K) ≥ [σ(K) + r])

≤ 1

[σ(K) + r]

(
Tρ1(µσ, ν) + σ(K)

)
µσ (ω(K) ≥ [σ(K) + r])

≤ 1

[σ(K) + r]

(
Eµσ

[∫

Λ

|∇♯
xL| dσ(x)

]
+ σ(K)

)
µσ (ω(K) ≥ [σ(K) + r])

=
σ(K)

[σ(K) + r]

(
µσ (ω(K) = [σ(K) + r] − 1) + µσ (ω(K) ≥ [σ(K) + r])

)
,

so that we obtain

µσ (ω(K) ≥ σ(K) + r) ≤ [σ(K) + r]

[σ(K) + r]− σ(K)
e−σ(K) σ(K)[σ(K)+r]

[σ(K) + r]!

≤ [σ(K) + r]

r
e−σ(K) σ(K)[σ(K)+r]

[σ(K) + r]!
.

Hence using the lower bound below on the factorial function of any positive integer
N , cf. for instance [8]:

√
2πNN+ 1

2 e−N ≤ N ! ≤
√
2πNN+ 1

2 e−N+ 1
12N , (4.3)

we obtain the following result.
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Proposition 4.5. Given any compact set K ⊂ Λ and any r > 0, we have the tail
estimate:

µσ (ω(K) ≥ σ(K) + r) ≤ [σ(K) + r]

r

e[σ(K)+r]−σ(K)−[σ(K)+r] log( [σ(K)+r]
σ(K) )

√
2π[σ(K) + r]

.

. To the knowledge of the authors, although the latter non-asymptotic tail estimate
is straightforward to establish via Theorem 3.2 as we have seen above, it seems to
be new and recovers exactly the asymptotic regime emphasized above. Note that
Paulauskas obtained a somewhat similar deviation inequality in Proposition 3 in
[14], but with a constant which is however not sharp, in contrast to ours.
. Now we aim at extending this tail estimate to a more general context. Given a
fixed configuration η ∈ ΓΛ, we provide in the sequel a deviation inequality from
its mean of the total variation distance ρ1 between η and random configurations.
Assume that σ is a finite measure. Denoting the function ρη := ρ1(·, η) which
clearly belongs to the set ρ1 − Lip1 and using the same argument as above, we
have

µσ (ρη ≥ Eµσ
[ρη] + r)

= µσ (ρη ≥ [Eµσ
[ρη] + r])

≤ 1

[Eµσ
[ρη] + r]

Eµσ

[
ρη 1{ρη≥[Eµσ [ρη ]+r]}

]

≤ 1

[Eµσ
[ρη] + r]

(
Eµσ

[∫

Λ

|∇♯
x1{ρη≥[Eµσ [ρη ]+r]}| dσ(x)

]

+Eµσ
[ρη]µσ (ρη ≥ [Eµσ

[ρη] + r])

)

≤ [σ(Λ) + r]− r

[Eµσ
[ρη] + r]

(
µσ (ρη ≥ [Eµσ

[ρη] + r − 1])− µσ (ρη ≥ [Eµσ
[ρη] + r])

)

+
1

[Eµσ
[ρη] + r]

Eµσ
[ρη] µσ (ρη ≥ [Eµσ

[ρη] + r]) ,

since the intensity measure σ is diffuse. Hence we obtain for any r > 0:

µσ (ρη ≥ [Eµσ
[ρη] + r]) ≤ [σ(Λ) + r]− r

[σ(Λ) + r]
µσ (ρη ≥ [Eµσ

[ρη] + r − 1]) ,

and iterating the procedure entails the inequality

µσ (ρη ≥ [Eµσ
[ρη] + r]) ≤ ([σ(Λ) + r]− r)

r
[σ(Λ)]!

[σ(Λ) + r]!
.

Finally using the estimates (4.3) yield the following result.

Proposition 4.6. Given any fixed configuration η ∈ ΓΛ and provided the intensity
measure σ is finite, we have for any r > 0:

µσ (ρη ≥ Eµσ
[ρη] + r)

≤
√
2π[σ(Λ)][σ(Λ)][σ(Λ)]e

1
12[σ(Λ)]

σ(Λ)σ(Λ)

e[σ(Λ)+r]−[σ(Λ)]−[σ(Λ)+r] log( [σ(Λ)+r]
[σ(Λ)+r]−r )

√
2π[σ(Λ) + r]

,
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where ρη denotes the total variation distance ρ1(·, η).

. Hence one deduces that the tail behavior of the total variation distance is com-
parable to the previous ones, up to constant multiplicative factors depending on
the total mass σ(Λ).
. Isoperimetric inequality. Here the distance of interest is the trivial distance
ρ0. In the sequel, we assume that the intensity measure σ is finite, so that the
domain Dom∇♯ contains the indicator functions 1A, A ∈ B(ΓΛ).
. Given a Borel set A ∈ B(ΓΛ), we define its surface measure as

µσ(∂A) := Eµσ

[∫

Λ

|∇♯
x1A| dσ(x)

]
.

Denote hµσ
the classical isoperimetric constant that we aim at estimating:

hµσ
= 2 inf

0<µσ(A)<1

µσ(∂A)

µσ(A)(1 − µσ(A))
.

By the following co-area formula, available for any F ∈ Dom∇♯:

Eµσ

[∫

Λ

|∇♯
xF | dσ(x)

]
= Eµσ

[∫

Λ

∫ +∞

−∞

|∇♯
x1{F>t}| dt dσ(x)

]
,

which might be deduced from the identity |a− b| =
∫ +∞

−∞
|1{a>t} − 1{b>t}| dt, the

constant hµσ
is also the best constant h in the L1-type functional inequality

hEµσ
[|F − Eµσ

[F ]|] ≤ 2Eµσ

[∫

Λ

|∇♯
xF | dσ(x)

]
, F ∈ Dom∇♯. (4.4)

We have the following result, which is convenient for small total mass σ(Λ).

Proposition 4.7. Assume that the measure σ is finite. Then we have

1 ≤ hµσ
≤ σ(Λ)

1− e−σ(Λ)
. (4.5)

In particular, we have the asymptotic for small total mass:

lim
σ(Λ)→0

hµσ
= 1.

. Note that Houdré and Privault established first the inequality hµσ
≥ 1 by using

Poincaré inequality, cf. Proposition 6.4 in [12]. Hence we recover their result via
another approach. On the other hand, our estimate in the right-hand-side of (4.5)
is sharp for small values of σ(Λ), but is worse than their estimate for large σ(Λ)

since their upper bound is 8 + 8
√
σ(Λ).

Proof. In order to show hµσ
≥ 1, let us establish the inequality (4.4) with h = 1.

By homogeneity, it is sufficient to prove the result for functionals F ∈ Dom∇♯

such that Eµσ
[F ] = 1. Denote by ν the absolutely continuous probability measure
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with density F with respect to the Poisson measure µσ. Using duality,

Tρ0 (µσ, ν) = sup
G∈ρ0−Lip1

Eµσ
[G(F − 1)]

=
1

2
sup

µσ −esssup |G|≤1

Eµσ
[G(F − 1)]

=
1

2
Eµσ

[|F − 1|] .

Hence using Theorem 3.2 with the trivial distance ρ0, we get the inequality (4.4)
with h = 1, thus obtaining the desired inequality hµσ

≥ 1. On the other hand, to
provide the upper bound in (4.5), note that we have by the very definition of hµσ

:

hµσ
≤ 2µσ(∂{ω(Λ) = 0})

µσ(ω(Λ) = 0) (1− µσ(ω(Λ) = 0))

=
σ(Λ)

1− e−σ(Λ)
.

The proof is achieved. �
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