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RUBINSTEIN DISTANCES ON CONFIGURATION SPACES

L. DECREUSEFOND, A. JOULIN, AND N. SAVY

Abstract. In this paper, we provide upper bounds on several Rubinstein-
type distances on the configuration space equipped with the Poisson measure.
Our inequalities involve the two well-known gradients, in the sense of Malliavin
calculus, which can be defined on this space. Actually, we show that depending
on the distance between configurations which is considered, it is one gradient or
the other which is the most effective. Some applications to distance estimates
between Poisson and other more sophisticated processes are also provided, and
an investigation of our results to functional inequalities completes this work.

1. Introduction

Let Λ be a Lusin space and ΓΛ be the space of configurations on Λ equipped with
a Poisson measure µ. Defining and evaluating some distances between probability
measures on ΓΛ is an important problem, both theoretical and for applications,
since it is equivalent to define distances between point processes (see for instance
Chapters 2 and 3 of [15] for a thorough discussion and references about this topic).
Once a lower-semi-continuous distance ρ on the configuration space is defined, the
Rubinstein distance between µ and some probability measure ν on ΓΛ is given by

Tρ(µ, ν) = inf
γ∈Σ(µ,ν)

∫

ΓΛ

∫

ΓΛ

ρ(ω, η) dγ(ω, η),

where Σ(µ, ν) is the set of probability measures on ΓΛ×ΓΛ with first (respectively
second) marginal µ (respectively ν). According to the Kantorovich-Rubinstein
duality theorem, the distance rewrites as

Tρ(µ, ν) = sup
F∈ρ−Lip1

∫

ΓΛ

F d(µ − ν),

where ρ − Lip1 denotes the set of 1-Lipschitz functions on ΓΛ with respect to
the distance ρ. This means that the distance between two fixed probability mea-
sures depends crucially on the distance on the base space as it changes the set of
Lipschitz functions. Since Tρ(µ, ν) is given by a variational formula, its explicit
expression is of difficult access and one might estimate it from above. In partic-
ular, a convenient upper bound ensures its finiteness, which is not guaranteed a
priori. Such inequalities involving the Rubinstein distance like the ones we are
intended to prove is part of the domain of functional inequalities, which is by now
a wide field of research with numerous methods of proofs. See for instance the
very complete monograph [16] and particularly Chapters 21 and 22 for a large
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panorama on this topic, with precise references and credit. To derive our inequal-
ities, the two main ingredients at work are other representations of the Rubinstein
distance and the Rademacher property. On the one hand, one way to get such
representations is either to embed the two probability measures into the evolution
of a Markov semi-group, or to use the so-called Clark formula. On the other hand,
the Rademacher property formally states that given a distance ρ, there exists a
notion of gradient such that its domain contains the set ρ−Lip1 and any function
in ρ − Lip1 has a gradient whose norm is less than 1, i.e., that we can proceed as
in finite dimension.

For these two steps, we need a notion of gradient. In the setting of configura-
tion spaces, such a notion does exist within Malliavin calculus. In fact, we even
have two notions of gradient: a “differential” gradient (see [1, 13]) and a gradient
expressed as a finite difference operator (see [11]). We show that depending on
the distance ρ chosen on the configuration space, one gradient or the other is more
convenient, i.e., the Rademacher property holds with one notion of gradient, or
the other.

The paper is organized as follows. After the preliminaries of Section 2, we pro-
vide in Section 3 an abstract upper bound on the Rubinstein distance Tρ(µ, ν)
via a semi-group approach, where ρ is the total variation distance, the Wasser-
stein distance or the trivial distance on the configuration space ΓΛ. When dealing
with the total variation distance, such an estimate has a simplified expression,
which can be retrieved in Section 4 by using an alternative method, namely the
Clark formula. When the configuration space is equipped with the Wasserstein
distance, cf. Section 5, the upper bound we give on the Rubinstein distance relies
on a time-change argument together with the Girsanov Theorem. Finally, Sec-
tion 6 is devoted to numerous applications: estimating distances between Poisson
processes, between Poisson and Cox processes, between Poisson and Gibbs pro-
cesses, etc. We thus hope to give a systematic treatment of the various situations
one may encounter in applications. We conclude this work by providing another
consequences of our results to various functional inequalities such as log-Sobolev,
concentration or isoperimetric inequalities.

2. Preliminaries

Let X be a Polish space and ρ a lower-semi-continuous distance on X×X, which
does not necessarily generate the topology on X. Given two probability measures
µ and ν on X, the optimal transportation problem associated to ρ consists in
evaluating the distance

(1) Tρ(µ, ν) = inf
γ∈Σ(µ,ν)

∫

X

∫

X
ρ(x, y) dγ(x, y),

where Σ(µ, ν) is the set of probability measures on X ×X with first (respectively
second) marginal µ (respectively ν). By Theorem 4.1 in [16], there exists at least
one probability measure γ for which the infimum is attained. According to the
celebrated Kantorovitch-Rubinstein duality theorem, cf. Theorem 5.10 in [16],
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this minimum is equal to

(2) Tρ(µ, ν) = sup
F∈ρ−Lip1

F∈L1(µ+ν)

∫

X
F d(µ − ν),

where ρ−Lipm is the set of bounded Lipschitz continuous functions F from X to
R with Lipschitz constant m:

|F (x) − F (y)| ≤ m ρ(x, y), x, y ∈ X.

In the context of optimal transportation, Tρ is considered as a Rubinstein distance
since the cost function is already a distance (see for instance the bibliographical
notes at the end of Chapter 6 in [16]).

In this paper, we consider the situation where X = ΓΛ is the configuration
space on a Lusin space Λ, i.e.,

ΓΛ = {ω ⊂ Λ; ω ∩ K is a finite set for every compact K ⊂ Λ}.

We identify ω ∈ ΓΛ and the positive Radon measure
∑

x∈ω εx, where εa is the
Dirac measure at point a. Throughout this paper, ΓΛ is endowed with the vague
topology, i.e., the weakest topology such that for all f ∈ C0 (continuous with
compact support on Λ), the following maps

ω 7→

∫

Λ
f dω =

∑

x∈ω

f(x)

are continuous. When f is the indicator function of a subset B, we will use
the shorter notation ω(B) for the integral of 1B with respect to ω. We denote by
B(ΓΛ) the corresponding Borel σ-algebra. Given σ a σ-finite measure on the Borel
σ-algebra B(Λ), the probability space under consideration in the remainder of this
paper will then be the Poisson space (ΓΛ,B(ΓΛ), µσ), where µσ is the Poisson
measure of intensity σ, i.e., the probability measure on ΓΛ fully characterized by

Eµσ

[
exp

(∫

Λ
f dω

)]
= exp

{∫

Λ
(ef − 1) dσ

}
,

for any measurable function f : Λ → (−∞, 0). Here Eµσ stands for the expectation
under the measure µσ.

2.1. Distances on the configuration space ΓΛ. Actually, several distance con-
cepts are available between elements of the configuration space ΓΛ, cf. for instance
[15] for a thorough discussion about this topic. We introduce only three of them
which will be useful in the sequel. Let ω and η be two configurations in ΓΛ.

Trivial distance: The trivial distance is simply given by

ρ0(ω, η) = 1{ω 6=η}.

Total variation distance: The total variation distance is defined as

ρ1(ω, η) =
∑

x∈Λ

|ω({x}) − η({x})|

= ω∆η(Λ) + η∆ω(Λ),

where ω∆η = ω\(ω ∩ η).
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Wasserstein distance: If Λ = R
k and κ is the Euclidean distance, the

Wasserstein distance is given by

ρ2(ω, η) = inf
β∈Σ(ω,η)

√∫

Λ

∫

Λ
κ(x, y)2 dβ(x, y),

where Σ(ω, η) denotes the set of configurations β ∈ ΓΛ×Λ having marginals
ω and η, see [6, 13].

Let us comment these notions of distance on the configuration space ΓΛ.
First, the total variation distance ρ1 is nothing but the number of different atoms
between two configurations. In particular, we allow them to be infinite so that
the total variation distance might take infinite values. Note that our definition is
a straightforward generalization of the classical notion of total variation distance
between probability measures, since it coincides with the usual definition when
the configurations are normalized by their total masses.
As the total variation distance ρ1, the Wasserstein distance ρ2 also shares the
property that it might takes infinite values. Indeed, if the total masses of two
configurations ω and η are finite but differ, then there exists no coupling configu-
ration β in Σ(ω, η), hence the distance should be infinite. If ω(Λ) = η(Λ) < +∞

with ω =
∑ω(Λ)

j=1 δxj
and η =

∑η(Λ)
j=1 δyj

, we can also write

ρ2(ω, η)2 = inf
τ∈Sω(Λ)

ω(Λ)∑

j=1

κ(xj , yτ(j))
2,

where Sω(Λ) denotes the symmetric group on the finite set {1, 2, . . . , ω(Λ)}. As
such ρ2 appears as the dimension-free generalization of the Euclidean distance.

In order to use the Kantorovich-Rubinstein duality theorem, the lower-semi-
continuity of the distances ρi is required. This is the object of the next lemma.

Lemma 1. The distances ρi are lower-semi-continuous on the product space ΓΛ×
ΓΛ equipped with the product topology.

Proof. It is immediate for the trivial distance ρ0 and it is proved in Lemma 4.1 in
[13] for the Wasserstein distance ρ2. To verify this property for the total variation
distance ρ1, let α be a real number and consider Jα defined by

Jα = {(ω, η) ∈ ΓΛ × ΓΛ : ρ1(ω, η) ≤ α}.

Let ((ωn, ηn), n ≥ 1) converge vaguely to (ω, η) and such that for any n, (ωn, ηn)
belongs to Jα. By the triangular inequality, we have for any compact set K and
any n:

ρ1(πKω, πKη) ≤ ρ1(πKω, πKωn) + α + ρ1(πKηn, πKη),

where πK denotes the restriction to K of a configuration. Hence using the vague
convergence, we obtain that (πKω, πKη) ∈ Jα. Finally, the monotone convergence
theorem for an exhaustive sequence of compacts (Kp)p∈N entails that

ρ1(ω, η) = lim
p→+∞

ρ1(πKpω, πKpη) ≤ α,

hence the set Jα is vaguely closed. �
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In particular, Lemma 1 entails the lower-semi-continuity of the Rubinstein dis-
tances Tρi

with respect to the weak topology on the space of probability measures
on ΓΛ, cf. for instance Remark 6.12 in [16]. However for i ∈ {1, 2}, the Rubinstein
distances Tρi

is not continuous and might be infinite since the distance ρi is very
often infinite itself, as in the Wiener space situation of [8].

Actually, we mention that our definitions do not coincide with some of the
usual definitions of (bounded) distances between point processes, see for instance
[2, 3, 15]. As mentioned above, it is customary to use the classical notion of total
variation by considering normalized configurations, i.e.,

ρ̃1(ω, η) = ρ1

(
ω

ω(Λ)
,

η

η(Λ)

)
,

provided both configurations have finite total masses. It should be noted that
since ρ̃1 is not lower-semi-continuous, the Kantorovich-Rubinstein duality theorem
is no longer satisfied, so that we cannot use the identity (2) in our framework. For
instance, let Λ = R, ω = ε0 and η = ε1. Choose ωn = ε0 + εn and ηn = ε1 + εn.
As n goes to infinity, ωn and ηn tend vaguely to ω and η respectively. However,
we have ρ̃1(ω, η) = 2 whereas ρ̃1(ωn, ηn) = 1, for any integer n ≥ 2.
It is also customary to replace ρ2 by ρ̃2 defined by

ρ̃2(ω, η) =

{
1

ω(Λ) ρ2(ω, η) if ω(Λ) = η(Λ) 6= 0,

|ω(Λ) − η(Λ)| otherwise.

The normalization by the inverse of ω(Λ) shrinks the ρ2 distance by a factor
roughly equal to the expectation of ω(Λ)−1, see [6]. More important, the term
|ω(Λ)− η(Λ)| has no dimension (in the sense of dimensional analysis) whereas the
term involving ρ2 has the dimension of a length. Furthermore, the distance ρ2

has interesting geometric properties of the space ΓΛ like the Rademacher property
(see Lemma 3 below), not shared by ρ̃2.

2.2. Malliavin derivatives and the Rademacher property. Before intro-
ducing the so-called Rademacher property on the configuration space ΓΛ, we need
some additional structure.

Hypothesis I. Assume now that we have:

• A kernel Q on ΓΛ × Λ, i.e. Q(·, A) is measurable as a function on ΓΛ for
any A ∈ B(Λ) and Q(ω, ·) is a σ-finite measure on B(Λ) for any ω ∈ ΓΛ.
We set dα(ω, x) = Q(ω, dx) dµσ(ω).

• A gradient/Malliavin derivative ∇, defined on a dense subset Dom∇ of
L2(µσ), such that for any F ∈ Dom∇,

∫

ΓΛ

∫

Λ
|∇xF (ω)|2 dα(ω, x) < +∞.

We say that a process u = u(ω, x) belongs to Dom δ whenever there exists a
constant c such that for any F ∈ Dom∇,∣∣∣∣

∫

ΓΛ

∫

Λ
∇xF (ω)u(ω, x) dα(ω, x)

∣∣∣∣ ≤ c‖F‖L2(µσ).

For such a process, we define the operator δ by adjunction:

(3)

∫

ΓΛ

∫

Λ
∇xF (ω)u(ω, x) dα(ω, x) =

∫

ΓΛ

F (ω) δu(ω) dµσ(ω).
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Once the stochastic gradient has been introduced, let us relate it to the geometry
of the configuration space ΓΛ.

Definition 1. Given a distance ρ and a gradient ∇ on ΓΛ, we say that the couple
(∇, ρ) has the Rademacher property whenever ρ − Lip1 ⊂ Dom∇ and

|∇xF (ω)| ≤ 1, α-a.e.

To investigate the Rubinstein distance associated to a distance on ΓΛ, it will
be of crucial importance to find the convenient notion of gradient for which the
Rademacher property holds.

Discrete gradient on configuration space. Given a functional F ∈ L2(µσ), the
discrete gradient of F , denoted by ∇♯F , is defined by

∇♯
xF (ω) = F (ω + εx) − F (ω), (ω, x) ∈ ΓΛ × Λ.

In particular, Dom∇♯ is the subspace of L2(µσ) random variables such that

Eµσ

[∫

Λ
|∇♯

xF |2 dσ(x)

]
< +∞.

We set Q♯(ω, dx) = dσ(x) so that α♯ = µσ ⊗ σ. The n-th multiple stochastic
integral of a real-valued square-integrable symmetric function fn ∈ L2(σ⊗n) is
defined as

Jn(fn) =

∫

∆n

fn(x1, . . . , xn) d(ω − σ)(x1) . . . d(ω − σ)(xn),

where ∆n = {(x1, . . . , xn) ∈ Λn, xi 6= xj, i 6= j}, and we have the isometry
formula

(4) Eµσ [Jn(fn)Jm(fm)] = n!1{n=m}

∫

Λn

fn fm dσ⊗n.

According to [14, 11], the Chaotic Representation Property holds on the configu-
ration space, i.e., every functional F ∈ L2(µσ) can be written as

F = Eµσ [F ] +

+∞∑

n=1

Jn(fn).

Moreover the discrete gradient acts on multiple stochastic integrals as

∇♯
xF =

+∞∑

n=1

nJn−1(fn(·, x)), µσ ⊗ σ-a.e.

Denote δ♯ the adjoint operator of ∇♯ in the sense of (3). Then the self-adjoint
number operator L♯ = δ♯∇♯ has the following expression in terms of chaos:

L♯F =

+∞∑

n=1

nJn(fn), if F = Eµσ [F ] +

+∞∑

n=1

Jn(fn).

Moreover, the associated Ornstein-Uhlenbeck semi-group (P ♯
t )t≥0, whose infinites-

imal generator is −L, acts on the multiple stochastic integrals as follows:

P ♯
t F = Eµσ [F ] +

+∞∑

n=1

e−ntJn(fn).
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Using the Chaotic Representation Property, we have the commutation relation
between gradient and semi-group:

(5) ∇♯
xP

♯
t F = e−tP ♯

t ∇
♯
xF, x ∈ Λ, t ≥ 0.

Such a property will be useful in the sequel.
By the isometry formula (4), the semi-group is ergodic with respect to the Poisson
measure µσ, in the sense that the semi-group converges in L2(µσ) to µσ.

Using the discrete gradient, the distances of interest on ΓΛ are the trivial dis-
tance ρ0 and the total variation distance ρ1, as illustrated by the following Lemma.

Lemma 2. Assume that the intensity measure σ is finite on Λ. Then the pairs
(∇♯, ρ0) and (∇♯, ρ1) satisfy the Rademacher property.

Proof. Letting F ∈ ρi−Lip1, i = 0, 1, we have by the very definition of the discrete
gradient:

|∇♯
xF (ω)| = |F (ω + εx) − F (ω)| ≤ ρi(ω + εx, ω) ≤ 1.

Since σ is finite, it follows that
∫

Λ
|∇♯

xF (ω)|2 dσ(x) ≤ σ(Λ),

hence that F belongs to Dom∇♯. �

Note that the converse direction holds for the total variation distance ρ1. In-
deed, consider two configurations ω and η. If ρ1(ω, η) = +∞, there is nothing to

prove. If ρ1(ω, η) is finite, then since |∇♯
xF (ω)| ≤ 1, α♯-a.e., we get

|F (η) − F (ω)| ≤ |F (η ∩ ω ∪ η∆ω) − F (η ∩ ω)| + |F (η ∩ ω ∪ ω∆η) − F (η ∩ ω)|

≤ (η∆ω)(Λ) + (ω∆η)(Λ)

= ρ1(η, ω).

Differential gradient on configuration space. Let us introduce another stochastic
gradient on ΓΛ which is a derivation, see [1, 13]. Let V (Λ) be the space of C∞

vector fields on Λ and V0(Λ) ⊂ V (Λ), the subspace consisting of all vector fields
with compact support. For v ∈ V0(Λ), for any x ∈ Λ, the curve

t 7→ Vv
t (x) ∈ Λ

is defined as the solution of the following Cauchy problem

(6)

{
d
dtV

v
t (x) = v(Vv

t (x)),

Vv
0 (x) = x.

The associated flow (Vv
t , t ∈ R) induces a curve (Vv

t )∗ω = ω ◦ (Vv
t )−1, t ∈ R, on

ΓΛ: if ω =
∑

x∈ω εx then (Vv
t )∗ω =

∑
x∈ω εVv

t (x). We are then in position to define

a notion of differentiability on ΓΛ. We take Qc(ω, dx) = dω(x) =
∑

y∈ω dεy(x)

and dαc(ω, x) = dω(x) dµσ(ω). A measurable function F : ΓΛ → R is said to be
differentiable if for any v ∈ V0(Λ), the following limit exists:

lim
t→0

F (Vv
t (ω)) − F (ω)

t
.
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We then denote ∇c
vF (ω) the preceding quantity. The domain of ∇c is then the set

of integrable and differentiable functions such that there exists a process (ω, x) 7→
∇c

xF (ω) which belongs to L2(αc) and satisfies

∇c
vF (ω) =

∫

Λ
∇c

xF (ω)v(x) dω(x).

We denote by δc the adjoint operator of ∇c in the sense of (3). Given the
self-adjoint operator Lc = δc∇c, the associated Ornstein-Uhlenbeck semi-group
(P c

t )t≥0 is ergodic with respect to the Poisson measure µσ, cf. Theorem 4.3 in
[1]. However, in contrast to the case of the discrete gradient, there is no known
commutation relationship between the gradient ∇c and the semi-group P c

t .
The distance we focus on in this part is the Wasserstein distance ρ2. We have

the following lemma.

Lemma 3. The couple (∇c, ρ2) satisfies the Rademacher property.

Proof. The proof is straightforward. Indeed, letting F ∈ ρ2 − Lip1, we know from
Theorem 1.3 in [13] that F ∈ Dom∇c and that

∑

x∈ω

|∇c
xF (ω)|2 =

∫

Λ
|∇c

xF (ω)|2 dω(x) ≤ 1, µσ-a.s.

Hence we obtain immediately |∇c
xF (ω)| ≤ 1, αc-a.e., in other words the Rademacher

property is satisfied. �

3. Bounds on Tρ1 and Tρ2 Rubinstein distances via semi-groups

Let us establish first an abstract upper bound on the Rubinstein distance by
using a semi-group method, provided the associated pair gradient/distance sat-
isfies the Rademacher property. Denote ρ one of the distances ρi associated to
the gradient ∇ in the sense of the Rademacher property of Lemmas 2 or 3. To
unify the notation, we use the notation of Hypothesis I, with also L = δ∇, and Pt

denotes either the semi-group P ♯
t or P c

t .

Theorem 1. Let L be the density of an absolutely continuous probability measure
ν with respect to µσ. Then the following upper bound on the Rubinstein distance
holds:

(7) Tρ(µσ, ν) ≤ Eµσ

[∫

Λ

∣∣∣∣
∫ +∞

0
∇xPtL dt

∣∣∣∣ dσ(x)

]
,

provided the inequality makes sense.

Proof. Since the σ-finite case might be established by a simple limiting procedure
(use the lower-semi-continuity of the Rubinstein distance), let us assume that σ
is finite for simplicity, so that Lemma 2 is verified if (∇, ρ) = (∇♯, ρ0) or (∇♯, ρ1),
as Lemma 3 in full generality if (∇, ρ) = (∇c, ρ2).
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Letting F ∈ ρ − Lip1, we have by reversibility and using Fubini’s theorem:
∫

ΓΛ

F d(µσ − ν) =

∫

ΓΛ

(∫

ΓΛ

F dµσ − F

)
L dµσ

=

∫

ΓΛ

(∫ +∞

0

d

dt
PtF dt

)
L dµσ

= −

∫

ΓΛ

∫ +∞

0
PtLF L dt dµσ

= −

∫

ΓΛ

∫ +∞

0
δ∇F PtL dt dµσ

= −

∫

ΓΛ

∫

Λ
∇xF

∫ +∞

0
∇xPtL dt dα

= −

∫

ΓΛ

∫

Λ
∇xF

∫ +∞

0
∇xPtL dt dσ(x) dµσ.

Using then the Rademacher property, the result holds by taking the supremum
over all functions F ∈ ρ − Lip1. �

The upper bound in the inequality (7) is interesting in its own right, but seems
to be somewhat difficult to compute in full generality. One notices that such an
estimate might be simplified once a commutation relation is obtained between
gradient and semi-group. As mentioned above, it is only verified in the case of the
discrete gradient, so that we focus now on the pair (∇♯, ρ1).

Theorem 2. Let L be the density of an absolutely continuous probability measure
ν with respect to µσ, and assume that L ∈ Dom∇♯ and ∇♯L ∈ L1(µσ ⊗ σ). Then
we get the following estimate:

Tρ1(µσ, ν) ≤ Eµσ

[∫

Λ
|∇♯

xL| dσ(x)

]
.(8)

The same inequality also holds under the distance ρ0.

Proof. Using the commutation relation (5) in Theorem 1 above, we obtain

Tρ1(µσ, ν) ≤ Eµσ

[∫

Λ

∣∣∣∣
∫ +∞

0
e−tP ♯

t ∇
♯
xL dt

∣∣∣∣ dσ(x)

]

≤ Eµσ

[∫

Λ

∫ +∞

0
e−tP ♯

t |∇
♯
xL| dt dσ(x)

]

≤ Eµσ

[∫

Λ

∫ +∞

0
e−t|∇♯

xL| dt dσ(x)

]

= Eµσ

[∫

Λ
|∇♯

xL| dσ(x)

]
,

where we have used Jensen’s inequality and the invariance property of the Poisson

measure µσ with respect to the semi-group P ♯
t . �

Actually, the well-known relationship between semi-group and generator states
that for any G ∈ L2(µσ),

∫ +∞

0
e−tP ♯

t G dt = (Id +L♯)−1G.
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Applying then such an identity in the first inequality of the proof of Theorem 2
above gives the following bound:

(9) Tρ1(µσ, ν) ≤ Eµσ

[∫

Λ
|(Id +L♯)−1∇♯

xL| dσ(x)

]
.

It seems theoretically slightly better than the upper bound of Theorem 2 but often
yields to intractable computations, except when the chaos representation of L is
given, as noticed in Section 6.1 below. Note that the very analog of (9) on Wiener
space was proved by a different though related way in Theorem 3.2 of [8].

4. Clark formula and the Tρ1 Rubinstein distance

In this part, we provide another method leading to Theorem 2 which is based
on the so-called Clark formula. Instead of considering configurations in ΓΛ, the
idea is to use multivariate Poisson processes, i.e., point processes on the line with
marks in an abstract Lusin space. Borrowing an idea of [17, 12], we first explain
how to embed a Poisson process into a multivariate Poisson process.

Let µ̂ be the Poisson measure of intensity λ⊗σ on the new configuration space

ΓbΛ, where the enlarged state space is Λ̂ = [0, 1] × Λ, and λ denotes the Lebesgue
measure on [0, 1]. Any generic element ω̂ ∈ ΓbΛ has the form ω̂ =

∑
(t,x)∈bω εt,x.

The canonical filtration is defined as

Ft = σ{ω̂([0, s] × B), 0 ≤ s ≤ t, B ∈ B(Λ)}.

For an element ω̂ ∈ ΓbΛ, we define by πω̂ its projection on ΓΛ, i.e.,

πω̂(B) = ω̂([0, 1] × B), B ∈ B(Λ),

and given F : ΓΛ → R, we define the functional F̂ as

F̂ : ΓbΛ
−→ R

ω̂ 7−→ F (πω̂).

In particular, if ∇♯
t,x is the discrete gradient on the enlarged configuration space

ΓbΛ, then we have clearly ∇♯
t,xF̂ (ω̂) = ∇♯

xF (πω̂) for any (t, x) ∈ Λ̂. Moreover, we

have Ebµ

[
F̂
]

= Eµσ [F ] since the image measure of µ̂ by π is µσ.

The total variation distance on ΓbΛ
is defined as

ρ̂1(ω̂, η̂) =
∑

(t,x)∈bΛ

|ω̂({t, x}) − η̂({t, x})|.

The key point is the following lemma.

Lemma 4. For any F ∈ ρ1 − Lip1, the functional F̂ belongs to ρ̂1 − Lip1.
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Proof. Given F ∈ ρ1 − Lip1, we have for any ω̂, η̂ ∈ ΓbΛ:

|F̂ (ω̂) − F̂ (η̂)| = |F (πω̂) − F (πη̂)|

≤ ρ1(πω̂, πη̂)

=
∑

x∈Λ

|πω̂({x}) − πη̂({x})|

=
∑

x∈Λ

∣∣∣∣∣∣

∑

t∈[0,1]

ω̂({t, x}) − η̂({t, x})

∣∣∣∣∣∣

≤
∑

(t,x)∈bΛ

|ω̂({t, x}) − η̂({t, x})|

= ρ̂1(ω̂, η̂).

The proof is complete. �

Let us recall the Clark formula, cf. for instance [7] or Lemma 1.3 in [17], which
states that every functional G : ΓbΛ → R belonging to Dom∇♯ might be written as

(10) G = Ebµ [G] +

∫ 1

0

∫

Λ
Ebµ

[
∇♯

t,xG |Ft−

]
d(ω̂ − λ ⊗ σ)(t, x).

Now we are able to give a second proof of Theorem 2 by means of the Clark
formula.

Proof. Letting ν̂ be the measure with density L̂ with respect to µ̂, we obtain:

Tρ1(µσ, ν) = sup
F∈ρ1−Lip1

Eµσ [F (L − 1)]

= sup
F∈ρ1−Lip1

Ebµ

[
F̂ (L̂ − 1)

]

= sup
F∈ρ1−Lip1

Ebν

[
F̂
]
− Ebµ

[
F̂
]
.

Now using the Clark formula (10) and taking expectation with respect to ν̂,

Ebν

[
F̂
]

= Ebµ

[
F̂
]

+ Ebν

[∫ 1

0

∫

Λ
Ebµ

[
∇♯

t,xF̂ |Ft−

]
d(ω̂ − λ ⊗ σ)(t, x)

]

= Ebµ

[
F̂
]

+ Ebµ

[
L̂

∫ 1

0

∫

Λ
Ebµ

[
∇♯

t,xF̂ |Ft−

]
d(ω̂ − λ ⊗ σ)(t, x)

]

= Ebµ

[
F̂
]

+ Ebµ

[∫ 1

0

∫

Λ
Ebµ

[
∇♯

t,xF̂ |Ft−

]
∇♯

t,xL̂ dt dσ(x)

]
.

By Lemma 2, the pair (∇♯, ρ̂1) satisfies the Rademacher property on ΓbΛ. Hence

Lemma 4 implies that for F ∈ ρ1−Lip1, the quantity
∣∣∣Ebµ

[
∇♯

t,xF̂ |Ft−

]∣∣∣ is bounded

by 1, λ ⊗ σ-a.e., so that we obtain finally

Tρ1(µσ, ν) ≤ Ebµ

[∫ 1

0

∫

Λ
|∇♯

t,xL̂| dt dσ(x)

]

= Eµσ

[∫

Λ
|∇♯

xL| dσ(x)

]
.

The second proof of Theorem 2 is thus complete. �
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5. Time-changing and the Tρ2 Rubinstein distance

As we have seen in Section 3, Theorem 1 entails an upper bound on the Tρ2 Ru-
binstein distance which is not really tractable, since no commutation relation has
been established yet between the differential gradient ∇c and the semi-group P c

t .
Hence the purpose of this section is to provide another estimate on Tρ2 through a
different approach relying on a time-change argument together with the Girsanov
theorem.

We consider the notation of Section 4, with the slight difference that the state

space is now Λ̂ := [0,∞)×Λ. In this part, the distance of interest on the enlarged
configuration space ΓbΛ is the Wasserstein distance:

ρ̂2(ω̂, η̂)2 = inf
β∈Σ(bω,bη)

∫

bΛ

∫

bΛ
(κ(x, y)2 + |t − s|2) dβ((s, x), (t, y)).

Theorem 3. Let L be the (positive) density of an absolutely continuous probabil-
ity measure ν̂ with respect to µ̂. Then we get the following upper bound on the
Rubinstein distance Tcρ2

(µ̂, ν̂), provided the inequality makes sense:

Tcρ2
(µ̂, ν̂)2 ≤ Ebµ

[
L

∫

Λ

∫ +∞

0

∣∣∣∣
∫ t

0
u(s, z) ds

∣∣∣∣
2

(1 + u(t, z)) dt dσ(z)

]

= Ebµ

[
L

∫

Λ

∫ +∞

0

∣∣r − v−1(r, z)
∣∣2 dr dσ(z)

]
,

(11)

where u(t, z) > −1 is the following square-integrable predictable process:

u(t, z) =
E

[
∇♯

t,zL|Ft−

]

E [L|Ft− ]
, v(t, z) := t +

∫ t

0
u(s, z) ds, z ∈ Λ,

and v−1(·, z) is the right inverse of the non-decreasing mapping t 7→ v(t, z).

Note that for z ∈ Λ fixed, the term
∫ +∞
0

∣∣r − v−1(r, z)
∣∣2 dr can be interpreted

as a (generalized) Wassertein distance between the infinite measures dr and (1 +
u(r, z)) dr, see [16]. Then, the ρ̂2 distance is bounded by the expectation under
ν̂, of theses distances, integrated over Λ according to the marks distribution.

Proof. By the Girsanov theorem, there exists a predictable process u such that
for any compact set K ∈ B(Λ), the process

t 7→ ω̂([0, t] × K) −

∫ t

0

∫

K
(1 + u(s, z)) ds dσ(z)

is a ν̂-martingale. Moreover, the conditional expectation Lt := E [L|Ft] might be
identified as follows:

Lt = exp

{∫ t

0

∫

Λ
ln(1 + u(s, z)) dω̂(s, z) −

∫ t

0

∫

Λ
u(s, z) ds dσ(z)

}

= E

(∫ t

0

∫

Λ
u(s, z) d(ω̂ − λ ⊗ σ)(s, z)

)

= 1 +

∫ t

0

∫

Λ
Ls− u(s, z) d(ω̂ − λ ⊗ σ)(s, z),
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where E denotes the classical Doleans-Dade exponential. On the other hand, the
Clark formula (10) - extended to the set (0,+∞) - induces that

Lt = 1 +

∫ t

0

∫

Λ
E

[
∇♯

s, zLt|Fs−

]
d(ω̂ − λ ⊗ σ)(s, z).

By identification, we obtain:

u(s, z) =
1

Ls−
E

[
∇♯

s,zLt|Fs−

]
=

1

Ls−
E

[
∇♯

s,zL|Fs−

]
,

since for any s ∈ (0, t), we have a commutation relation between the discrete gra-

dient ∇♯
s,z and the conditional expectation knowing Ft, cf. for instance Lemma 3.2

in [11].
Define on ΓbΛ the time change configuration τ ω̂ by

τ ω̂ =
∑

(ti,zi)∈bω

εv(ti ,zi),zi
,

where v(t, z) is given above. By Theorem 3 in [5], the distribution of τ ω̂ under ν̂ is
nothing but the law of the configuration ω̂ under µ̂. Hence using Cauchy-Schwarz’
inequality in the second line below, we obtain:

Tcρ2
(µ̂, ν̂) ≤ Ebν [ρ̂2(ω̂, τ ω̂)]

≤ Ebν

[∫

Λ

∫ +∞

0
|t − v(t, z)|2 dω̂(t, z)

]1/2

= Ebµ

[
L

∫

Λ

∫ +∞

0
|t − v(t, z)|2

dv

dt
(t, z) dt dσ(z)

]1/2

= Ebµ

[
L

∫

Λ

∫ +∞

0

∣∣r − v−1(r, z)
∣∣2 dr dσ(z)

]1/2

,

by the change of variable r = v(t, z) for z ∈ Λ being fixed. The proof of inequality
(11) is finished. �

6. Applications

6.1. Distances estimates between processes. The purpose of the present part
is to apply our main results Theorems 2 and 3 to provide distance estimates be-
tween a Poisson process and several other more sophisticated processes, such as
Cox or Gibbs processes. See for instance the pioneer monograph [3] or also [2, 15]
for similar results with respect to another (bounded) distances on the configura-
tion space ΓΛ. The three first examples below rely on the total variation distance
ρ1, whereas in the last one the Wasserstein distance ρ2 is considered.

Poisson processes on a Lusin space. Here the probability measure ν is supposed
to be another Poisson measure on ΓΛ.

Theorem 4. Let µτ be a Poisson measure on ΓΛ of intensity τ . We assume that
τ admits an integrable density p with respect to σ. Then we have

Tρ1(µσ, µτ ) ≤

∫

Λ
|p(x) − 1| dσ(x).
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Proof. Since µτ is a Poisson measure on ΓΛ of intensity τ , it is well known that it
is absolutely continuous with respect to µσ and the density L is given by

L = exp

{∫

Λ
log p dω +

∫

Λ
(1 − p) dσ

}
.

It is then straightforward that ∇♯
xL = L(p(x) − 1), hence by Theorem 2,

Tρ1(µσ, µτ ) ≤ Eµσ

[
L

∫

Λ
|p(x) − 1| dσ(x)

]
=

∫

Λ
|p(x) − 1| dσ(x).

The proof is achieved. �

Note that in this very simple situation, the inequality (9) yields to the same
bound. Indeed, since p is deterministic, the density L has the following chaos
representation

L = 1 +

∞∑

n=1

1

n!
Jn

(
(p − 1)⊗n

)
,

cf. identity (7) in [14], so that we have

((Id +L♯)−1∇♯
xL = (p(x) − 1)

∞∑

n=1

1

(n − 1)!
Jn−1

(
(p − 1)⊗n−1

)
= (p(x) − 1)L.

Cox processes. A Cox process is a Poisson process with a random intensity. To
construct a Cox process, we need to enlarge our probability space. Denote by
M(Λ) the space of diffuse Radon measures on Λ endowed with the vague topology
and the corresponding Borel σ-field. We denote by M the canonical random
variable on M(Λ) and PM its distribution. On the space ΓΛ × M(Λ), we consider
dµ′

M(ω,m) = dµm(ω) dPM (m) and dµ′
σ(ω,m) = dµσ(ω) dPM (m). We assume

that the application m 7→ µm is measurable from M(Λ) into the set of probability
measures on ΓΛ. It then follows that the application m 7→ Tρi

(µm, µσ) is lower-
semi-continuous, hence measurable. The distribution µ′

M on ΓΛ is said to be Cox
whenever

Eµ′

M

[
exp

(∫

Λ
f dω

) ∣∣∣∣M
]

= exp

{∫

Λ
(ef − 1) dM

}
,

for any measurable function f : Λ → (−∞, 0). In the definition of the distance
between µ′

M and µ′
σ, we do not include any information on M , so that the distance

ρ1 remains the same and we have:

Tρ1(µ
′
σ, µ′

M ) = sup
F∈ρ1−Lip1

∫

ΓΛ×M(Λ)
F (ω) dµ′

M (ω,m) −

∫

ΓΛ×M(Λ)
F (ω) dµ′

σ(ω,m)

= sup
F∈ρ1−Lip1

∫

M(Λ)

(∫

ΓΛ

F (ω) d(µm − µσ)(ω)

)
dPM (m).

Theorem 5. Assume that µ′
σ-a.s., the measure M is absolutely continuous with

respect to σ and that there exists a measurable version of dM/ dσ. Then we have

Tρ1(µ
′
σ, µ′

M ) ≤ Eµ′

σ

[∫

Λ

∣∣∣∣
dM

dσ
(x) − 1

∣∣∣∣ dσ(x)

]
.
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Proof. We have:

Tρ1(µ
′
σ, µ′

M ) ≤

∫

M(Λ)
sup

F∈ρ1−Lip1

(∫

ΓΛ

F (ω) d(µm − µσ)(ω)

)
dPM (m)

=

∫

M(Λ)
Tρ1(µσ, µm) dPM (m)

≤

∫

M(Λ)

∫

Λ

∣∣∣∣
dm

dσ
(x) − 1

∣∣∣∣ dσ(x) dPM (m),

where the last inequality follows from Theorem 4. �

Gibbs processes. Let Λ = R
k and assume that the measure ν is a Gibbs measure

on ΓΛ with respect to the reference measure µσ, i.e. the density of ν with respect
to µσ is of the form L = e−V , where

V (ω) :=

∫

Λ

∫

Λ
φ(x − y) dω(x) dω(y) < +∞, µσ − a.s.,

and where the potential φ : Λ → (0,+∞) is such that φ(x) = φ(−x). We have the
following result.

Theorem 6. The Rubinstein distance Tρ1 between the Poisson measure µσ and
the Gibbs measure ν is bounded as follows:

Tρ1(µσ, ν) ≤ 2

∫

Λ

∫

Λ
φ(x − y) dσ(x) dσ(y).

Proof. Since V is µσ-a.s. finite, so does
∫
Λ φ(x − y) dω(y) for any x. We have:

∇♯
xL(ω) = −L(ω)

(
1 − exp

{
−2

∫

Λ
φ(x − y) dω(y)

})
, x ∈ Λ.

Since 0 ≤ L ≤ 1, Theorem 2 together with the inequality 1 − e−u ≤ u imply:

Tρ1(µσ, ν) ≤ Eµσ

[
L

∫

Λ

(
1 − exp

{
−2

∫

Λ
φ(x − y) dω(y)

})
dσ(x)

]

≤ Eµσ

[
L

∫

Λ
2

∫

Λ
φ(x − y) dω(y) dσ(x)

]

≤ 2 Eµσ

[∫

Λ

∫

Λ
φ(x − y) dω(y) dσ(x)

]

= 2

∫

Λ

∫

Λ
φ(x − y) dσ(x) dσ(y).

The proof is finished. �

Poisson processes on the half-line. In this example, we give a bound on the
Rubinstein distance between Poisson processes, with respect to the Wasserstein
distance ρ2. Consider to simplify Poisson processes on R+ (the generalization
to multivariate Poisson processes is straightforward). Letting u be a continuous
function on R+ such that u(t) ∼ t−α for t going to infinity and α > 3/2, we have
clearly that ∫ +∞

0

(∫ t

0
u(s) ds

)2

(1 + u(t)) dt < +∞.

Thus we obtain by Theorem 3 the following result.
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Theorem 7. Let µλ be the Poisson measure of Lebesgue intensity λ on the con-
figuration space ΓR+, and consider the Poisson measure ν of intensity (1 + u) dλ.
Then we have the upper bound on Tρ2(µλ, ν):

Tρ2(µλ, ν)2 ≤

∫ +∞

0

(∫ t

0
u(s) ds

)2

(1 + u(t)) dt.

6.2. Applications to functional inequalities. The aim of this final part is
to derive several functional inequalities such as log-Sobolev, concentration and
isoperimetric inequalities by means of Theorem 2 above.

Modified log-Sobolev inequality and concentration. Define the entropy of a smooth
functional G with respect to the Poisson measure µσ by

Entµσ(G) =

∫

ΓΛ

G log

(
G∫

ΓΛ
G dµσ

)
dµσ.

Theorem 8. Letting λ > 0 and F ∈ ρ1 − Lip1 such that eλF ∈ Dom∇♯, we have
the L1-modified log-Sobolev inequality:

Entµσ(eλF ) ≤ λ2eλ
Eµσ

[∫

Λ
|∇♯

xF | eλF dσ(x)

]
,(12)

Proof. By homogeneity, it is sufficient to establish the inequality for functionals
F ∈ ρ1−Lip1 such that Eµσ

[
eλF
]

= 1. Note that we have in this case Eµσ [F ] ≤ 0

by Jensen’s inequality. Denoting νλ the absolutely continuous probability measure
with density eλF with respect to µσ, we have by Theorem 2:

Entµσ(eλF ) = λ

∫

ΓΛ

F dνλ

≤ λ Tρ(µσ, νλ) + λ Eµσ [F ]

≤ λ Tρ(µσ, νλ)

≤ λ Eµσ

[∫

Λ
|∇♯

xeλF | dσ(x)

]

≤ λ2eλ
Eµσ

[∫

Λ
|∇♯

xF |eλF dσ(x)

]
,

where we used the elementary inequality ex − 1 ≤ xex, x ≥ 0. �

Actually, such a modified log-Sobolev inequality has been established in [17],
through the inequality (3.4), with the slight difference that the gradient is replaced
by its square, i.e. a L2-type gradient is considered. However, we cannot expect
a L2-behavior in the log-Sobolev inequality (12) since our method relies on the
L1-inequality (8). The same remark holds for the concentration results below.

As a by-product of the so-called Herbst’s method applied to the modified log-
Sobolev inequality above, see e.g. Propositions 10 and 11 in [4] or Proposition 3.1
in [17], we obtain the following L1-type concentration result:

Corollary 1. Given a Lipschitz functional F ∈ ρ1 − Lip1, we have the following
concentration inequality: for any deviation level x ≥ 0,

(13) µσ (F − Eµσ [F ] ≥ x) ≤ exp

{
−

x

2
log

(
1 +

x

4 ‖∇♯F‖1,∞

)}
.
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where ‖∇♯F‖1,∞ = µσ − esssup
∫
Λ |∇♯

xF | dσ(x).

Proof. By translation invariance, it is sufficient to prove the result for centered
functional. Letting H(λ) = 1

λ log Eµσ

[
eλF
]

with H(0) = Eµσ [F ] = 0, we have

H ′(λ) =
Entµσ (eλF )

λ2Eµσ [F ]
.

Denoting c = ‖∇F‖1,∞, we obtain by Theorem 8 the inequality H ′(λ) ≤ ceλ, so

that H(λ) ≤ c(eλ − 1). In other words, we get the following bound on the Laplace
transform:

Eµσ

[
eλF
]
≤ exp

{
cλ(eλ − 1)

}
.

Hence by Chebychev’s inequality,

µσ (F > x) ≤ inf
λ>0

exp
{
−λx + cλ(eλ − 1)

}
.

On the one hand, if x ∈ (0, 4c) then choose λ = x
4c so that

µσ (F > x) ≤ exp
{
−λx + cλ(eλ − 1)

}

≤ exp
{
−λx + 2cλ2

}

= exp

{
−

x2

8c

}

≤ exp
{
−

x

2
log
(
1 +

x

4c

)}
.

On the other hand, if x ≥ 4c, then choose λ = log
(

x
2c

)
so that

µσ (F > x) ≤ exp
{
−λx + cλ(eλ − 1)

}

≤ exp
{
−

x

2
log
( x

2c

)}

≤ exp
{
−

x

2
log
(
1 +

x

4c

)}
.

The proof is thus complete. �

The constants in the concentration inequality (13) have no reason to be sharp
since the choices of λ in the proof above are far from optimal. For instance, to
obtain a slightly better behavior, we might proceed as follows. Let F ∈ ρ1 − Lip1

be centered and let λ > 0. Denote Zλ = Eµσ

[
eλF
]

and consider νλ the absolutely

continuous probability measure with density eλF /Zλ with respect to µσ. Using a
somewhat similar argument as in the proof of Theorem 8,

d

dλ
log Zλ =

∫

ΓΛ

F dνλ

≤ Tρ1(µσ, νλ)

≤ Eµσ

[∫

Λ
|∇♯

xeλF | dσ(x)

]

≤ (eλ − 1) ‖∇♯F‖1,∞,
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where in the last inequality we used the fact that the function x 7→ (ex − 1)/x is
non-decreasing on (0,+∞). Hence we obtain the following bound on the Laplace
transform:

Eµσ

[
eλF
]

= Zλ ≤ exp
{
‖∇♯F‖1,∞ (eλ − λ − 1)

}
, λ > 0.

Finally using Chebychev’s inequality, we get the improved concentration inequality
available for any x ≥ 0:

µσ (F − Eµσ [F ] ≥ x) ≤ exp

{
x − (x + ‖∇F‖1,∞) log

(
1 +

x

‖∇F‖1,∞

)}

≤ exp

{
−

x

2
log

(
1 +

x

‖∇F‖1,∞

)}
.

See also [9] for a somewhat similar concentration inequality, but however not com-
parable.

Isoperimetric inequality. Here the distance of interest is the trivial distance ρ0.
In the sequel, we assume that the intensity measure σ is finite, so that the L1-
gradient is well-defined on Dom∇♯.

Given a Borel set A ∈ B(ΓΛ), we define its surface measure as

µσ(∂A) := Eµσ

[∫

Λ
|∇♯

x1A| dσ(x)

]
.

Denote hµσ the classical isoperimetric constant that we aim at estimating:

hµσ = 2 inf
0<µσ(A)<1

µσ(∂A)

µσ(A)(1 − µσ(A))
.

By the following co-area formula, available for any F ∈ Dom∇♯:

Eµσ

[∫

Λ
|∇♯

xF | dσ(x)

]
= Eµσ

[∫

Λ

∫ +∞

−∞
|∇♯

x1{F>t}| dt dσ(x)

]
,

which might be deduced from the identity (b − a)
+
− =

∫ +∞
−∞ (1{a>t} − 1{b>t})

+
− dt,

the constant hµσ is also the best constant h in the L1-type functional inequality

(14) h Eµσ [|F − Eµσ [F ]|] ≤ 2 Eµσ

[∫

Λ
|∇♯

xF | dσ(x)

]
, F ∈ Dom∇♯.

We have the following theorem.

Theorem 9. Assume that the measure σ is finite. Then we have

(15) 1 ≤ hµσ ≤
σ(Λ)

1 − e−σ(Λ)
.

In particular, we have the asymptotic hµσ ≈ 1 as σ(Λ) is close to 0.

Note that Houdré and Privault established first the inequality hµσ ≥ 1 by using
Poincaré inequality, cf. Proposition 6.4 in [10]. Hence we recover their result via
another approach. On the other hand, our estimate in the right-hand-side of (15)
is sharp for small values of σ(Λ), but is worse than their estimate for large σ(Λ)

since their upper bound is 8 + 8
√

σ(Λ).
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Proof. In order to show hµσ ≥ 1, let us establish the inequality (14) with h = 1.

By homogeneity, it is sufficient to prove the result for functionals F ∈ Dom∇♯

such that Eµσ [F ] = 1. Denote by ν the absolutely continuous probability measure
with density F with respect to the Poisson measure µσ. Using duality,

Tρ0(µσ, ν) = sup
G∈ρ0−Lip1

Eµσ [G(F − 1)]

=
1

2
sup

µσ −esssup |G|≤1
Eµσ [G(F − 1)]

=
1

2
Eµσ [|F − 1|] .

Hence using Theorem 2 with ρ0 (recall that the pair (∇♯, ρ0) satisfies the Rademacher
property by Lemma 2), we get the inequality (14) with h = 1, thus obtaining the
desired inequality hµσ ≥ 1.
On the other hand, to provide the upper bound in (15), note that we have by the
very definition of hµσ :

hµσ ≤
2µσ(∂{ω(Λ) = 0})

µσ(ω(Λ) = 0) (1 − µσ(ω(Λ) = 0))

=
σ(Λ)

1 − e−σ(Λ)
.

The proof is achieved. �
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[16] C. Villani, Optimal transport: old and new, Grundlehren der mathematischen Wis-

senschaften, Springer, Berlin, 2009.
[17] L. Wu, A new modified logarithmic Sobolev inequality for Poisson point processes and several

applications, Probab. Theory Related Fields, 118(3):427-438, 2000.

Institut TELECOM, TELECOM ParisTech, CNRS LTCI, Paris, France

E-mail address: Laurent.Decreusefond@telecom-paristech.fr
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