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Using the framework of a previous article joint with Axelsson and McIntosh, we extend to systems two results of S. Hofmann for real symmetric equations and their perturbations going back to a work of B. Dahlberg for Laplace's equation on Lipschitz domains, The first one is a certain bilinear estimate for a class of weak solutions and the second is a criterion which allows to identify the domain of the generator of the semi-group yielding such solutions.

1. Introduction S. Hofmann proved in [START_REF] Hofmann | s bilinear estimate for solutions of divergence form complex elliptic equations[END_REF] that weak solutions of [START_REF] Alfonseca | Analyticity of layer potentials and L 2 solvability of boundary value problems for divergence form elliptic equations with complex L ∞ coefficients[END_REF] div t,x A(x)∇ t,x U(t, x) = n i,j=0

∂ i A i,j (x)∂ j U(t, x) = 0 on the upper half space R 1+n + := {(t, x) ∈ R × R n ; t > 0}, n ≥ 1, where the matrix A = (A i,j (x)) n i,j=0 ∈ L ∞ (R n ; L(C 1+n )) is assumed to be t-independent and within some small L ∞ neighborhood of a real symmetric strictly elliptic t-independent matrix, obey the following bilinear estimate

R 1+n + ∇ t,x U • v dtdx ≤ C U 0 2 ( |t∇v | + N * v 2 )
for all C 1+n -valued field v such that the right-hand side is finite. See below for the definition of the square-function | | and the non-tangential maximal operator N * . The trace of U at t = 0 is assumed to be in the sense of non-tangential convergence a.e. and in L 2 (R n ).

In addition, he proves that the solution operator U 0 → U(t, •) defines a bounded C 0 semi-group on L 2 (R n ) whose infinitesimal generator A has domain W 1,2 (R n ) with Af 2 ∼ ∇f 2 .

Such results were first proved by B. Dahlberg [START_REF] Dahlberg | Poisson semigroups and singular integrals[END_REF] for harmonic functions on a Lipschitz domain. A version of the bilinear estimate for Clifford-valued monogenic functions was proved by Li-McIntosh-Semmes [START_REF] Li | Convolution singular integrals on Lipschitz surfaces[END_REF]. A short proof of Dahlberg's estimate for harmonic functions and some applications appear in Mitrea's work [START_REF] Mitrea | On Dahlberg's Lusin area integral theorem[END_REF]. L p versions are recently discussed by Varopoulos [START_REF] Varopoulos | N Singular integrals and potential theory[END_REF].

Hofmann's arguments for variable coefficients rely on the deep results of [START_REF] Alfonseca | Analyticity of layer potentials and L 2 solvability of boundary value problems for divergence form elliptic equations with complex L ∞ coefficients[END_REF], and in particular Theorem 1.11 there where the boundedness and invertibility of the layer potentials are obtained from a T (b) theorem, Rellich estimates in the case of real symmetric matrices and perturbation. This also generalizes somehow the case where A 0,i = A i,0 = 0 for i = 1, . . . , n corresponding to the Kato square root problem.

The recent works [START_REF] Auscher | Solvability of elliptic systems with square integrable boundary data[END_REF][START_REF] Auscher | On a quadratic estimate related to the Kato conjecture and boundary value problems[END_REF], pursuing ideas in [START_REF] Auscher | Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems[END_REF], allow us to extend this further to systems, making clear in particular that specificities of real symmetric coefficients and their perturbations and of equations -in particular the De Giorgi-Nash-Moser estimates -are not needed: it only depends on whether the Dirichlet problem is solvable. We use the solution operator constructed in [START_REF] Auscher | Solvability of elliptic systems with square integrable boundary data[END_REF] and the proof using P t -Q t techniques of Coifman-Meyer from [START_REF] Coifman | Non-linear harmonic analysis and PDE[END_REF] makes transparent the para-product like character of this bilinear estimate. We also establish a necessary and sufficient condition telling when the domain of the infinitesimal generator A of the Dirichlet semi-group is W 1,2 .

We apologize to the reader for the necessary conciseness of this note and suggests he (or she) has (at least) the references [START_REF] Auscher | Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems[END_REF][START_REF] Auscher | Solvability of elliptic systems with square integrable boundary data[END_REF][START_REF] Auscher | On a quadratic estimate related to the Kato conjecture and boundary value problems[END_REF] handy. In Section 2, we try to extract from them the relevant information. The proof or the bilinear estimate for variable coefficients systems is in Section 3. Section 4 contains the discussion on the domain of the Dirichlet semi-group.

Setting

We begin by giving a precise definition of well-posedness of the Dirichlet problem for systems. Throughout this note, we use the notation X ≈ Y and X Y for estimates to mean that there exists a constant C > 0, independent of the variables in the estimate, such that X/C ≤ Y ≤ CX and X ≤ CY , respectively.

We write (t, x) for the standard coordinates for R 1+n = R × R n , t standing for the vertical or normal coordinate. For vectors v = (v α i ) 1≤α≤m 0≤i≤n ∈ C (1+n)m , we write v 0 ∈ C m and v ∈ C nm for the normal and tangential parts of v, i.e. v 0 = (v α 0 ) 1≤α≤m whereas v = (v α i ) 1≤α≤m 1≤i≤n . For systems, gradient and divergence act as (∇ t,x U)

α i = ∂ i U α and (div t,x F) α = n i=0 ∂ i F α i , with correponding tangential versions ∇ x U = (∇ t,x U) and (div x F) α = n i=1 ∂ i F α i . With curl x F = 0, we understand ∂ j F α i = ∂ i F α j
, for all i, j = 1, . . . , n, α = 1, . . . , m.

We consider divergence form second order elliptic systems

(2)

n i,j=0 m β=1 ∂ i A α,β i,j (x)∂ j U β (t, x) = 0, α = 1, . . . , m, on the half space R 1+n + := {(t, x) ∈ R × R n ; t > 0}, n ≥ 1, where the matrix A = (A α,β ij (x)) α,β=1,...,m i,j=0,...,n ∈ L ∞ (R n ; L(C (1+n)m
)) is assumed to be t-independent with complex coefficients and strictly accretive on N(curl ), in the sense that there exists κ > 0 such that

(3) n i,j=0 m α,β=1 R n Re(A α,β i,j (x)f β j (x)f α i (x))dx ≥ κ n i=0 m α=1 R n |f α i (x)| 2 dx, for all f ∈ N(curl ) := {g ∈ L 2 (R n ; C (1+n)m ) ; curl x (g ) = 0}
. This is nothing but ellipticity in the sense of Gårding. See the discussion in [START_REF] Auscher | Solvability of elliptic systems with square integrable boundary data[END_REF]. By changing m to 2m we could assume that the coefficients are real-valued. But this does not simplify matters and we need the complex hermitean structure of our L 2 space anyway.

Definition 2.1. The Dirichlet problem (Dir-A) is said to be well-posed if for each u ∈ L 2 (R n ; C m ), there is a unique function

U t (x) = U(t, x) ∈ C 1 (R + ; L 2 (R n ; C m )) such that ∇ x U ∈ C 0 (R + ; L 2 (R n ; C nm ))
, where U satisfies (2) for t > 0, lim t→0 U t = u, lim t→∞ U t = 0, lim t→∞ ∇ t,x U t = 0 in L 2 norm, and

t 1 t 0 ∇ x U s ds converges in L 2 when t 0 → 0 and t 1 → ∞. More precisely, by U satisfying (2), we mean that ∞ t ((A∇ s,x U s ) , ∇ x v)ds = -((A∇ t,x U t ) 0 , v) for all v ∈ C ∞ 0 (R n ; C m ).
Restricting to real symmetric equations and their perturbations, this definition is not the one taken in [START_REF] Hofmann | s bilinear estimate for solutions of divergence form complex elliptic equations[END_REF] . However, a sufficient condition is provided in [START_REF] Auscher | Solvability of elliptic systems with square integrable boundary data[END_REF] to insure that the two methods give rise to the same solution. See also [START_REF] Alfonseca | Analyticity of layer potentials and L 2 solvability of boundary value problems for divergence form elliptic equations with complex L ∞ coefficients[END_REF]Corollary 4.28]. It covers the matrices listed in Theorem 2.4 below. This definition is more akin to well-posedness for a Neumann problem (see Section 4).

Remark 2.2. In the case of block matrices, ie

A α,β 0,i (x) = 0 = A α,β i,0 (x), 1 ≤ i ≤ n, 1 ≤ α, β ≤ m,
the second order system (2) can be solved using semi-group theory:

V (t, •) = e -tL 1/2 u 0 for L = -A -1
00 div x A ∇ x acting as an unbounded operator on L 2 (R n , C nm ) (See below for the notation). This solution satisfies and(2) holds in the strong sense in R n for all t > 0 (and in the sense of distributions in R 1+n + ). Hence, the two notions of solvability are not a priori equivalent. That the solutions are the same follows indeed from the solution of the Kato square root problem for L: [START_REF] Axelsson | Quadratic estimates and functional calculi of perturbed Dirac operators[END_REF] where this is explicitly proved when A 00 = I.

V t = V (t, •) ∈ C 2 (R + ; L 2 (R n ; C m )) ∩ C 1 (R + , D(L 1/2 )), lim t→0 V t = u 0 , lim t→∞ V t = 0 in L 2 norm,
D(L 1/2 ) = W 1,2 (R n , C nm ) with L 1/2 f 2 ∼ ∇ x f 2 . See
The following result is Corollary 3.4 of [START_REF] Auscher | Solvability of elliptic systems with square integrable boundary data[END_REF] (which, as we recall, furnishes a different proof of results obtained by combining [START_REF] Jerison | The Dirichlet problem in nonsmooth domains[END_REF] and [START_REF] Dahlberg | Area integral estimates for elliptic differential operators with nonsmooth coefficients[END_REF] in the case of real symmetric matrices equations (m = 1)).

Theorem 2.3. Let A ∈ L ∞ (R n ; L(C (1+n)m
)) be a t-independent, complex matrix function which is strictly accretive on N(curl ) and assume that (Dir-A) is wellposed. Then any function 2), with properties as in Definition 2.1, has estimates

U t (x) = U(t, x) ∈ C 1 (R + ; L 2 (R n ; C m )) solving (
R n |u| 2 dx ≈ sup t>0 R n |U t | 2 dx ≈ R n | N * (U)| 2 dx ≈ |t∇ t,x U | 2 ,
where u = U| R n . If furthermore A is real (not necessarily symmetric) and m = 1, then Moser's local boundedness estimate [START_REF] Moser | On Harnack's theorem for elliptic differential equations[END_REF] gives the pointwise estimate N * (U)(x) ≈ N * (U)(x), where the standard non-tangential maximal function is

N * (U)(x) := sup |y-x|<ct |U(t, y)|, for fixed 0 < c < ∞.
We use the square-function norm

|F t | 2 := ∞ 0 F t 2 2 dt t = R 1+n + |F (t, x)| 2 dtdx t
and the following version N * (F ) of the modified non-tangential maximal function introduced in [START_REF] Kenig | The Neumann problem for elliptic equations with nonsmooth coefficients[END_REF]]

N * (F )(x) := sup t>0 t -(1+n)/2 F L 2 (Q(t,x)) ,
where

Q(t, x) := [(1 -c 0 )t, (1 + c 0 )t] × B(x; c 1 t), for some fixed constants c 0 ∈ (0, 1), c 1 > 0.
Next is Theorem 3.2 of [START_REF] Auscher | Solvability of elliptic systems with square integrable boundary data[END_REF], specialized to the Dirichlet problem.

Theorem 2.4. The set of matrices A for which (Dir-A) is well-posed is an open subset of L ∞ (R n ; L(C (1+n)m )). Furthermore, it contains (i) all Hermitean matrices A(x) = A(x) * (and in particular all real symmetric matrices), (ii) all block matrices where A α,β 0,i (x

) = 0 = A α,β i,0 (x), 1 ≤ i ≤ n, 1 ≤ α, β ≤ m, and (iii) all constant matrices A(x) = A.
More importantly is the solution algorithm using an "infinitesimal generator"

T A . Write v ∈ C (1+n)m as v = [v 0 , v ] t , where v 0 ∈ C m and v ∈ C nm ,

and introduce the auxiliary matrices

A := A 00 A 0 0 I , A := 1 0 A 0 A , if A = A 00 A 0 A 0 A
in the normal/tangential splitting of C (1+n)m . The strict accretivity of A on N(curl ), as in (3), implies the pointwise strict accretivity of the diagonal block A 00 . Hence A 00 is invertible, and consequently A is invertible [This is not necessarily true for A.] We define

T A = A -1 DA
as an unbounded operator on L 2 (R n , C (1+n)m ) with D the first order self-adjoint operator given in the normal/tangential splitting by

D = 0 div x -∇ x 0 . Proposition 2.5. Let A ∈ L ∞ (R n ; L(C (1+n)m
)) be a t-independent, complex matrix function which is strictly accretive on N(curl ).

(1) The operator T A has quadratic estimates and a bounded holomorphic functional calculus on L 2 (R n , C (1+n)m ). In particular, for any holomorphic function ψ on the left and right open half planes, with zψ(z) and z -1 ψ(z) qualitatively bounded, one has

|ψ(tT A )f | f 2 .
(2) The Dirichlet problem (Dir-A) is well-posed if and only if the operator Item ( 1) is [3, Corollary 3.6] (and see [START_REF] Auscher | On a quadratic estimate related to the Kato conjecture and boundary value problems[END_REF] for an explicit direct proof) and item (2) can be found in [3, Section 4, proof of Theorem 2.2]. Lemma 2.6. Assume that (Dir-A) is well-posed. Let u 0 ∈ L 2 (R n , C m ). Then the solution U of (Dir-A) in the sense of Definition 2.1 is given by

S : R(χ + (T A )) → L 2 (R n , C m ), f → f 0 is invertible. Here, χ + =
U(t, •) = (e -tT A f) 0 , f = S -1 u 0 ∈ R(χ + (T A ))
and furthermore

∇ t,x U(t, •) = ∂ t e -tT A f.
Proof. [3, Lemma 4.2] (See also [START_REF] Auscher | Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems[END_REF]Lemma 2.55] with a slightly different formulation of the Dirichlet problem).

The bilinear estimate

We are now in position to state and prove the generalisation of Hofmann's result. 

R 1+n + ∇ t,x U • v dtdx ≤ C u 0 2 ( |t∇ t,x v | + N * v 2 ).
The pointwise values of v(t, x) in the non-tangential control N * v can be slightly improved to L 1 averages on balls having radii ∼ t for each fixed t. See the end of proof.

Proof. It follows from the previous result that there exists f ∈ R(χ

+ (T A )) such that U(t, •) = (e -tT A f) 0 and ∇ t,x U(t, •) = ∂ t F = -T A e -tT A f, F = e -tT A f.
Integrating by parts with respect to t, we find

R 1+n + ∇U • v dtdx = - R 1+n + t∂ t F • ∂ t v dtdx - R 1+n + t∂ 2 t F • v dtdx.
The boundary term vanishes because t∂ t F goes to 0 in L 2 when t → 0, ∞ (this uses

f ∈ R(χ + (T A ))) and sup t>0 v(t, •) 2 < ∞ from N * v 2 < ∞.
For the first term, we use Cauchy-Schwarz inequality and that |t∂ t F | u 0 2 from Theorem 2.3.

For the second term, we use the following identity:

T A = A -1 DBA with B = AA -1 which, by [3, Proposition 3.2]
, is strictly accretive on N(curl ), and observe that

t 2 ∂ 2 t F = A -1 (tDB) 2 e -tDB (Af) = A -1 (tDB)(I + (tDB) 2 ) -1 ψ(tDB)(Af) = A -1 (tDB)(I + (tDB) 2 ) -1 Aψ(tT A )(f) with ψ(z) = z(1 + z 2 )e -(sgnRe z)z .
Thus,

R 1+n + t∂ 2 t F • v dtdx = R 1+n + Aψ(tT A )(f) • Q t v t dtdx t with Q t = Θ t A -1 * and Θ t = (tB * D)(I + (tB * D) 2 ) -1 acting on v t ≡ v(t,
•) for each fixed t [The notation A has nothing to do with complex conjugate and we apologize for any conflict this may cause.] It follows from the quadratic estimates of Proposition 2.5 that

|ψ(tT A )(f) | f 2 .
It remains to estimate |Q t v t |. To do that we follow the principal part approximation of [START_REF] Auscher | On a quadratic estimate related to the Kato conjecture and boundary value problems[END_REF] -which is an elaboration of the so-called Coifman-Meyer trick [START_REF] Coifman | Non-linear harmonic analysis and PDE[END_REF] -applied to Q t instead of Θ t there. That is, we write (4)

Q t v t = Q t I -P t t(-∆) 1/2 t(-∆) -1/2 v t + (Q t P t -γ t S t P t )v t + γ t S t P t v t
where ∆ is the Laplacian on R n , P t is a nice scalar approximation to the identity acting componentwise on L 2 (R n , C (1+n)m ) and γ t is the element of L 2 loc (R n ; L(C (1+n)m )) given by γ t (x)w := (Q t w)(x) for every w ∈ C (1+n)m . We view w on the right-hand side of the above equation as the constant function valued in C (1+n)m defined on R n by w(x) := w. We identify γ t (x) with the (possibly unbounded) multiplication operator γ t : f (x) → γ t (x)f (x). Finally, the dyadic averaging operator

S t : L 2 (R n , C (1+n)m ) → L 2 (R n , C (1+n)m ) is given by S t u(x) := 1 |Q| Q u(y) dy
for every x ∈ R n and t > 0, where Q is the unique dyadic cube in R n that contains x and has side length ℓ with ℓ/2 < t ≤ ℓ.

With this in hand, we apply the triple bar norm to (4). Using the uniform L 2 boundedness of Q t and that of 1-Pt t(-∆) 1/2 , the first term in the RHS is bounded by |t(-∆)

1/2 v t | ≤ |t∇ x v t |.
Following exactly the computation of Lemma 3.6 in [START_REF] Auscher | On a quadratic estimate related to the Kato conjecture and boundary value problems[END_REF], the second term in the RHS is bounded by C |t∇ x P t v t | ≤ C |t∇ x v t | using the uniform L 2 boundedness of P t . This computation makes use of the off-diagonal estimates of Θ t , hence of Q t , proved in [START_REF] Auscher | On a quadratic estimate related to the Kato conjecture and boundary value problems[END_REF]Proposition 3.11].

For the third term in the RHS, we observe that γ t (x)w = Θ t (A -1 * w)(x). Hence, the square-function estimate on Θ t proved in [4, Theorem 1.1], the off-diagonal estimates of Θ t and the fact that A -1 is bounded imply that |γ t (x)| 2 dtdx t is a Carleson measure. Hence, from Carleson embedding theorem the third term contributes N * (S t P t v) 2 , which is controlled pointwise by the non-tangential maximal function in the statement with appropriate opening.

The domain of the Dirichlet semi-group

Assume (Dir-A) in the sense of Definition 2.1 is well-posed. If we set

P t u 0 = (e -tT A f) 0 , f = S -1 u 0 ∈ R(χ + (T A ))
for all t > 0, then Lemma 2.6 implies that (P t ) t>0 is a bounded C 0 -semigroup on L 2 (R n , C m ) [Recall that well-posedness includes uniqueness and this allows to prove the semigroup property].

Furthermore, with our definition of well-posedness of the Dirichlet problem, the domain of the infinitesimal generator A of this semi-group is contained in the Sobolev space W 1,2 (R n , C m ) and ∇ x u 0 2 Au 0 2 . Indeed, from Lemma 2.6 we have for all

t > 0, ∂ t e -tT A f = ∇ t,x U(t, •). Also ∂ t e -tT A f ∈ R(χ + (T A )) and the invertibility of S tells that ∇ t,x U(t, •) = S -1 (∂ t U(t, •)). Therefore ∇ x U(t, •)) 2 ∂ t U(t, •) 2 .
By definition of A, ∂ t U(t, •) = AU(t, •), thus we have for all t > 0

∇ x U(t, •)) 2 AU(t, •) 2 .
The conclusion for the domain follows easily. The question of whether this domain coincides with W 1,2 (R n , C m ) is answered by the following theorem Theorem 4.1. Assume that (Dir-A) and (Dir-A * ) are well-posed. Then the domain of the infinitesimal generator A of (P t ) t>0 coincides with the Sobolev space W 1,2 (R n , C m ) and ∇ x u 0 2 ∼ Au 0 2 . This theorem applies to the three situations listed in Theorem 2.4.

Proof. Combining [4, Lemma 4.2] (which says that (Dir-A * ) is equivalent to an auxiliary Neumann problem for A * ), [2, Proposition 2.52] (which says that this auxiliary Neumann problem is equivalent to a regularity problem for A: this is non trivial) with the proof ot Theorem 2.2 in [START_REF] Auscher | On a quadratic estimate related to the Kato conjecture and boundary value problems[END_REF] (giving the necessary and sufficient condition below for well-posedness of the regularity problem for A), we have that (Dir-A * ) is well-posed if and only if R : R(χ + (T A )) → L 2 (R n , C nm ), f → f is invertible. This implies that for f ∈ R(χ + (T A )), we have that

f 2 ∼ f 2 .
Therefore, the conjunction of well-posedness for (Dir-A) and (Dir-A * ) gives

f 0 2 ∼ f 2 , f ∈ R(χ + (T A )).
From this, it is easy to identify the domain of A by an argument as before.

We have seen that invertibility of S reduces to that of R (up to taking adjoints). The only known way to prove it in such a generality (except for constant coefficients) is via a continuity method and the Rellich estimates showing that f 2 ∼ (Af) 0 2 for all f ∈ R(χ + (T A )). This method was first used in the context of Laplace equation on Lipschitz domains by Verchota [START_REF] Verchota | Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains[END_REF]. This depends strongly of A. Various relations between Dirichlet, regularity and Neumann problems for L p data in the sense of non tangential approach for second order real symmetric equations are studied in [START_REF] Kenig | The Neumann problem for elliptic equations with nonsmooth coefficients[END_REF][START_REF] Kenig | The Neumann problem for elliptic equations with nonsmooth coefficients[END_REF] and more recently in [START_REF] Kilty | The L p regularity problem on Lipschitz domains[END_REF][START_REF] Shen | A relationship between the Dirichlet and regularity problems for elliptic equations[END_REF].
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 1 on the right open half plane and 0 on the left open half plane.

Theorem 3 . 1 .

 31 Assume that (Dir-A) is well-posed. Let u 0 ∈ L 2 (R n , C m ) and U be the solution to (Dir-A) in the sense of Definition 2.1. Then for all v : R 1+n + → C (1+n)m such that the right-hand side is finite,