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ON HOFMANN'S BILINEAR ESTIM ATE
PASCAL AUSCHER

A bstract. W egeneralize a result of S.H ofm ann to system s, using the fram ew ork
of a previous paper w ith A xelsson and M cIntosh.

M SC classes: 35J25, 35055, 47N 20, 42B 25
K eyw ords: elliptic system s; D irich let problam ; quadratic estim ates; C arleson m ea—
sures

1. Introduction

S.Hofm ann proved in [L0] that weak solutions of

X0
1) d.Ift;xpl x)r t;xU (t,'X) = @iAi;j (X)@jU (t;X) =0

i;3=0

on theupperhalfspace R 1*" = f(;x)2 R R" ;t> 0g,n 1, where them atrix
A= QAiE)L_ 2L RYLEC +nyy is assum ed to be t-independent and w ithin
som e an alll; neighborhood of a real sym m etric strictly elliptic t-independent m a—
trix, obey the follow ing bilinear estim ate

77
r U vdtdx CkUpky kir vkj+ kKN vky):

R1+n

+

Thetrace of U at t= 0 isassum ed to be in the sense of non—+tangential convergence
ae.andin L, R"). Seebelow for thede nition of the square finction kjkjand the
non-tangentialm axin al operator N . Tn addition, he proves that the solution oper—
atorUg ! U (t; ) de nesa bounded g sem igroup on L, R ") whose In nitesin al
generator A hasdomain W '? R ™) with kA fk, kr fk,. This generalizes results
of B.Dahberg [/] corresponding to the case where divAr is the pullback of the
Laplace operator on a special Lipschitz dom ain. H ofm ann’s results utilize the desp
results of [l] and in particular T heorem 1.11 where the boundedness and invertibility
of the layer potentials are obtained from a T (b) theoram , Rellich estin ates In the
case of real sym m etric m atrices and perturbation. This also generalizes som ehow

root problam .

T he recent papers [3, 4] allow s us to extend this further to system s, m aking clear
In particular that speci cities of real symm etric coe cients and of equations are
not needed: it only depends on whether the D irichlt problem is solvable. W e
use the solution operator constructed In [3] and this also m akes trangparent the
para-product lke character of this bilinear estin ate. W e also state a necessary and
su cient condition telling when the dom ain ofthe In  nitesin algenerator A isW #.



2 PASCAL AUSCHER

2. Setting

W ebegin by giving theprecisede nition ofwellposedness ofthe BV P s for systam s.
T hroughout this note, we use the notation X Y and X . Y forestin atestomean
that there exists a constant C > 0, Independent of the variables in the estin ate,
such that X=C Y CX and X CY , repectively.

Wewrie (t; )brthestandardooordmateserlm: R R?",t standing for
the vertical or norm al coordinate. For vectors v = (v, )g ; & 2 C ™™™ we wrie
vp2 C™ and v, 2 C"™ forthenom aland tangentialpartsofv, ie.vy = (v,)! ™
whereasv, = (v;); ; .

p For system s, gradient and divergence act as (£ (xU); = @U and i F) =
p ;z o @GF ; , with correponding tangential versions r U = (r 4U ), and di,F) =

_1 @GF; W tth curkF, = 0,weunderstand @;F; = @F,,oralll, j= 1;:::; n; =
l;:::m .
W e consider divergence form second order elliptic system s
Xn X _
2) @iAié x)&U (Gx) = 0; =1;:::5;m;
ij=0 =1
oni'heha]fspaoeR““::f(' ) 2 R R"™ ; t> 0g, n 1, where the m atrix

A= @Ay ®))5 01 2 Ly RY;L(C %M is assum ed to be t-ndependent w ith

com plex coe CJents and strictly accretive on N (curl ), In the sense that there exists
> 0 such that
x o 2 xn x4
3) Re@;/ &)E ®)f (x))dx ¥ x)Fax;

R™ =0 =1

i;7=0 ; =1
orallf2 N(url) = fg 2 L, R*;C **2m) ; curl (g,) = 0g. By changingm to

2m we could assum e that the coe clients are realvalued. B ut this does not sin plify
m atters and we need the com plex hemm itean structure of our L, space anyway.

De nition 2.1. The D irichlet problem (D irA ) is said to be well posad if for each
u2 L, R";C™), there is a unique function

Ux)=U@x)2C "R, ;L R™;C™))
such thatr ,U 2 C°R ., ;L,R";C™™)), where U satis es@ ) fort> 0, imy oUs =
u, Imy 1 U= 0, Imyy 1 £¢xUg = 0 In L, nom, and tor «Ugsds converges in

2whent0' Oandty ! 1 . M ore precisely, by U satisfying (Z), we m ean that
%
(Ar oxUg)ir xv)ds= (AT xUp)giv) orallv2 Cj R™;C™).

Restttictjng to real sym m etric equations and their perturbations, thisde nition is
not the one taken in [10] . However, a su cient condition isprovided in [3] to insure
that the two m ethods give rise to the sam e solution. See also [ll, Corollary 4 28].
Tt covers the m atrices listed in Theorem [2.4 below . Thisde nition ism ore akin to
wellposedness for a N eum ann problem  (see Section [4).

Rem ark 2.2. In the case of block matrices, A} ®) = 0= A { (x),1 i

n;1 ; m , the second order systam [2) can be solved using sem igroup theory:
Vi )= et Tu orL = A,y div,A,. T , acting as an unbounded operator on
L,R";C") (See below for the notation). This solution satis esV = V (t; ) 2

C?R,;L;R";C")N\NC'R,;DL¥™));lmy (Ve=up, liny ; Vo= 04 L, nom,
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and [2) hods in the strong sense n R ™ forallt> 0 (and in the sense ofdistrbutions
in R1""). Hence, the two notions of solvability are not a priori equivalent. That
the solutions are the sam e follow s indeed from the solution of the K ato square root
problem for L: D L) = W ¥ R";C™ ) with kL' fk, kr .fk,. See Bl where
this is explicitly proved when Ay & I.

T he follow ing result isC orollary 3.4 of [3] which, aswe recall, fumishesa di erent
proof of resuls obtained by combining [11] and [B] n the case of real symm etric
m atrices equations m = 1)).

Theorem 2.3.LetA 2 L, ®R™;L (€ “™")) be a t-ndependent, com plex m atrix
function which is strictly accretive on N (curl) and assum e that (D irA ) is well-
posed. Then any fiinction Uy (x) = U (£x) 2 C* R, ;L, R*;C™)) solving (), with
properties aZs in De nition mz, has estim atzes

hfdx  sp Pofax 3¢ U)Fax  kir UKT;
RN >0 R RN
where u = U }n . If furthem ore A is real (not necessarily synmetric) and m = 1,
then M oser’s Iocalboundedness estim ate [14] gives the pointw ise estim ateI¥¢ U ) (x)

N (U)x), where the standard non-angential m axim al function is N U)x) =

SUPy xxee P GY)J for xed 0< c< 1 .

W e use the square function nom
7 . 77
,dt
kFokf = KE' k5 e F (tix)T <

1+n
0 R

and the nom kM (F )k,, using them odi ed non-tangentialm axin al function

¥ F)x) = smpt TV PRE Kk, o wm)s
0
whereQ (x) = [ o)t 01+ ¢)t] B x;gt), forsome xed constantsg 2 (0;1),
G > 0.
Next is Theoram 32 of [3], specialized to the D irichlet problem .

Theorem 2.4. The set of matrices A for which (D irA ) is welljposad is an open
subset of L; R ;L (C *F™)™)). Furthemm ore, it contains
(i) allHerm itean matrices A (x) = A (x) (and in particular all real sym m etric
m atrices),
(i) allblck m atrices where A (x) = 0= A
and
(i) all constantm atrices A (x) = A.

0 ®), 1 1 njl ; m,

M ore in portantly is the solution algorithm using an \in nitesim algenerator" T, .
Writev 2 C 2™ a5v = ;v [, where vy 2 C® and v, 2 C™, and introduce
the auxiliary m atrices

_ Aoo Ao 1 0 . Mgy Ay
A = ; A = ; A =
0 I L= AkO Akk ’ i AkO Akk
in the nom al/tangential splitting of C **®™ | T he strict accretivity of A on N (curl ),
as in (@), in plies the pointw ise strict accretivity of the diagonalblock A . Hence
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Ao is invertible, and consequently A is vertble [This is not necessarily true for
A.J]Wede ne
T, = A DA

as an unbounded operator on L, R ";C “*")™ ) with D the rst order selfadpint
operator given in the nomm al/tangential solitting by

0 divg

D:
r i 0

P roposition 2.5.LetA 2 L; R";L (C **™)™)) be a t-dndependent, com plex m atrix
function which is strictly accretive on N (curl, ).

(1) The operator Tx has quadratic estim ates and a bounded holom orphic func-
tionalcalculis on L, R ®;C 4 2™ ) | In particular, for any holm orphic finc-
tion  on the kft and right open halfplnes, with z (z) and z ' (z) quali-
tatively bounded, one has

kj (tTa )fkj. kfk,:
(2) The D irichket problem (D ir& ) is wellposed if and only if the operator
S:R( 4 (Ta))! LyR™;CT)NET &
is invertibke. Here, , = 1 on the right open half plane and 0 on the kft
open half plane.

Ttem (1) is [3, Corollary 367 (and see 4] for an explicit direct proof) and iem (2)
can be found in [3, Section 4, proof of T heorem 2 2].

Lemma 2.6.Assune that (DirA) iswellposed. Letug 2 Lo, R";C™ ). Then the
solution U of (D ir-A ) in the sense of de nition [2.]] is given by

U, )= €™ f)y; =S "2 R(, (Ta))

and furtherm ore
ro U )= @ "*f:

Proof. [3, Leanma 42] (Seealso 2, Lemm a 2.55]w ith a slightly di erent form ulation
of the D irichlet problem ).

3. The bilinear estimate
W e are now In position to state and prove the generalisation of H ofm ann’s result.

Theorem 3.1.Assume that DirA) is wellposed. Letug 2 Lo, R";C™) and U
ke the solution to (D irA) in the sense of de nition 2.1. Then for allv :R 7" |
Cc @M guch that the right hand side is nite,

47

r o U vdtdx Ckupky KT xvkij+ kKN vky):

1+n
5

R

T he pontw ise values of v (£;x) In the non-tangential controlN v can be slightly
inproved to L' averages on balls having radii t for each xed t. See the end of
proof.
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Proof. Tt follow s from the previous result that there exists £ 2 R( , (Ta)) such that
U )= " f), and

rU )=@F= Twe *f; F=e "f:
Integrating by parts w ith respect to t, we nd
ZZg Y P SpZZ , -
rU “vdtdx = tQ.F @ dtdx H2F v didx:
Rl+n R1+n R1+n

T he boundary term vanishes because tdiF goesto 0 n L, when t! 0;1 (thisuses
f2R( 4 (Ta))) and sup. (kv (t; )k< 1 from kN vk, < 1 .
For the st term, we use Cauchy-Schwarz inequality and that kj@F kj . kugks

from Theorem [2.3.
Forthe second. term , we use the ollow Ing dentity: Ty = A DBA with B =

AA ,thch by 3, Proposition 3 2] is strictly accretive on N (curl ), an
2R2F = A (DB )% P° @f)
- A (tDB)(T+ GDB)?) > (DB)@AT

"B)I+ OB)) A (Th) (O

I
> |

w ith
(z)= z(1+ z%)e Rez,

T hUS, 7.7, 7.7
. _ —__dtdx
®%F v diclx = A ()6 Qv

1+n 1+n
R R

withQ,= A = and .= (B D)(I+ B D)%) 'acthgonv, v(t; ) oreach

xed t [T he notation A has nothing to do w ith com plex conjugate and we apologize
for any con ict thismay cause.] It follow s from the quadratic estin ates proved In
P roposition [2.H that

kj (tTa) E)kJ. kiks:
Tt ram ains to estim ate kP vikj. To do that we follow the principal part approxin a—
tion of [4] applied to Q« Instead of ¢ there. That is, we write
I P,

@ Qwe=0c f—g ) Vet QiPr SPoIVet (SPove

where isthelaplacian on R ", P isa nice scalar approxin ation to the dentity act-
ing com ponentwiseon L, R *;C ** ™™ ) and . istheelmentof LZ_ (R ;L (C **7)™))
given by
cxw = Qw)X)

Prevery w 2 C &7 W eview w on the right-hand side of the above equation as
the constant function valied in C “* ™™ de ned on R” by w (x) = w . W e dentify
¢ X) with the (possbly unbounded) multiplication operator . :f (x) 7 &x)f x).
F inally, the dyadic averaging operator Sy : L, R *;C @*mmy 1 [, R?;C &0y 45
given by Z

Stu (X) = D Qu(y)dy
forevery x 2 R" and t> 0, where Q isthe unigue dyadic cube in R " that contains
x and has sde length ‘wih ‘=2< t ‘.
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W ith this in hand, we apply the triple bar nom to (4).

U sing the uniform L, boundedness of Q + and that of t(l P)Lz ,the rsttemm in the
RHS isbounded by kt( )'vki kir (viki.

Follow ing exactly the com putation of Lemma 36 in [4], the second term in the
RHS is bounded by C kjr ,Pvikj Ckixr yvikjusing the uniform L, boundedness
of Py. This com putation m akes use of the o diagonalestin ates of , hence ofQy,
proved in [4, Proposition 3.11].

For the third term in the RH S, we ocbsarve that  X)w = t(X ' w ) (x). Hencs,
the square function estimate on  proved in 4, Theorem 1.1], the o -diagonal

estin atesof , and the fact that A isbounded in ply that J ¢ ()] 4% jsa Carleson
m easure. Hence, from Carleson em bedding theoram the third term contributes to
kN (StPwv)k,, which is controlled pointw ise by the non-+tangentialm axim al function

In the statem ent w ith appropriate opening.

4. The domain of the D irichlet semigroup
Assume (D irA) In the sense ofde nition[2.]] is wellposed. Ifwe set
Pag= (e ™ f)g; £=S "ug2 R( . (Ta))

for allt > 0, then Lemm a[2.d inplies that (P()w o i @ bounded C -sam igroup on
L, R";C™) Recallthat wellposadness includes uniqueness and this allow s to prove
the sam group property].

Furthem ore, w ith ourde nition ofthe D irichlet problam , the dom ain ofthe In n-
itesin algeneratorA ofthis sem igroup is contained the Sobolev spaceW 2 R ";C™)
and kr ,upk, . kA ugk,. Tndeed, from LemmalZdwe have Porallt> 0, Qe T» f=
r Uty ):Alo@ "*£2 R( , (Ta))and the nvertbility of S tellsthatr U (t; )=
S '@U ; )). Therefore

kr Ut )k. k@QU (& )k:
By de nition of A, QU (t; )= AU (; ), thuswehave forallt> 0
ke U )Dk. kKAU (G )k

T he conclusion for the dom ain follow s easily.
T he question of whether thisdom ain coincideswith W 2 R " ;C™ ) is answered by
the follow ing theorem

Theorem 4.1.Assume that DirA) and (DirA ) are wellposed. Then the do—
m ain of the in nitesim al generator A of (Pi)w ¢ coincides with the Sokolkv space
W2 R™;C™) and kr 4ugk, kA ugks.

T his theorem applies to the three situations listed in T heorem [2.4.

Proof. Combining [4, Lenma 42] which says that (D irdA ) is equivalent to an
auxiliary Neum ann problm for A ), B, Proposition 2.52] (which says that this
auxiliary Neum ann problam is equivalent to a reqularity problem for A : this isnon
trivial) with the proof ot Theorem 22 in [4] (giving the necessary and su cient
condition below for wellposedness of the reqularity problem for A ), we have that
(D IrA ) iswellpos=d ifand only if

R :R( 4 (Ta)! LoR";C"™);ET £
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is Invertdble. T his im plies that for £ 2 m, we have that
kfk, kfik;:
T herefore, the conjinction of wellposadness for O itA ) and (D irA ) gives
kfok,  kfko; £2R( ., (Ta)):
From this, it is easy to conclude for the dom ain of A by an argum ent as before.

W e have seen that invertibility of S reduces to that of R (up to taking ad pints).
Theonly known way to prove it in such a generality (excspt for constant coe  cients)
is via a continuity m ethod and the Rellich estin ates show ing that kfk, k@ f)ok,

forallf 2 R( , (Ta)):Thismethod was rstused In the context of Laplace equation
on L ipschitz dom ainsby Verchota [19]. T hisdepends strongly of A . Various relations
between D irichlet, reqularity and N eum ann problam s in the sense of non tangential
approach for second order real sym m etric equations are studied in [12,13].
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