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Abstract

Games have been extensively studied, either in computer science,
mathematics or even economy. Nevertheless, each discipline has its
own interest in using this formalism. Computer science for instance
is attached to calculability issues. These results have some direct ap-
plications in model checking or compilation. Recently, a new type of
game has been introduced: games with imperfect information. They
allow the modeling of more sophisticated systems, but bring also new
calculability problems. In this document, we introduce a general
method to prove the determinacy of any type of game. This method
is used several times, and allow us to solve some open problems. This
document introduces also several examples of important games stating
for important properties. Then, a new type of game unifying the con-
cepts of concurrency and imperfect information is presented. Finally,
we discuss of the extension on infinite arenas.
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1 Notations

Let A be a finite set. We denote D(A) the set of probabilities distributed
over A, that is to say:

D(A) = {P ∈ A→ [0; 1] |
∑
a∈A

P (a) = 1}.

The support of a probability distribution P ∈ D(A) is defined by support(P ) =
P−1(]0; 1]). |A| denotes the cardinal of A, 2A the set of subsets of elements
in A.

By ω we denote the first transfinite ordinal. For more simplicity, we will
often use ω instead of N. Hence, if A is a finite set, Aω denotes the set of
infinite sequences on A. If L is a language over A, Lω is the ω-iteration of
language L, that is to say: Lω = {λ ∈ Aω | λ = s0s1 . . . such that ∀i ∈
ω, si ∈ L}.

Given an infinite sequence λ on a possibly infinite set Z, Inf(λ) = {z ∈
Z | λ ∈ (Z∗z)ω} is the subset of elements in Z that appears infinitely often
in λ. Let support(λ) = {z ∈ Z | λ ∈ Z∗zZω} be the subset of elements in Z
that appears in λ.

From now on, we will consider Eve and Adam to be two players.

2 Introduction

2.1 Games

The games we are considering are based on the one introduced by John
Von Neumann in the middle of the twentieth century [20]. They all may be
unified under the formalism of repeated games with imperfect information,
which was introduced by Aumann and Maschler in 1966, and are studied
in economy and mathematics ([15] and [13]). Such a game is modelised by
a family of matrices, all corresponding to a state of the game. There are
two players (in full generality, more than one player) with a given value,
and their possible actions are the indexes of the matrices. A play in the
game is performed as follows: the two players simultaneously choose their
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actions, which determine both a value and the new state for the game. This
process is repeated possibly infinitely often. The values given by the matrices
are called “payments” and are taken from one player value to the other one,
hence these games are zero-sum games. If his value satisfies a given property,
then the first player wins, otherwise the second player wins. The imperfect
information comes from the fact that the players do not know the exact
state they are in but only an equivalence class on them. Both players may
use strategies to choose their next action. A strategy is a function that maps
the history of a play to a distribution on the actions of a player.

However, the interests for these domains differ from the one in computer
science. In mathematics, the main question is the existence of values in such
games, not their calculability. In economy, the hot spot is the research of
Nash equilibrium. In a game where the winner is the player with the highest
value, a Nash equilibrium is a pair of strategies such that any modification of
one of them lower the value of its owner. In computer science, we are inter-
ested in computability issues. Those issues are to find the winning regions for
a given player and its corresponding winning strategies. A winning region is
a set of states of the game such that the player has a winning strategy from
them.

In this document, we will introduce several formalisms of games and some
results on them. The structure is the following: We first present a theorem on
the calculability of positional strategies. Then we introduce some examples of
games showing the difference between various objectives. We propose a proof
that parity concurrent games may require infinite memory winning strategies.
We then study the games with imperfect information introducing some new
results, mainly on co-Büchi winning condition. Later, we introduce a new
extended formalism of games, with a reduction to find winning strategies.
Finally, we discuss on the pushdown model.

2.2 Almost-sure positional strategies

This section introduces a result that will be used several times in this
document. This result may be applied to any repeated game. It shows
that if there exist an almost-surely winning positional strategy in a game,
then this strategy can be transformed to an almost-surely winning positional
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strategy where all choices are uniformly distributed. Therefore, if there exists
a positional almost-surely winning strategy and if one can decide for a given
such strategy if it is winning, then one can be computed (the most näıve
method being to test all the uniform positional strategies, which are finitely
many).

We fix two strategies for Eve and Adam. Let S1 and S2 be two disjoint
finite sets, and T the infinite weighted tree on S1 ∪ S2, weights being in
]0; 1], corresponding to the set of plays engendered by the two strategies.
The weights represent the probability for a transition to be taken. The
set of infinite paths in the tree is denoted ρT . By the Carathéodory unique
extension theorem (2), the weights induce an unique measure µ on 2ρT . Given
an objective Ω ⊆ (S1 ∪ S2)ω, an almost-winning tree is a tree such that
µ(ρA ∩ Ω) = 1.

A 1-positional tree is a tree such that for any state s in S1, the successors
of a node labeled s and the weights to reach them are the same. Such a tree
corresponds to a positional strategy for Eve. A 1-positional uniform tree is a
1-positional tree such that for any state in S1, the weights leaving the nodes
labeled by this state are uniformly distributed. Such a tree corresponds to
an uniformly distributed positional strategy for Eve.

The following result holds:

Theorem 1. Given two disjoint finite sets S1 and S2, and an objective Ω ⊆
(S1 ∪ S2)ω, if Eve has a strategy such that for all strategy of Adam, the tree
engendered is an almost-winning tree, then Eve has an uniformly distributed
strategy such that for all strategy of Adam, the tree engendered is an almost-
winning tree.

This result is very easy to show, as a 1-positional uniform almost-winning
tree may be obtained from 1-positional almost-winning tree simply by do-
ing this modification: all weights leaving states in S1 are made uniformly
distributed. Let µ be the initial measure and µ′ the one on the new tree.
Given a path ρ in the first tree (the paths are the same is both trees), it is
obvious that µ(ρ) = 0 if and only if µ′(ρ) = 0. Hence, if the new tree is not
almost-winning, then there is a subset of paths ρ0 such that µ′(ρ0) > 0 and
ρ0 ∩ Ω = ∅. Hence µ(ρ) > 0 and the initial tree is not a winning one. This
achieves the proof of Theorem 1.
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3 Classical turn-based games

The turn based games were first introduced by McNaughton ([11]) 1965.
Since then, they have been widely studied in literature. One could for in-
stance see [22] which give some applications on automata theory on infinite
trees or [17].

3.1 Definitions

A turn-based arena A is a tuple < S = S1 ∪ S2,∆ ⊆ S × S > where:

• S is the set of states,

• S1 and S2 are respectively the subset of states of Eve and Adam (S1 ∩
S2 = ∅),

• ∆ is the transition relation on states.

We suppose the arena has no dead-end, that is to say ∀s ∈ S,∃s′ ∈
S such that (s, s′) ∈ ∆. A play on the arena A is performed as follows:
from an initial state s0, the player who owns this state chooses a new state
s1 such that (s0, s1) ∈ ∆. Once again, s1 belongs to one player, this one
chooses the new state of the play s2 such that (s1, s2) ∈ ∆. This iteration
is repeated infinitely often. Therefore, a play on A is an infinite sequence of
states λ = s0s1 . . . such that ∀i ∈ ω, (si, si+1) ∈ ∆.

A game on A is a tuple G =< A,Ω > where Ω ⊆ Sω. Ω is called the
objective of game G.

Eve wins some play λ on G =< A,Ω > if and only if λ ∈ Ω.

3.2 Winning conditions

One may find in the literature a lot of references studying different objec-
tives. But mainly, the objectives considered in computer science are always
the same, belonging to the ω-regular class which will be described later (see
[16] and [18]). Some of these objectives are described in this section.

The most natural objective is the reachability one. This objective is the
set of infinite sequences of states where one state from a given subset of states
appears at least one time. Formally, if Q ⊆ S, the reachability objective on Q
is SωQSω. This objective may be written as {λ ∈ Sω | support(λ)∩Q 6= ∅}.
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Dually is defined the safety objective. This objective is the set of infinite
sequences of states where no state from a given subset of states appears.
Hence, if Q ⊆ S, the safety objective on Q is (S −Q)ω.

The other objectives we describe beneath only depend on the set of in-
finitely often visited states. Let S∞ be this subset of states.

The Büchi objective requires that S∞ contains at least one state from a
given subset of states. Formally, let Q ⊆ S be a subset of states, then the
Büchi objective on Q is {λ ∈ Sω | Inf(λ) ∩ Q 6= ∅}. This objective can be
seen as an infinite version of the reachability objective.

The co-Büchi objective is the infinite version of the safety objective. That
is to say, if Q ⊆ S is a subset of states, the co-Büchi objective on Q is the set
of plays where no state in Q appears infinitely often. Formally, the co-Büchi
objective on Q is {λ ∈ Sω | Inf(λ) ∩Q = ∅}.

The Muller objective is a natural generalization of the Büchi and the co-
Büchi objectives. It can be described as the objective obtained with boolean
conditions on Büchi objectives. Given a set of subset of states T , the Muller
objective on T is the set of plays such that the set of states visited infinitely
often is a subset of T . Formally, the Muller objective on T is the set {λ ∈
Sω | Inf(λ) ∈ T}. It is immediate that the Büchi objective on Q ⊆ S is the
Muller objective on 2Q − ∅ and the co-Büchi objective on Q is the Muller
objective on 2S−Q − ∅.

Given a coloring function ρ : S → ω, the parity objective is the set of
plays such that the lowest color appearing infinitely often is even. Formally,
the parity objective on ρ is the set {λ ∈ Sω | min ρ(Inf(λ)) is even}. Once
again, the parity objective is a generalisation of the Büchi objective and the
co-Büchi objective. To see this, one should mark the states in Q by the color
0 for the Büchi objective and by 1 in the co-Büchi case, the other states are
then marked by 1 and 2 respectively.
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3.3 Strategies

Given a turn-based game G =<< S = S1 ∪ S2,∆ >,Ω >, a strategy for
Eve is a function ϕ1 : S∗S1 → S and a strategy for Adam is a function
ϕ2 : S∗S2 → S. Although strategies may be defined on any sequence of
states, the one we will consider will be defined on prefixes of plays on G.
The set of strategies for Eve is denoted Φ1 and the set of strategies for Adam
is denoted Φ2. A positional strategy is a strategy that only depends on the
last state the game is in. In other words, a positional strategy is a function
ϕ such that ∀s ∈ S,∀h1, h2 ∈ S∗, ϕ(h1s) = ϕ(h2s).

There is no need to consider randomized strategies as far as turn-based
games with regular objectives are concerned. This result will be explained
later.

Given a couple of strategies (ϕ1 ∈ Φ1, ϕ2 ∈ Φ2) and a starting state s0,
there exists a unique play λ = s0s1 . . . such that ∀i ∈ ω,

si+1 =

{
ϕ1(s0s1 . . . si) if si ∈ S1

ϕ2(s0s1 . . . si) if si ∈ S2

This play defines the value of the couple of strategies from initial state
s0, denoted ‖ϕ1, ϕ2‖s0 , by:

‖ϕ1, ϕ2‖s0 =

{
1 if λ ∈ Ω
0 if λ 6∈ Ω

Then is defined the value of a strategy for Eve from s0, denoted ‖ϕ1‖s0 ,
by:

‖ϕ1‖s0 = inf
ϕ2∈Φ2

‖ϕ1, ϕ2‖s0 .

The value of a strategy for Adam is defined dually:

‖ϕ2‖s0 = sup
ϕ1∈Φ1

‖ϕ1, ϕ2‖s0 .

If the value of a strategy for Eve (respectively for Adam) is 1, the strategy is
said to be winning, that is to say that no matter what do the opponent, Eve
(respectively Adam) is assured to win if she always makes the choices given
by her strategy. The value of the game for Eve is defined by:

|‖G‖|1s0 = sup
ϕ1∈Φ1

‖ϕ1‖s0 .
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And the value of the game for Adam is:

|‖G‖|2s0 = inf
ϕ2∈Φ2

‖ϕ2‖s0 .

The Martin determinacy theorem ([10]) states that for all starting state s0 ∈
S and any objective in those described before, |‖G‖|2s0 + |‖G‖|1s0 = 1, that is
to say that either Eve or Adam has a winning strategy from this state. This
is why there is no need to consider random strategies.

3.4 Important results

3.4.1 ω-regular languages

The infinite language theory holds that the parity winning condition is the
condition described before that induces the larger class of objectives. This
class is called the ω-regular class. Actually, any of the class defined before
but Muller one may be reduced to the parity one with a polynomial cost
in the number of states. Although the Muller condition induces exactly the
same class as the parity one, the reduction from one to the other is not trivial.
From now on, we will not consider this condition anymore. Hence, as far as
complexity and calculability are concerned, the results are presented in this
document from the smaller classes (reachability and safety), to the biggest
one (parity) passing by the intermediate ones (Büchi and co-Büchi). Figure
1 depicts this hierarchy.

Reachability Safety

Büchi

co-Büchi

Parity

Figure 1: The hierarchy between winning conditions.
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3.4.2 Parity games

A main result in turn-based games in the determinacy of games. This result
states that any state in a parity game is a winning one either for one player
or the other one ([6]). Moreover, in parity games, winning strategies can be
chosen positional ([6]). Hence, as Büchi, co-Büchi, reachability and safety
conditions can be directly expressed as parity ones, the corresponding games
have positional winning strategies too. On the other hand, Muller condition
cannot be expressed directly as a parity condition, and winning strategies
may require memory. Figure 2 shows an example of a Muller game where
memory is required. In this game, Adam has no state, so Eve is the only
player to choose the states in a play. To win, she must visit infinitely often
the three states of the game. She has a trivial winning strategy consisting
of visiting states s1, s0 , s2 then s0 infinitely often. Nevertheless, if she
uses a positional strategy, then she has either to go every time to s1 or
s2 being on state s0. Whatever she chooses to do, she will not visit the
three states infinitely often (actually, not even once if the starting state is
s0). Nevertheless, Muller games does not require infinite memory, as finite
memory is sufficient. This aspect will not be developed in this document.

s0 s2s1

Figure 2: Example of a Muller turn-based game where memory is required
to win. The Muller condition is to visit states s0, s1 and s2 infinitely often.

Solving parity games (that is to say finding which state is winning for which
player) can be solved using a NP ∩ coNP algorithm. Some improvements
have been made reaching a UP ∩ coUP complexity ([7]) and the actual most
efficient algorithms are described in [9], [8] and [19]. It is still an open
question whether this complexity can be reduced to a polynomial bound or
not. Nevertheless, if the number of colors is fixed, the game can be solved
with a polynomial complexity.
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4 Concurrent games

Even if they are newer, concurrent arenas have been widely studied since a
decade. A lot of results may are discussed in [3].

4.1 Definitions

A concurrent arena is a tuple A =< S,Σ1,Σ2, δ > where:

• S is the set of states,

• Σ1 is the set of states for Eve,

• Σ2 is the set of states for Adam,

• δ : S × Σ1 × Σ2 → S is the transition total function.

Turn based arenas can be simulated by concurrent arenas. Indeed, let
At =< S = S1∪S2,∆ > be a turn based arena. We define the new transition
function as follows: ∀s ∈ S1,∀s′ ∈ S, if (s, s′) ∈ ∆ then ∃σ1 ∈ Σ1,∀σ2 ∈
Σ2, δ(s, σ1, σ2) = s′ and ∀σ1 ∈ Σ1, if ∃σ2 ∈ Σ2 such that δ(s, σ1, σ2) = s′ then
∀σ2 ∈ Σ2, δ(s, σ1, σ2) = s′. The construction is done symmetrically for states
in S2.

Given a set Ω ⊆ Sω, G =< A,Ω > is a concurrent game and Ω is called
the objective of the game G.

A play in G is an infinite sequence of the following iteration: being on a
state, Eve and Adam choose simultaneously a move respectively in Σ1 and
Σ2. The new state is then given by the transition function δ. Formally, a
play in G is an infinite sequence of states λ = λ0λ1 . . . such that:

∀i ∈ ω,∃σ1 ∈ Σ1, ∃σ2 ∈ Σ2 such that λi+1 = δ(λi, σ1, σ2).

Given a non empty prefix λp of a play λ, last(λp) denotes the last state
in the sequence λp.
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A strategy for Eve (respectively Adam) is a function ϕ1 : S+ → D(Σ1)
(respectively ϕ2 : S+ → D(Σ2)). The set of strategies for Eve (respectively
Adam) is denoted by Φ1 (respectively Φ2).

A positional strategy is a strategy that only depends on the last state,
formally: ∀s ∈ S,∀h1 ∈ S∗,∀h2 ∈ S∗, ϕ(h1s) = ϕ(h2s). The set of positional
strategies for Eve (respectively Adam) is denoted by Φp

1 (respectively Φp
2).

4.2 Objectives

Contrary to turn based games where for omega regular winning conditions,
there exists deterministic winning strategies, concurrent games may require
randomized strategies even with ω-regular conditions. Figure 3 shows an
example of an ω-regular concurrent game where there exists an optimal ran-
domized strategy but no deterministic one. Indeed, whatever is the deter-
ministic strategy of Eve, Adam can choose the deterministic counter-strategy
that consists of choosing the move that makes him staying on state s0. On
the other hand, if Eve plays randomly uniformly moves a and b, she is sure
to visit infinitely often states s0 and s1 with probability one.

s0 s1

a/1
b/2 a/2

b/1

a/1
b/2

a/2
b/1

Figure 3: Concurrent game where a randomized strategy is strictly better
than any deterministic one. The objective is for Eve to visit the state marked
by a double circle infinitely often (Büchi objective).

Given two randomized strategies, there is no longer an unique play asso-
ciated to the strategies but a possibly infinite set of such plays. This refines
the notion of victory. Indeed, a trivial adaptation of the initial objective
could be to force all the plays conform with the two strategies to be winning
for the same player. It is easy to prove that, with this objective, winning
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strategies can be chosen deterministic. Because of this loss of generality and
interest, this objective will not be discussed later.

Given a starting state s0, a pair of strategies (ϕ1, ϕ2) ∈ Φ1 ×Φ2 induces a
measurable set of infinite plays. This set can be defined as follow. On finite
plays of length i ∈ ω one inductively defines a measure µϕ1,ϕ2

s0,i
by:

• The only play of length 1 (s0) has measure 1.

• Given a play λi+1 = λisi+1, si+1 ∈ S of length i+ 1, i ∈ ω,

µϕ1,ϕ2

s0,i+1(λi+1) =
∑

σ1,σ2 such that δ(last(λi),σ1,σ2)=si+1

P (σ1 | λi)P (σ2 | λi)µϕ1,ϕ2

s0,i
(λi)

where P (σ1 | λi) denotes the probability for Eve to play σ1 knowing
the history is λi and P (σ2 | λi) denotes the probability for Adam to
play σ2 knowing the history is λi.

By the Carathéodory unique extension theorem (2), these measures induce
an unique measure µϕ1,ϕ2

s0
on infinite plays.

This measure allows us to define the value of a pair of strategies from s0

by:
‖ϕ1, ϕ2‖ = µϕ1,ϕ2

s0
(Ω).

The value of a strategy ϕ1 for Eve is defined from s0 by:

‖ϕ1‖s0 = inf
ϕ2∈Φ2

‖ϕ1, ϕ2‖s0 .

The value of a strategy ϕ2 for Adam is defined dually. Finally, we define the
value of the game for Eve on s0 by:

|‖G1|‖G
s0

= sup
ϕ1∈Φ1

‖ϕ1‖s0 = sup
ϕ1∈Φ1

inf
ϕ2∈Φ2

‖ϕ1, ϕ2‖s0 .

The Blackwell optimality theorem adds that:

|‖G1|‖s0 = inf
ϕ2∈Φ2

sup
ϕ1∈Φ1

‖ϕ1, ϕ2‖s0 .
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We may now define refined notions of objectives naturally induced by this
formalism. First, we will say a strategy is almost-surely winning if the proba-
bility that a play conform with this strategy is a winning one is one. Formally,
a strategy is almost winning if

‖ϕ1‖s0 = 1.

Then, we define the limit-sure objective. A sequence of strategies is limit-
surely winning if the limit of the values of these strategies is one. Intuitively,
a sequence of strategies is limit-surely winning if the probability for a play to
be a winning one can be made arbitrary close to one. Formally, a sequence
(ϕi1)i ∈ ω is limit-surely winning if:

lim
i→∞
‖ϕi1‖s0 = 1.

Those conditions and examples of such games are presented in [5].

4.3 Winning conditions

As the winning condition are the same as in the turn based case, they
will not be recalled here. Solving almost-sure reachability, Büchi, and co-
Büchi concurrent games can be done using the method described in the next
section on imperfect information games as concurrent games can be modeled
by imperfect information games with a linear cost in the number of states.
Those games admit positional winning strategies.

4.3.1 Büchi games may have different almost-sure and limit-sure
values

In this section, we prove that Büchi concurrent games may have different
almost-sure and limit-sure values. To do this, let us consider the Büchi game
depicted in Figure 4. The only final state is marked by a double circle. Thus,
Eve wins a play iff this state is visited infinitely often. This game has different
almost-sure and limit-sure values. Actually, the central state is not winning
for Eve in the almost-sure case while it is in the limit-sure case.

The proof is quite easy. Let us consider first the almost-sure case where
winning strategies can be chosen positional. Hence, two cases are possible:
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b/2

a/1 a/2
b/1

Figure 4: Example of a Büchi game with different almost-sure and limit-sure
values.

• P (a) = η > 0. In this case, Adam may choose to play always move 1.
The winning probability is then P (b) < 1.

• P (b) = 1. Adam may choose to play always move 2, and he is almost-
sure to win.

Therefore, in both cases Eve cannot almost-surely win the game. On the
other hand, in the limit-sure case Eve can choose the following strategy:

f(x) =

{
ε if x = a
1− ε if x = b

Let us fix x ∈ {a, b}. We introduce:

Px =
∞∑
k=0

P (x/1 | b/2 . . . b/2︸ ︷︷ ︸
k times

)P (b/2 . . . b/2︸ ︷︷ ︸
k times

)

=
∞∑
k=0

P (x | b/2 . . . b/2︸ ︷︷ ︸
k times

)P (1 | b/2 . . . b/2︸ ︷︷ ︸
k times

)P (b/2 . . . b/2︸ ︷︷ ︸
k times

)

= P (x)
∞∑
k=0

P (1 | b/2 . . . b/2︸ ︷︷ ︸
k times

)P (b/2 . . . b/2︸ ︷︷ ︸
k times

)

︸ ︷︷ ︸
=η

= P (x)η

Actually, Adam cannot assure to stay in the central state. Therefore, the
winning (Pwin) and loosing (Ploose) probabilities verify: Ploose = Pa and
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Pwin ≥ Pb. Hence:

Pwin
Ploose

≥ Pb
Pa

≥ P (b)η

P (a)η

≥ 1− ε
ε
→
ε→0

+∞

As Pwin + Ploose = 1, this shows that the central state is winning in the
limit-sure case.

4.3.2 Parity concurrent games

If concurrent Büchi and co-Büchi games admit positional strategies, this
is no longer the case for parity winning conditions. This section shows an
example of a parity concurrent game described in [4] where almost-surely
winning the game requires infinite memory. Nevertheless, the proof of this
example is not in [4] and no proof has been yet proposed. We show here
a proof of this result which is not complete as we do not consider all the
possible strategies for Adam but only a sub-class. Though, this sub-class
should be large enough to convince anybody of the truth of the result.

We consider the game depicted in Figure 5.

s1 s3 s2

a,b/1,2 a,b/1,2

a/1

a/2
b/1

b/2

Figure 5: Example of a parity concurrent game which requires infinite mem-
ory for Eve to win. Colors are the indices of states.
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In this game, Eve has no finite memory almost-surely winning strategy.
Indeed, in this game, either Eve plays move b with probability one, and Adam
can then choose to play deterministically move 2 and wins with probability
one. Either Eve plays regularly move a with a probability always greater
than some η > 0 and Adam can play deterministically move 1 to be sure to
visit s1 infinitely often.

On the other hand, Eve has a strategy to almost-surely win the game.
This strategy consists in playing move a with probability 1

2k and move b with
probability 1− 1

2k where k is the number of prior visits to {s1, s2}.
We first point out that there is a probability zero to stay on the central

state as the probability to leave it is invariant and strictly greater than zero.
Hence the play can be seen as an infinite sequence of the following events:
”the next state visited that is not s3”. We denote by f(h) the probability
for Adam to play 1 knowing that the history is h. Our proof requires that
the strategy used by Adam does not depend on the number of times the play
has stayed in the central state since the last visit to {s1, s2} when he has to
make his choice (but the strategy can depend on anything that is before the
last visit to a non-central state). The probability of the event to be s1 is

f(h)
1

2k

∑
i∈ω

((1− 1

2k
)(1− f(h)))i =

f(h)

2k
1

f(h)( 1
2k + 1) + 1

2k

=
1

2k
1

1
2k + 1 + 1

2kf(h)

≤ 1

2k

where k is the number of times the event has happened and h is the current
history of the game while not considering the number of visits to the central
state since the last visit to a non-central state. Moreover,∑

k∈ω

1

2k
< +∞.

Hence Borel-Cantelli Lemma allows us to conclude that the number of visits
to state s1 is finite, hence state s2 is visited infinitely often.

It is still an open question whether almost-surely winning strategies in
parity concurrent games can be easily and finitely described.
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5 Games with Imperfect information

Games with imperfect information have been introduced in [12]. They are
strictly larger than the games with semi-perfect information introduced in
[2] which are equivalent (with a polynomial blow up in complexities) to con-
current games.

5.1 Definitions

An arena with imperfect information Ai is a tuple < S,Σ,∆ ⊆ S × Σ ×
S,O, ρ : S → O > where:

• S is the set of states,

• Σ is the set of moves,

• ∆ is the transition relation,

• O is the set of observations,

• and ρ is a function which maps each state to its corresponding obser-
vation.

We force the transition relation to allow any moves in any states. Formally,
we require that : ∀s ∈ S,∀σ ∈ Σ,∃s′ ∈ S : (s, σ, s′) ∈ ∆. This property is
not restrictive for the results we discuss later. Indeed, one could for instance
add a sink state any forbidden move leads to. Then this state should be
marked accordingly to the winning condition.

We define the morphism ρ on possibly infinite sequences of states by

ρ(s0s1 . . . si) = ρ(s0)ρ(s1) . . . ρ(si).

Classical turn based arenas can be easily transported to arenas with im-
perfect information. Indeed, let suppose we have a classical turn based game
with labeled states. For all Adam states, the outgoing transitions are directly
mapped to the preceding Eve states, adding the label of the state on the new
transition. The set of observations is then defined as the set of states and the
function ρ is the identity function on the states. This arena with imperfect
information have exactly the same behavior than the initial one.
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Given a set Ω ⊆ Oω of infinite observations, an imperfect information game
over Ai is a tuple Gi =< Ai,Ω >. Ω is said the objective of the game. From
now on, we will consider Ω to be fixed.

A play in Gi with starting state s0 is an infinite succession of the following
iteration: being in state s ∈ S, Eve chooses a move σ ∈ Σ. This move defines
a set of possible new states Postσ(s) = {s′ ∈ S | (s, σ, s′) ∈ ∆}. Then Adam
chooses a state in Postσ(s) which will correspond to the new state of the play
and tells Eve the observation associated with this new state. The imperfect
information property comes from the fact Eve doesn’t know the exact state
the play is in but only a class of possible states.

Therefore, a strategy for Eve is a function ϕ1 : SO∗ → D(Σ).

The set of strategies for Eve is denoted Φ1. A positional strategy for Eve is
a function that only depends on the last observation: ∀h1, h2 ∈ SO∗,∀o ∈
O,ϕ1(h1o) = ϕ1(h2o). The set of positional strategies for Eve is denoted Φp

1.

A strategy for Adam is a function ϕ2 : S+ × Σ→ D(S) where

support(ϕ2(S∗s, σ)) ⊆ postσ(s).

The set of strategies for Adam is denoted Φ2. A positional strategy for
Adam is a strategy that only depends on the last state and the last move:
∀h1, h2 ∈ S∗,∀s ∈ S,∀σ ∈ Σ, ϕ2(h1sσ) = ϕ2(h2sσ). The set of positional
strategies for Adam is denoted Φp

2. From now on, when we will introduce a
pair of strategies, this will mean the first coordinate will be a strategy for
Eve and the second one a strategy for Adam.

A play associated to a pair of strategies (ϕ1, ϕ2) is an infinite sequence of
states λ = s0s1 . . . where

∀i ∈ ω, si+1 ∈ support(ϕ2(s0s1 . . . si, support(ϕ1(ρ(s0)ρ(s1) . . . ρ(si))))).

The set of plays associated to a pair of strategies (ϕ1, ϕ2) is denoted Λϕ1,ϕ2
s0

.
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An example of such a game is the game of the bar man blind with boxing
gloves. This game consists of the following: on a round table are placed
four glasses forming a square having the same center as the table. Some of
the glasses are upside down. The bar man blind with bowing gloves can’t
see if a glass is to the place or not but he can reverse as much glasses as he
wants. When he has finished, a client may quarter turn the table at will. The
objective for the bar man is to get the four glasses on the same side. If he
manage to, then the game will be stopped and the barman will be winning.

An immediate reduction consists in pointing out there are just four differ-
ent classes of states in this game: either the opposite glasses are on the same
side, or exactly two adjacent glasses are on the same side, or three glasses
are on the same side or all glasses are on the same side. This reduction is
depicted on figure 6. In this new class of states, the barman may choose three
actions: to reverse two opposite glasses, to reverse two adjacent glasses, or
to reverse a single glass, they will be denoted respectively o,a and u.

��
��bb rr
State 1

��
��br br
State 2

��
��bb br
State 3

��
��bb bb
State 4

Figure 6: The class of states after the reduction of the game of the bar man
blind with boxing gloves.

With this reduction, the game can be described as in figure 7.

5.2 Knowledge

Given a subset Q ⊆ S of states, a move σ ∈ Σ and an observation o ∈ O,
the knowledge K is defined by K(Q, σ, o) = Postσ(Q) ∩ ρ−1(o). Intuitively,
if Q is the set of states player Eve knows she can be in, K(Q, σ, o) represents
the set of states she could be in if she plays move σ and if then Adam tells
her the observation is o.

Remark: By definition, all the states in K(K, σ, o) maps to the same ob-
servation, namely o.
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3 4

1 2

a,o

u

u
u

u o

a

a

a

o

Figure 7: The game of the bar man blind with boxing gloves with reducted
states. The red states map to the same observation.

We build inductively the set K of knowledges : K0 = {{s} | s ∈ S}, and
∀i,Ki+1 = Ki ∪K(Ki,Σ, O). Then

K = lim
i→∞
Ki.

This limit exists as (Ki)i is monotone and bounded: ∀i,Ki ⊂ 2S. It is easily
seen that K may equals 2S for a well chosen arena with states S.

The trace of a play λ = s0s1 . . . where the sequence of choices made by Eve
is σ = σ0σ1 . . . , denoted (trace(λ)iσ)i∈ω, is the unique sequence of knowledges
characterized by:

• trace(λ)0
σ = {s0},

• ∀i ∈ ω, trace(λ)i+1
σ = K(trace(λ)iσ, σi, ρ(si+1)).

Intuitively, the trace of a play is the most precise information Eve may
have on it. A sub play of a trace β is a sequence of states λ = s0s1 . . . such
as ∃σ ∈ Σω, trace(λ)σ = β. By induction, it is easy to see that the same
σ ∈ Σω can be chosen for all sub plays of a given trace. Moreover, the trace
only depends on s0, ρ(λ) and σ, so it can be built by Eve during the play.
From now on, we will consider strategies of Eve to be defined on K∗.

5.3 Objectives

Let s0 be the starting state of a game. We inductively define a sequence
of measures µϕ1,ϕ2

s0,i
on the prefix of plays:
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• The only play of length 1 (λ = s0) has measure 1,

• Be a play of length i+ 1, i ∈ ω : λi+1 = s0s1 . . . sisi+1 = λisi+1, then

µϕ1,ϕ2

s0,i+1(λi+1) = µϕ1,ϕ2

s0,i
(λi)

∑
σ∈Σ

Pϕ2(si+1 | λiσ)Pϕ1(σ | ρ(λi))

where (Pϕ2(si+1 | λiσ) is the probability for Adam to choose state si+1

knowing the history is λiσ and Pϕ1(σ | ρ(λi)) is the probability for Eve
to choose move σ knowing the observation history is ρ(λi).

By the Carathódory unique extension theorem (2), this measure induces
an unique measure µϕ1,ϕ2

s0
on Λϕ1,ϕ2

s0
.

Given a starting state s0, we define the value of a pair of strategies (ϕ1, ϕ2)
by

‖ϕ1, ϕ2‖Gi
s0

= µϕ1,ϕ2
s0

(Λϕ1,ϕ2
s0

∩ Ω).

The value of a strategy ϕ1 for Eve is defined by:

‖ϕ1‖Gi
s0

= inf
ϕ2∈Φ2

‖ϕ1, ϕ2‖Gi
s0
.

The value of a strategy ϕ2 for Adam is defined dually. Finally, we define the
value of the game for Eve on s0 by:

|‖G1
i |‖Gi

s0
= sup

ϕ1∈Φ1

‖ϕ1‖Gi
s0

= sup
ϕ1∈Φ1

inf
ϕ2∈Φ2

‖ϕ1, ϕ2‖Gi
s0
.

One should note that the Blackwell optimality theorem shows the following:

|‖G1
i |‖Gi

s0
= inf

ϕ2∈Φ2

sup
ϕ1∈Φ1

‖ϕ1, ϕ2‖Gi
s0
.

We will now say a strategy ϕ1 for player Eve is almost-optimal if ‖ϕ1‖Gi
s0

=
|‖G1

i |‖s0 . A sequence of strategies (ϕi1)i∈ω is said to be limit-optimal if

lim
i→∞
‖ϕi1‖Gi

s0
= |‖G1

i |‖s0 .

If |‖G1
i |‖s0 = 1, an almost-optimal strategy will be called almost-sure and a

limit-optimal strategy will be called limit-sure.
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By extension, the almost-sure winning region for Eve in the game Gi is
the subset of states WGi

1 = {s ∈ S | ∃ϕ1 ∈ Φ1, ‖ϕ1, ϕ2‖Gi
s0

= 1}. We symmet-
rically define the same values for player Adam.

5.4 Winning conditions

The winning conditions available in classical games have to be extended.
We choose to restrain the winning condition to those on observations rather
than on states. To explain this choice, we first point out it is natural for a
player to know whether he wins or not. To see that it is not insured with
winning conditions on states, consider Figure 8, which presents an example
of a co-Büchi game with winning condition on states. In this example, Adam
can’t win with probability one: if he uses a deterministic strategy, it is easy
to find a counter-strategy for Eve which force not to go to the final state with
probability one. If he chooses randomly how to play from s0, Eve can play
accordingly to the counter-strategy corresponding to the higher probability
choice, forcing the probability to win to be lower than the sum of the two
lowest probabilities: Adam can’t win with probability higher than 2

3
. On the

other hand, the strategy ϕ which consists of playing one of the three states
{s1, s2, s3} with probability 1

3
each assures ‖ϕ‖ = 2

3
, so |‖G2

i |‖s0 = 2
3
. Hence

the game can’t be translated on observations, as considering the observation
red as accepting (or not) changes the value of the game to |‖G2

i |‖s0 = 1
(respectively |‖G2

i |‖s0 = 0). And as Eve only sees the same observation for
all plays: she can’t know whether she wins or not. Therefore, we will define
winning conditions on observations.

Some classical winning conditions are reachability, Büchi, co-Büchi and
parity. As we will show later, the parity condition is yet a too large condition
to expect good results in games with imperfect information. It is why we
don’t introduce other conditions. They are defined that way:

Reachability condition: LetF ⊆ O be a subset of observations. A play
λ = s0s1 . . . is winning for Eve iff F ∩ ρ(λ) 6= ∅.

Büchi condition: Let F ⊆ O be a subset of observations. A play λ =
s0s1 . . . is winning for Eve iff F ⊆ inf(ρ(λ)).
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s0

s3

s1 s2

a
a a

a

bb

a
b

a

Figure 8: co-Büchi imperfect information game with winning condition on
states where Eve may don’t know whether she wins or not and condition
can’t be translated to observations. Observations are modeled by colors.

co-Büchi condition: Let F ⊆ O be a subset of observations. A play
λ = s0s1 . . . is winning for Eve iff F ∩ inf(ρ(λ)) = ∅.

Parity condition: Let τ : O → ω be a function. A play λ = s0s1 . . . is
winning for Eve iff min(τ(inf(ρ(λ)))) ∈ 2ω.

5.5 Reduction

To solve imperfect information games, it is natural to use a knowledge-
based structure, as this reduction contains all the information useful for Eve.
However, this is not sufficient to keep the values of the game. To prove this,
let us consider the Büchi game 1 described on Figure 9. In this game, Eve has
an almost-sure winning strategy : this strategy consist in playing uniformly
motive a and motive ba when in knowledge {s1, s2}. The game 2 presents a
natural reduction of game 1 in an only knowledge-based structure. In this
game, Adam has an immediate sure winning strategy. This suggest that one
must keep trace of the knowledge together with the real state the play is in,
and so restrain the strategies for Eve to those coherent with the initial game.

A valid knowledge-based reduction for omega-regular winning conditions
has been proposed in [1]: Be Gi =<< S,Σ,∆, O, ρ >,Ω > an imperfect
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s0

s1

s2

s3

a

a

a

b b

a a

s0 {s1, s2} s3

a

a

a

b

a

game 1 game 2

Figure 9: An example of a Büchi imperfect information game and it’s only
knowledge-based reduction : both games have different values.

information game. The knowledge-based game associated to Gi is the game
HGi

=<< SH ⊆ K × S,Σ,∆H ⊆ SH × Σ× SH >,ΩH ⊆ SωH > where:

• (Q, q) ∈ SH iff Q ∈ K and q ∈ Q,

• ((Q, q), σ, (Q′, q′)) ∈ ∆H iff (q, σ, q′) ∈ ∆ and Q′ = K(Q, σ, ρ(q′)),

• Let consider the winning condition is a parity one. From the color func-
tion τ , the new color function is defined by τH(Q, q ∈ Q) = τ(ρ(Q))1.
This transformation covers Büchi and co-Büchi games. For a reachabil-
ity condition, the new states to reach are those with the first coordinate
in an observation to reach.

This formalism induces a natural equivalence relation on states: (Q, q) ≈
(Q′, q′) iff Q = Q′. We define the function Allow : S × K → 2Σ by: σ ∈
Allow(s, P ) iff ∀q ∈ SH, (s, σ, q) ∈ ∆H =⇒ q ∈ P . By extension, we define
Allow≈((S, s), P ) = ∩{(S,s′)∈SH}Allow(s′, P ).

As the knowledge history can be obtained by the state history, Adam
may use arbitrary strategies in this new game. Those strategies are directly
mapped to the one of the initial game. On the other hand, Eve must only use
strategies based on equivalence classes induced by ≈: she must only build her
strategies on the first coordinate of states. We denote by T this one-to-one
function mapping strategies in game Gi to strategies in game HGi

. It is im-

mediate to see that ∀ϕ1 ∈ Φ1, ∀ϕ2 ∈ Φ2, ‖ϕ1, ϕ2‖Gi
s0

= ‖T (ϕ1), T (ϕ2)‖HGi

({s0},s0).

1The remark made in section “knowledge” proves that this new color is well-defined.
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Considering the preceding result, the values in each state are the same in HGi

and in Gi. Actually, there is an immediate näıve algorithm mapping winning
regions with an exponential complexity on the number of states in game Gi.

If we reconsider the game of the bar man blind with boxing gloves using
this reduction, we obtain the game presented in figure 10.

123, 3

123, 2 123, 1

4, 4

23, 2

3, 323, 3

13, 1 13, 3 12, 1

12, 2

2, 2

1, 1

Figure 10: The knowledge version of the game of the bar man blind with
boxing gloves. The red and dashed transitions correspond to reversing two
opposite glasses, the blue and dotted ones to reverse two adjacent glasses
and the black ones to reverse one glass.

5.5.1 Parity games

The parity condition covers the Büchi and the co-Büchi one. However,
winning in a parity game with imperfect information may require infinite
memory. This result can be shown using the example given in the section on
concurrent games. Indeed, concurrent games are equivalent to semi-perfect
information games, which are a subclass of games with imperfect information.
Considering this, Figure 11 shows a game equivalent to the one defined in
the concurrent section, which require infinite memory for Eve to win. In this
game, Eve wins if and only if the state s2 is visited infinitely often and the
state s3 is visited finitely often.
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s1

s2

s1, 1 s1, 2

s3

a,b a,b

a

b

b
a

a

a,b a,b

a,b a,b

Figure 11: Example of a parity game with imperfect information which re-
quire infinite memory for Eve to win.

5.5.2 Solving Büchi games

We now consider the case the winning condition is a Büchi one. Let B ⊆ S
be the objective states. To this set maps a new set BH in game HGi

defined
by (Q, q) ∈ BH iff τ(q) ∈ B. Let us explain how to solve a Büchi games
with imperfect information as described in [1]. The first task is to show that
almost-sure winning strategies can be chosen positional. To do it, let define
the increasing and bounded sequence of subset of states (Qi)i as follows:

• Q0 = W
HGi
1 ∩ BH (recall that W

HGi
1 is the winning region for Eve in

game HGi
),

• ∀i ∈ ω,Qi+1 = Qi ∪ {(Q, q) ∈ SH | ∃σ ∈ Allow≈((Q, q),W
HGi
1 )

such that Postσ((Q, q)) ⊆ Qi}

(Qi)i being an increasing sequence on a finite set, ∃j ∈ ω,∀k ≥ j,Qk =
Qj. We denote by Q∞ this greatest set.

Our aim is to show that W
HGi
1 = Q∞. It is immediate that Q∞ ⊆ W

HGi
1 . To

prove the converse inclusion, let us consider a state s ∈ X = W
HGi
1 −Q∞. By

definition, ∀σ ∈ Σ,∃q ∈ X, (s, σ, q) ∈ ∆H. We fix the strategy for Adam that
chooses systematically one of these possible states q. Being on a state in X,
we now consider a knowledge-based almost-sure winning strategy for Eve.
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In this strategy, Eve must always choose a move in Allow≈((Q, q),W
HGi
1 )

where (Q, q) is the last state of the play, as if she does not Adam has a
trivial counter-strategy that makes her living her winning region with a non
zero probability. With those two fixed strategies, the play will stay in X.

Moreover, as BH ∩W
HGi
1 ⊆ Q∞, we have BH ∩X = ∅. Hence this state is not

in W
HGi
1 . By contradiction, the initial state was not in the winning region

for Eve. Hence W
HGi
1 −Q∞ = ∅ what achieves to show that W

HGi
1 = Q∞.

Let us now consider the following strategy for Eve in Q∞: in state s, Eve

chooses randomly uniformly one move in Allow≈(s,W
HGi
1 ). This assures she

will eventually reach a state in Q0 with probability one. When she is on
Q0, she is still in Q∞ and therefore can reach a state in Q0 with probability
one. This shows that if Eve has an almost-winning strategy from a state s0,
then she also has a positional almost-winning one from the same state. To
conclude, we can use the result 1 which give an algorithm to find the winning
region with a 2EXPTIME complexity on the number of states.

5.5.3 Solving co-Büchi games

Solving co-Büchi games with imperfect information was still an open ques-
tion. This section presents a solution to this problem.

Let R be a subset of states. The sub game HGi
(R) is the game <<

R,Σ,∆H ∩ R × Σ × R >,ΩH ∩ Rω >. It is only defined if there is no dead
end in it. In other words, the game HGi

(R) is the sub game of HGi
where

the only states are those in R, and the transitions are those of HGi
with an

initial and arrival state in R.

Let BH be the co-Büchi objective (that is to say the states Eve does not
want to visit infinitely often). We define the safety winning plays on BH
by Ωsafety = (SH − BH)ω, the almost-sure winning region will be denoted
safety(BH). Strategies to almost-surely win a safety objective can be chosen
positional. To prove this, let consider a game with imperfect information
with a safety objective. The following transformation is performed on the
game: any transition from a final state is deleted, and a self-loop transition
is added from any final state, then final and non-final states are flipped. It is
immediate to show that almost-surely winning the initial game is equivalent
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to almost-winning the new game in which the objective is a Büchi one. We
already shown that strategies in Büchi games with imperfect information
can be chosen positional. As this strategy can be mapped directly to the
initial game, this proves strategies to almost-surely win a game with a safety
objective can be chosen positional.

Actually, the preceding construction can’t be adapted directly to co-Büchi
games. Meanwhile, the idea is to use a similar method, with an increasing
construction of the sets (Qi)i, such that the initial set Q0 verifies Q0 =
safety((BH)). This construction is not large enough, as shown in Figure 12.
In this game, state s2 is in safety((BH)) but not state s0. The construction
of the sequence Qi will bring state s1 into it but not state s0 as it is always
possible for Adam to force to stay on it. However, this state is almost-surely
(and even surely) winning for Eve. It is why the method described beneath
is a bit more sophisticated.

s0 s1 s2
a

a

a

a

Figure 12: Example of a co-Büchi game with imperfect information where the
adaptation of the construction proposed in the Büchi case is not sufficient.
The information is complete for Eve and the only accepting state is s1.

We introduce a function ρ : 2SH → (2SH)ω mapping any subset R of states
to an increasing (hence converging) sequence of subsets of states (QR

i )i, as
we did in the Büchi case, inductively defined by:

• QR
0 = safety(BH),

• ∀i ∈ ω,QR
i+1 = QR

i ∪ {(Q, q) ∈ SH ∩R | ∃σ ∈ Allow≈((Q, q),W
HGi

(R)

1 )
such that Postσ((Q, q)) ⊆ QR

i }.

(QR
i )i being monotone on a finite set, ∃j ∈ ω,∀k ≥ j,Qk = Qj. Let Q∞

be this greatest set. We now define the function ρ∞ : 2SH → 2SH such that
ρ∞(R) = QR

∞.
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This function allows us to introduce a new inductively built increasing
(hence converging) sequence of subsets of states (Qi)i:

• Q0 = ρ∞(SH),

• ∀i ∈ ω,Qi+1 = Qi ∪ ρ∞(SH −Qi). Note that by definition of Qi, there
is no dead end in the game HGi

(SH −Qi).

Once again, this sequence of subset is ultimately constant. Let Q∞ be
its limit. Going back to Figure 12, the initial set is Q0 = {s1, s2}. Then
Q∞ = Q1 = Q0 ∪ {s0}.

More generally, the following assertion holds: Q∞ = W
HGi
1 and Eve has a

positional strategy to almost-surely win on Q∞.

To prove this, let consider the first assertion: Q∞ ⊆ W
HGi
1 and Eve has

a positional strategy to almost-surely win on Q∞. This can be shown by
induction on the construction of Q∞:

• Let q be a state in Q0. Either Eve is not in a state in safety(BH), and
as for Büchi games, she has a positional strategy consisting of playing

uniformly randomly moves in Allow≈((Q, q),W
HGi

(R)

1 ). This strategy
ensures that she will eventually reach a state in QSH

0 with probability
one. Being on a state in safety(BH), she has a positional strategy to
ensure she will never reach a state in BH with probability one. Those
two strategies can be merged to obtain a new positional strategy that
makes Eve almost-surely win the game.

• Let q be a state in Qi+1 − Qi. We suppose that all states in Qi are
winning for Eve in the almost-sure case with positional strategies. In
the game HGi

(SH−Qi), Eve has a positional strategy to almost-surely
win the game (reconsider the preceding step with the game HGi

(SH −
Qi)). Back in the main game, she keeps the same strategy: each time
she has to use this strategy, either Adam chooses a state in SH−Qi so
she can continue using this strategy, or he chooses a state in Qi which
is by hypothesis a state from which Eve has a positional almost-sure
winning strategy.
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The second assertion to prove is that W
HGi
1 ⊆ Q∞. By definition of Q∞,

in the game HGi
(SH −Q∞), safety(BH −Q∞) = ∅. Hence, by the Blackwell

optimality theorem, Adam has a strategy such that in any state in SH−Q∞,
the probability of going back to an accepting state is non zero. As there is a
finite number of states, the smallest of these probabilities η is such that η > 0.
And as this probability is totally independent of any event, Borel Cantelli
Lemma concludes that the probability of visiting infinitely often states in
SH −Q∞ is greater or equal to η|SH−Q∞| > 0.

This achieves the proof that co-Büchi games with imperfect informations
almost-sure winning strategies can be chosen positional.

6 Concurrent games with imperfect informa-

tion

The games with imperfect information introduced previously in this doc-
ument are totally asymmetric as one player actually has a full information
about the game. It is why it is natural to consider a generalized version
of this game, where both players have incomplete information. In this sec-
tion, we present a new game model taking this aspect into account and some
results on them.

6.1 Definitions

A concurrent arena with imperfect information is a tupleA =< S,Σ1,Σ2, δ, O, ρ >
where:

• S is the set of states,

• Σ1 is the set of moves for Eve,

• Σ2 is the set of moves for Adam,

• δ : S × Σ1 × Σ2 → S is the transition total function on states,

• O is the set of observations,

• ρ : S → O is the function mapping any state to its observation.
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A play on a concurrent arena of imperfect information goes as follows:
being in a state s ∈ S, both players choose simultaneously a move in their
set of moves (σ1 and σ2). These choices define an unique new state s′ =
δ(s, σ1, σ2). This state maps to an observation ρ(s′) which is given to both
players. Then the iteration is repeated forever.

For the same reason as in games with imperfect information, the objec-
tives are defined as sets of sequences of observations: let Ω ∈ Oω be an
objective, then G =< A,Ω > is a concurrent game with imperfect infor-
mation. As they are exactly the same as in the imperfect information case,
winning conditions will not be redefined there.

6.2 Strategies, knowledges

Using the same construction as in the imperfect information case, there are
two sets of knowledges K1 and K2 belonging respectively to Eve and Adam.
Those sets have no reason to be equal, as the information of each player
depends on his moves.

Consecutively, strategies may be defined on sequences of knowledge. For-
mally, a strategy for Eve is a function ϕ1 : K∗1 → Σ1 and a strategy for Adam
is a function ϕ2 : K∗2 → Σ2. We will use Φ1, Φ2, Φp

1 and Φp
2 to denote the

usual sets of strategies for Eve, strategies for Adam, positional strategies for
Eve and positional strategies for Adam.

Almost-sure and limit-sure objectives are defined as in the previous cases.
And as in previous cases, we will limit our study to almost-sure objective.

6.3 Positional strategies

This formalism is trivially larger than the one of concurrent games and
games with imperfect information. Therefore, the parity condition may re-
quire infinite memory to assure the winning of a player.

For the Büchi case, restricting to uniformly distributed positional strate-
gies is sufficient, a proof of this result is described beneath.

Let ϕ be a winning strategy for Eve on her winning region W , and ϕp
be the positional strategy consisting of playing any move in Allow≈(s,W )
while being on state s ∈ W where Allow≈(s,W ) is defined as previously. By
definition of ϕ;

∀ϕ2 ∈ Φ2,∀s0 ∈ S,Λs0
ϕ,ϕ2
⊆ Λs0

ϕp,ϕ2
. (1)
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We denote by B the subset of accepting states.

For all state s ∈ W , we define paths = {p = p1 . . . pn ∈ S∗B | ∃h ∈
S∗ such that p1 ∈ support(ϕ(hs)) and ∀1 < i < n, pi ∈ support(ϕ(hsp1 . . . pi))}.
Let ms be the minimum length of a word in paths that is to say:

ms = min
p∈paths

|p|.

Because of (1), the minimum of these lengths corresponds to a path compat-
ible with ϕp.

We introduce:
M = max

s∈W
ms.

We now consider that Eve is playing using the strategy ϕp, and we introduce
the event: “during the next M moves, an accepting state will be visited”. This
event has a probability strictly greater than zero. Actually, this probability
is greater than the minimum (reached) of the probabilities to realize it being
on a given state which is strictly greater than zero.

Therefore, Borel-Cantelli Lemma concludes that the probability for the
event to happen infinitely often is one.

Finally, Theorem 1 concludes that if there exists a winning strategy on
W , then there exists a uniformly distributed positional one.

7 Extension to pushdown models

7.1 Pushdown model

The pushdown model allows finite representation of infinite arenas. This
process is made using a stack that extend the transition relation. Formally,
to get a pushdown model, one should add to the preceding definitions a
stack η, an alphabet Ση on the stack and a special character ⊥ to denote the
bottom-of-stack symbol.

The stack is an element of ⊥Σ∗η. The stack allows three types of opera-
tions: push(a) maps a stack ⊥σ1 . . . σn to the stack ⊥σ1 . . . σna, switch(a)
maps a stack ⊥σ1 . . . σn−1σn to the stack ⊥σ1 . . . σn−1a and pop() maps a
stack ⊥σ1 . . . σn−1σn to the stack ⊥σ1 . . . σn−1. The operations switch(a)

and pop() have no effect on the stack ⊥.
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The top of the stack may be accessed with the function top() which maps
a stack σ1 . . . σn to the character σn ∈ {⊥} ∪ Ση.

Transition relations are now redefined to take the stack into account.
This can be seen as labeling edges by the characters from {⊥} ∪ Ση (if they
were already labeled, then they are labeled by both the ancient and the new
labels). Moreover, to each edge is mapped an operation between the three
presented before.

7.2 Decidability

A method to solve a pushdown game is to reduce it to a game with the
same behavior (and easily transportable strategies) but with no stack. This
method require an exponential blow-up of the number of states.

The process for this reduction will not be detailed here, one could find
all the important information about this reduction in [21] and [14]. This
reduction has no link with the type (for example imperfect information, or
concurrent) of game used. Actually, even concurrent games with imperfect
information may be reduced using this algorithm.

Therefore, all the results that have been presented in this document are
compatible with a pushdown extension, the only difference will be the com-
plexity that will have an extra exponential blow up.

8 Conclusion, further work

8.1 Conclusion

We have considered several models of games in this document, starting
from classical turn based games to concurrent ones with imperfect informa-
tion. Globally, the Büchi and co-Büchi cases are sufficiently simple to permit
to restrict strategies to positional ones, leading to the decidability of several
models.

On the other hand, parity games are quickly too complicated to be con-
sidered with this method.

For the pushdown case, it does not affect determinacy, but a serious draw-
back on the complexity of algorithms comes from an unavoidable exponential
blow-up.
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8.2 Further work

There are still several open questions about those games. The first one
is on concurrent co-Büchi games with imperfect information that have not
been treated yet.

Moreover, parity condition does not allow the use of positional strategies
(not even finite memory ones). Nevertheless, infinite strategies have not yet
been studied, even if a reduction could be imaginable. For instance, the
history given by the number of times each color has been visited might be
sufficient to find winning strategies.

Another important question that has not been treated in this document
is the case of limit-sure objectives.

In conclusion, there is still a lot of work to be done on games with im-
perfect information. . .
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A Appendix

A.1 Borel-Cantelli lemma

Let (Xi)i be an infinite sequence of events in a probability space of measure
P . Then the Borel-Cantelli lemma states that:

if
+∞∑
i=0

P (Xi) < +∞ then P (lim sup
i→+∞

Xi) = 0,

if
+∞∑
i=0

P (Xi) = +∞ and if the events are mutually independant

then P (lim sup
i→+∞

Xi) = 1.

A.2 Carathéodory extension theorem

Theorem 2. Let Ω be a set. Let R be a ring in 2Ω and µR a σ-finite measure
on it. Then the Carathéodory extension theorem states that there exist an
unique extension of µR on the σ-algebra generated by R.


