
HAL Id: hal-00347813
https://hal.science/hal-00347813

Preprint submitted on 16 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kernel Inverse Regression for spatial random fields
Jean-Michel Loubes, Anne-Françoise Yao

To cite this version:
Jean-Michel Loubes, Anne-Françoise Yao. Kernel Inverse Regression for spatial random fields. 2008.
�hal-00347813�

https://hal.science/hal-00347813
https://hal.archives-ouvertes.fr


KERNEL INVERSE REGRESSION FOR SPATIAL RANDOM FIELDS.

JEAN-MICHEL LOUBES♭ AND ANNE-FRANÇOISE YAO §

Abstract. In this paper, we propose a dimension reduction model for spatially depen-

dent variables. Namely, we investigate an extension of the inverse regression method

under strong mixing condition. This method is based on estimation of the matrix of

covariance of the expectation of the explanatory given the dependent variable, called the

inverse regression. Then, we study, under strong mixing condition, the weak and strong

consistency of this estimate, using a kernel estimate of the inverse regression. We provide

the asymptotic behaviour of this estimate. A spatial predictor based on this dimension

reduction approach is also proposed. This latter appears as an alternative to the spatial

non-parametric predictor.

Keywords: Kernel estimator; Spatial regression; Random fields; Strong mixing coef-

ficient; Dimension reduction; Inverse Regression.

1. Introduction

Spatial statistics includes any techniques which study phenomenons observed on spatial

subset S of R
N , N ≥ 2 (generally, N = 2 or N = 3). The set S can be discret, continuous

or the set of realization of a point process. Such techniques have various applications in

several domains such as soil science, geology, oceanography, econometrics, epidemiology,

forestry and many others (see for example [27], [11] or [18] for exposition, methods and

applications).

Most often, spatial data are dependents and any spatial model must be able to handle

this aspect. The novelty of this dependency unlike the time-dependency, is the lack of

order relation. In fact, notions of past, present and futur does not exist in space and this

property gives great flexibility in spatial modelling.

In the case of spatial regression that interests us, there is an abundant literature on

parametric models. We refer for example to the spatial regression models with correlated

errors often used in economics (see e.g. Anselin and Florax [2], Anselin and Bera [1], Song

and Lee [29]) or to the spatial Generalized Linear Model (GLM) study in Diggle et al.

[14] and Zhang [36]. Recall also the spatial Poisson regression methods which have been

proposed for epidemiological data (see for example Diggle [13] or Diggle et al [14]).

§ Corresponding author : University Aix-Marseille 2, Campus de Luminy, case 901, 13288 Marseille cedex
09. anne-francoise.yao@univmed.fr.
♭ University Toulouse 3, Institut de Mathématiques de Toulouse.
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Unlike the parametric case, the spatial regression on nonparametric setting have been

studied by a few paper: quote for example Biau and Cadre [5], Lu and Chen [25], Hallin

et al. [19], Carbon et al. [9], Tran and Yakowitz [32] and Dabo-Niang and Yao [12].

Their results show that, as in the i.i.d. case, the spatial nonparametric estimator of the

regression function is penalized by the dimension of the regressor. This is the spatial

counterpart of the well-known problem called “the curse of dimensionality”. Recall that

dimension reduction methods are classically used to overcome this issue. Observing an

i.i.d. sample Zi = (Xi, Yi) the aim is to estimate the regression function m(x) = E(Y |X =

x). In the dimension reduction framework, one assumes that there exist Φ an orthonormal

matrix d ×D, with D as small as possible, and g : R
D → R, an unknown function such

that the function m(.) can be written as

(1.1) m(x) = g(Φ .X).

Model (1.1) conveys the idea that “less information on X” , Φ .X; provides as much infor-

mation on m(.) as X. The function g is the regression function of Y given the D dimen-

sional vector Φ.X. Estimating the matrix Φ and then the function g (by nonparametric

methods) provides an estimator which converges faster than the initial nonparametric

estimator. The operator Φ is unique under orthogonal transformation. An estimation of

this latter is done through an estimation of his range Im(ΦT ) (where ΦT is the transpose

of Φ) called Effective Dimensional Reduction space (EDR).

Various methods for dimension reduction exist in the literature for i.i.d observations.

For example we refer to the multiple linear regression, the generalized linear model (GLM)

in [8], the additive models (see e.g. Hastie and Tibshirani [21]) deal with methods based

on estimation of the gradient of the regression function m(.) developped in for example

in [22] or [35].

In this paper, we focus on the inverse regression method, proposed by Li [24]: if X is

such that for all vector b in R
d, there exists a vector B of R

D such that E(bTX|Φ.X) =

BT (Φ.X) (this latter condition is satisfied as soon as X is elliptically distributed), then,

if Σ denotes the variance of X, the space Im(Σ−1var(E(X|Y )) is included into the EDR

space. Moreover, the two spaces coincide if the matrix Σ−1var(E(X|Y )) is of full rank.

Hence, the estimation of the EDR space is essentially based on the estimation of the

covariance matrix of the inverse regression E(X|Y ) and Σ which is estimated by using a

classical empirical estimator. In his initial version, Li suggested an estimator based on the

regressogram estimate of E(X|Y ) but drawbacks of the regressogram lead other authors

to suggest alternatives based on the nonparametric estimation of EX|Y , see for instance

[23] or [37] which enable to recover the optimal rate of convergence in
√
n.
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This work is motivated by the fact that to our knowledge, there is no inverse regression

method estimation for spatially dependent data under strong mixing condition. Note

however that a dimension reduction method for supervised motion segmentation based

on spatial-frequential analysis called Dynamic Sliced Inverse Regression (DSIR) has been

proposed by Wu and Lu [34]. We propose here a spatial counterpart of the estimating

method of [37] which uses kernel estimation of EX|Y . Other methods based on other

spatial estimators of EX|Y will be the subject of futher investigation.

As any spatial model, a spatial dimension reduction model must take into account

spatial dependency. In this work, we focus on an estimation on model (1.1) for spatial

dependent data under strong mixing conditions. The spatial kernel regression estimation

of EX|Y being studied in [5, 10, 9].

An important problem in spatial modelling is that of spatial prediction. The aim being

reconstruction of a random field over some domain from a set of observed values. It is

such a problem that interest us in the last part of this paper. More precisely, we will use

the properties of the inverse regression method to build a dimension reduction predictor

which corresponds to the nonparametric predictor of [5]. It is an interesting alternative to

parametric predictor methods such as the krigging methods (see e.g. [33], [11]) or spatial

autoregressive model (see for example [11]) since it does not requires any underlying

model. It only requires the knowledge of the number of the neighbors. We will see that

the property of the inverse regression method provides a way of estimating this number.

This paper falls into the following parts. Section 2 provides some notations and as-

sumptions on the spatial process, as well as some preliminar results on U-statistics. The

estimation method and the consistency results are presented in Section 3. Section 4 uses

this estimate to forecast a spatial process. Section 5 is devoted to Conclusion. Proofs and

the technical lemmas are gathered in Section 6.

2. General setting and preliminary Results

2.1. Notations and assumptions. Throughout all the paper, we will use the following

notations.

For all b ∈ R
d , b(j) will denote the jth component of the vector b;

a point in bold i = (i1, ..., iN) ∈ n ∈ (N∗)N will be referred to as a site, we will set

1N = ( 1, ..., 1︸ ︷︷ ︸
N times

); if n = (n1, ..., nN ), we will set n̂ = n1 × ... × nN and write n → +∞ if

mini=1,...,N ni → +∞ and ni

nk
< C for some constant C > 0.

The symbol ‖.‖ will denote any norm over R
d , ‖u‖∞ = supx |u(x)| for some function u
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and C an arbitrary positive constant. If A is a set, let 1A(x) =

{
1 if x ∈ A

0 otherwise
.

The notation Wn = Op(Vn) (respectively Wn = Oa.s(Vn)) means that Wn = VnSn for a

sequence Sn, which is bounded in probability (respectively almost surely).

We are interested in some R
d ×R-valued stationary and measurable random field Zi =

(Xi, Yi), i ∈ (N∗)N , (N, d ≥ 1) defined on a probability space (Ω, A,P). Without loss

of generality, we consider estimations based on observations of the process (Zi, i ∈ Z
N )

on some rectangular set In =
{
i = (i1, ..., iN) ∈ Z

N , 1 ≤ ik ≤ nk, k = 1, ..., N
}

for all n ∈
(N∗)N .

Assume that the Zi’s have the same distribution as (X, Y ) which is such that:

• the variable Y has a density f .

• ∀j = 1, ..., d each component X(j) of X, is such that the pair (X(j), Y ) admits an

unknown density fX(j),Y with respect to Lebesgue measure λ over R
2 and each

X(j) is integrable.

2.2. Spatial dependency.

As mentionned above, our model as any spatial model must take into account spatial

dependence between values at differents locations. Of course, we could consider that there

is a global linear relationships between locations as it is generally done in spatial linear

modeling, we prefer to use a nonlinear spatial dependency measure. Actually, in many

circumstances the spatial dependency is not necessarly linear (see [3]). It is, for example,

the classical case where one deals with the spatial pattern of extreme events such as in the

economic analysis of poverty, in the environmental science,... Then, it is more appropriate

to use a nonlinear spatial dependency measure such as positive dependency (see [3]) or

strong mixing coefficients concept (see Tran [31]). In our case, we will measure the

spatial dependency of the concerned process by means of α−mixing and local dependency

measure.

2.2.1. Mixing condition :

The field (Zi) is said to satisfy a mixing condition if:

• there exists a function X : R
+ → R

+ with X (t) ↓ 0 as t→ ∞, such that whenever

S, S ′ ⊂ (N∗)N ,

α(B(S),B(S ′)) = sup
A∈B(S), B∈B(S′)

|P (B ∩ C) − P (B)P (C)|

≤ ψ(CardS, CardS ′)X (dist(S, S ′))(2.1)
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where B(S)(resp. B(S ′)) denotes the Borel σ−fields generated by (Zi, i ∈ S) (resp.

(Zi, i ∈ S ′)), CardS (resp. CardS ′) the cardinality of S(resp. S ′), dist(S, S ′) the

Euclidean distance between S and S ′, and ψ : N
2 → R

+ is a symmetric positive

function nondecreasing in each variable. If ψ ≡ 1, then Zi is called strong mixing.

It is this latter case which will be tackled in this paper and for all v ≥ 0, we have

α (v) = sup
i, j∈RN ,‖i−j‖=v

α (σ (Zi) , σ (Zj)) ≤ X (v).

• The process is said to be Geometrically Strong Mixing (GSM) if there exists a

non-negative constant ρ ∈ [0, 1[ such that for all u > 0, α(u) ≤ Cρu .

Remark. A lot of published results have shown that the mixing condition (2.1) is satis-

fied by many time series and spatial random processes (see e.g. Tran [31], Guyon [18],

Rosenblatt [28], Doukhan [15]). Moreover, the results presented in this paper could be

extended under additional technical assumptions to the case, often considered in the lit-

erature, where ψ satisfies:

ψ(i, j) ≤ c min(i, j), ∀ i, j ∈ N,

for some constant c > 0.

In the following, we will consider the case where α(u) ≤ Cu−θ, for some θ > 0. But,

the results can be easly extend to the GSM case.

2.2.2. Local dependency measure.

In order to obtain the same rate of convergence as in the i.i.d case, one requires an

other dependency measure, called a local dependency measure. Assume that

• For ℓ = 1, ..., d, there exits a constant ∆ > 0 such that the pairs (X
(ℓ)
i , Xj) and

((X
(ℓ)
i , Yi), (X

(ℓ)
j , Yj)) admit densities fi,j and gi,j, as soon as dist(i, j) > ∆, such

that

|fi, j (x, y) − f (x) f (y) | ≤ C, ∀x, y ∈ R

|gi, j (u, v) − g (u) g (v) | ≤ C, ∀u, v ∈ R
2

for some constant C ≥ 0.

Remark. The link between the two dependency measures can be found in Bosq [7].

Note that if the second measure (as is name point out) is used to control the local

dependence, the first one is a kind of “asymptotic dependency” control.
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2.3. Results on U-statistics.

Let (Xn, n ≥ 1) be a sequence of real-valued random variables with the same distribu-

tion as F . Let the functional:

Θ(F ) =

∫

Rm

h(x1, x2, ..., xm)dF (x1)...dF (xm),

where m ∈ N, h(.) is some measurable function, called the kernel and F is a distribu-

tion function from some given set of distribution function. Without loss of generality,

we can assume that h(.) is invariable by permutation. Otherwise, the transformation
1

m!

∑
1≤i1 6=i2 6=... 6=im≤n h(xi1 , ..., xim) will provide a symmetric kernel.

A U−statistic with kernel h(.) of degree m based on the sample (Xi, 1 ≤ i ≤ n) is a

statistic defined by:

Un =
(n−m)!

n!

∑

1≤i1 6=i2 6=... 6=im≤n

h(Xi1 , ..., Xim)

It is said to be an m−order U−statistic. Let h1(x1) =
∫

Rm−1 h(x1, x2, ..., xm)
∏m

j=2 dF (xj).

The next Lemma is a consequence of Lemma 2.6 of Sun & Chian [30].

Lemma 2.1. Let (Xn, n ≥ 1) be a stationary sequence of strongly mixing random

variables. If there exists a positive number δ and δ′ (0 < δ′ < δ) verifying γ = 6(δ−δ′)
(4+δ)(2+δ′)

>

1 such that

(2.2) ||h(X1, ..., Xm)||4+δ <∞,

(2.3)

∫

Rm

|h(x1, ..., xm)|4+δ
m∏

j=1

dF (xj) <∞,

and α(n) = O(n−3(4+δ′)/(2+δ′)) . Then,

Un = Θ(F ) +
2

n

n∑

i=1

(h1(Xi) − Θ(F )) + Op(
1

n
).

To give strong consistency results, we need the following law of the iterated logarithm

of U-statistics:

Lemma 2.2. (Sun & Chian, [30]) Under the same conditions of the previous lemma, we

have

Un − Θ(F ) =
2

n

n∑

i=1

(h1(Xi) − Θ(F )) + Oa.s

(√
log log n

n

)

.

Remark 2.3.
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• In the following, we are dealing with a kernel h(.) = K( .
hn

) which depends on

n. Actually, it is a classical approach to use U−statistics result to get some

assymptotic results of kernel estimators, in the i.i.d case, we refer for example

Härdle and Stoker [20]. In fact, the dependence of hn on n does not influence the

asymptotical results presented here.

3. Estimation of the covariance of Inverse Regression Estimator

We suppose that one deals with a random field (Zi, i ∈ Z
N ) which, corresponds, in the

spatial regression case, to observations of the form Zi = (Xi, Yi), i ∈ Z
N , (N ≥ 1) at

different locations of a subset of R
N , N ≥ 1 with some dependency structure. Here, we

are particularly interested with the case where the locations take place in lattices of R
N .

The general continuous case will be the subject of a forthcoming work.

We deal with the estimation of the matrix Σe = varE(X|Y ) based on the observations

of the process: (Zi, i ∈ In) ; n ∈ (N∗)N . In order to ensure the existence of the matrix

Σ = varX and Σe = varE(X|Y ), we assume that E||X||4 < ∞. For sake of simplicity

we will consider centered process so EX = 0.

To estimate model (1.1), as previously mentioned, one needs to estimate the matrix

Σ−1Σe. On the one hand, we can estimate the variance matrix Σ by the empirical spatial

estimator, whose consistency will be easily obtained. On the other hand, the estimation

of the matrix Σe is delicate since it requires the study of the consistency of a suitable

estimator of the (inverse) regression function of X given Y :

r(y) =

{
ϕ(y)
f(y)

if f(y) 6= 0;

EY if f(y) = 0
where ϕ(y) =

(∫

R

x(i)fX(i),Y (x(i), y)dx, 1 ≤ i ≤ d

)
, y ∈ R.

An estimator of the inverse regression function r(.), based on (Zi, i ∈ In) is given by

rn(y) =

{
ϕn(y)
fn(y)

if fn(y) 6= 0,
1
n̂

∑
i∈In

Yi if fn(y) = 0,

with for all y ∈ R,

fn(y) =
1

n̂hn

∑

i∈In

K

(
y − Yi

hn

)

ϕn(y) =
1

n̂hn

∑

i∈In

XiK

(
y − Yi

hn

)
,

where fn is a kernel estimator of the density, K : R
d → R is a bounded integrable kernel

such that
∫
K (x) dx = 1 and the bandwidth hn ≥ 0 is such that limn→+∞ hn = 0.
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The consistency of the estimators fn and rn has been studied by Carbon et al [10]. To

prevent small-valued density observations y, we consider the following density estimator:

fe,n(y) = max(en, fn(y))

where (en) is a real-valued sequence such that limn→∞ en = 0. Then, we consider the

corresponding estimator of r

re,n(y) =
ϕn(y)

fe,n(y)
.

Finally, for X = 1
n̂

∑
i∈In

Xi we consider the estimator of Σe:

Σe,n =
1

n̂

∑
re,n(Yi) re,n(Yi)

T −XX
T
.

We aim at proving the consistency of the empirical variance associated to this estimator.

Remark. Here, we consider as estimator of the density f , fe,n = max(en, fn), to avoid

small values. There are other alternatives such as fe,n = fn+en or fe,n = max{(fn−en), 0}.

3.1. Weak consistency. In the following, for a fixed η > 0 and a random variable Z

in R
d, we will use the notation ‖Z‖η = E(||Z||η)1/η.

In this section, we will make the following technical assumptions

(3.1)

∥∥∥∥
r(Y )

f(Y )

∥∥∥∥
4+δ1

<∞, for some δ1 > 0

and

(3.2)

∥∥∥∥
r(Y )

f(Y )
1{f(Y )≤en}

∥∥∥∥
2

= O
(

1

n̂
1+δ
2

)
. for some 1 > δ > 0.

These assumptions are the spatial counterparts of respectively ‖r(Y )‖4+δ < ∞ and
∥∥r(Y ) 1{f(Y )≤en}

∥∥
2

= O
(

1

n̂
1
4+δ

)
needed in the i.i.d case.

We also assume some regularity conditions on the functions: K(.), f(.) and r(.):

• The kernel function K(.) : R → R
+ is a k−order kernel with compact support

and satisfying a Lipschitz condition |K (x) −K (y)| ≤ C|x− y|
• f(.) and r(.) are functions of Ck(R) (k ≥ 2) such that supy |f (k)(y)| < C1 and

supy ||ϕ(k)(y)|| < C2 for some constants C1 and C2,

Set Ψn = hk
n +

√
log n̂√
n̂hn

.

Theorem 3.1. Assume that α(t) ≤ Ct−θ, t > 0, θ > 2N and C > 0. If E(||X||) <∞ and

ψ(.) = E(||X||2|Y = .) is continuous. Then for a choice of hn such that n̂h3
n(log n̂)−1 → 0
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and n̂hθ1
n (log n̂)−1 → ∞ with θ1 = 4N+θ

θ−2N
, then, we get

Σe,n − Σe = Op

(
hk

n +
Ψ2

n

e2n

)

Corollary 3.2. Under Assumptions of Theorem 3.1 with h ≃ n−c1 , en ≃ n−c2 for some

positive constants c1 and c2 such that c2
k

+ 1
4k
< c1 <

1
2
− 2c2, we have

Σe,n − Σe = op

(
1√
n̂

)
.

Corollary 3.3. (Central limit theorem) Under previous assumptions, we have
√

n̂ (Σe,n − Σe)
L→ Λ

where Λ is a zero-mean gaussian on the space of d-order matrix with covariance

var
(
r(Y )r(Y )T

)
.

3.2. Strong consistency.

Here we study the case where the response, Y takes values in some compact set. We

replace the assumption
∥∥∥ r(Y )

f(Y )
1{f(Y )≤en}

∥∥∥
2

= O
(

1

n̂
1
2+δ

)
by E

(
exp

(
‖r(Y )‖ 1{f(Y )≤en}

))
=

O
(
n̂−ξ
)

for some ξ > 0. : E exp γ||X|| <∞ for some constant γ > 0.

Theorem 3.4. If (Zu) is GSM, for a choice of hn such that n̂h3
n(log n̂)−1 → 0 and

n̂hn(log n̂)−2N−1 → ∞. Assume also that infS f(y) > 0 for some compact set S, then

under the Assumptions of Lemma 2.1, we have:

Σe,n − Σe = Oa.s

(
hk

n +
Ψ2

n

e2n

)
.

Corollary 3.5. Under previous Assumptions, with hn ≃ (n̂)−c1, en ≃ n̂−c2 for some

positive constants c1 and c2 such that c2
k

+ 1
4k

≤ c1 <
1
2
− 2c2, we get

Σe,n − Σe = oa.s

(√
log log n̂

n̂

)
.

As mentionned previously, the eigenvectors associated with the positive eigenvalues of

Σ−1
n Σe, n provide an estimation of the EDR space. Classically, weak and strong consistency

results concerning the estimation of the EDR space are obtained by using the previous

consistency respectively of the Σ and Σe and the theory of perturbation as for example

in [37].
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4. Spatial inverse methode for spatial prediction

4.1. Prediction of a spatial process.

Let (ξn, n ∈ (N∗)N ) be a R−valued strictly stationary random spatial process, assumed

to be observed over a subset On ⊂ In (In is a rectangular region as previously defined

for some n ∈ (N∗)N). Our aim is to predict the square integrable value, ξi0, at a given

site i0 ∈ In − On. In practice, one expects that ξi0 only depends on the values of the

process on a bounded vicinity set (as small as possible) Vi0 ⊂ On; i.e that the process (ξi)

is (at least locally) a Markov Random Field (MRF) according to some system of vicinity.

Here, we will assume (without loss of generality) that the set of vicinity (Vj, j ∈ (N∗)N)

is defined by Vj of the form j + V (call vicinity prediction in Biau and Cadre [5]). Then

it is well known that the minimum mean-square error of prediction of ξi0 given the data

in Vi0 is

E(ξi0|ξi, i ∈ Vi0)

and we can consider as predictor any d−dimensional vector (where d is the cardinal of V)

of elements of Vi0 concatenated and ordered according to some order. Here, we choose the

vector of values of (ξn) which correspond to the d−nearest neighbors: for each i ∈ Z
N ,

we consider that the predictor is the vector ξd
i = (ξi(k); 1 ≤ k ≤ d) where i(k) is the k−th

nearest neighbor of i. Then, our problem of prediction amounts to estimate :

m(x) = E(ξi0|ξd
i0

= x).

For this purpose we construct the associated process:

Zi = (Xi, Yi) = (ξd
i , ξi), i ∈ Z

N

and we consider the estimation of m(.) based on the data (Zi,∈ On) and the model

(1.1). Note that the linear approximation of m(.) leads to linear predictors. The available

literature on such spatial linear models (we invite the reader think of the kriging method

or spatial auto-regressive method) is relatively abundant, see for example, Guyon [18],

Anselin and Florax [2], Cressie [11], Wackernagel [33]. In fact, the linear predictor is the

optimal predictor (in mimimun mean square error meaning) when the random field under

study is Gaussian. Then, linear techniques for spatial predicition, give unsatisfactory

results when the the process is not Gaussian. In this latter case, other approaches such as

log-normal kriging or the trans-Gaussian kriging have been introduced. These methods

consist in transforming the original data into a Gaussian distributed data. But, such

methods lead to outliers which appear as an effect of the heavy-tailed densities of the data

and cannot be delete. Therefore, a specific consideration is needed. This can be done by

using, for example, a nonparametric model. That is what is proposed by Biau and Cadre
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[5] where a predictor based on kernel methods is developped. But, This latter (the kernel

nonparametric predictor) as all kernel estimator is submitted to the so-called dimension

curse and then is penalized by d (= card(V)), as highlighted in Section 1. Classically,

as in Section 1, one uses dimension reduction such as the inverse regression method, to

overcome this problem. We propose here an adaptation of the inverse regression method

to get a dimension reduction predictor based on model (1.1):

(4.1) ξi = g(Φ.ξd
i ).

Remark 4.1.

(1) To estimate this model, we need to check the SIR condition in the context of

prediction i.e: X is such that for all vector b in R
d, there exists a vector B of

R
D such that E(bTX|Φ.X) = BT (Φ.X), is verify if the process (ξi) is a spatial

elliptically distributed process such as Gaussian random field.

(2) In the time series forecasting problem, “inverse regression” property can be an

“handicap”, since then, one needs to estimate the expectation of the “future”

given the “past”. So, the process under study must be reversible. The flexibility

that provide spatial modelling overcome this default since as mentioned in the

introduction, the notion of past, present and future does not exist.

At this stage, one can use the method of estimation of the model (1.1) given in Section

1 to get a predictor. Unfortunately (as usually in prediction problem) d is unknown in

practice. So, we propose to estimate d by using the fact that we are dealing both with a

Markov property and inverse regression as follows.

4.2. Estimation of the number of neighbors necessary for prediction.

Note that we suppose that the underline process is a stationary Markov process with

respect to the d−neighbors system of neighborhood, so the variables ξi(k) and ξi are

independent as soon as k > d and

E(ξi(k)|ξi = y) = 0

(since (ξi) is a stationary zero mean process).

Futhermore since our estimator (of model (1.1)) is based on estimation of E(X|Y =

y) = E(ξd
i |ξi = y) = (E(ξi(k)|ξi = y); 1 ≤ k ≤ d), that allows us to keep only the neighbors

ξi(k) for which E(ξi(k)|ξi = y) 6= 0. Then, an estimation of d is obtained by estimation of

argminkE(ξi(k)|ξi = y) = 0. We propose the following algorithm to get this estimator.
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Algorithm for estimation of d, the number of neighbors.

(1) Initialization: specify a parameter δ > 0 (small) and fix a site j0; set k = 1.

(2) compute r
(k)
n (y) =

∑

i∈On,Vj0
⊂On

ξi(k) Khn (y−ξi)

∑

i∈On,Vj0
⊂On

Khn(y−ξi)

, the kernel estimate of r(k)(y) =

E(X(k)|Y = y)

(3) if |(r(k)
n (y)| > δ, then k = k+1 and continue with Step 2; otherwise terminate and

d = k.

Then, we can compute a predictor based on d = k:

4.3. The dimension reduction predictor.

To get the predictor, we suggest the following algorithm:

(1) compute

r∗n(y) =

∑

i∈On,Vi0
⊂On

ξd
i Khn

(y − ξi)

∑

i∈On,Vi0
⊂On

Khn
(y − ξi)

(2) compute

Σe,n =
1

n̂

∑

i∈On,Vi0
⊂On

r∗e,n(Yi) r
∗
e,n(Yi)

T −XX
T
.

(3) Do the principal component analisys of Σ−1
n Σe,n both to get a basis of Im(Σ−1

n Σe,n)

and estimation of the D, the dimension of Im(Φ) as suggested in the next remark

(4) compute the predictor:

ξ̂i0 = g∗n(Φ∗
n.Xi0).

based on data (Zi, i ∈ On); where g∗n is the kernel estimate:

g∗n(x) =

∑

i∈On,Vi0
⊂On

ξiKhn

(
Φ∗

n(x− ξd
i )
)

∑

i∈On,Vi0
⊂On

Khn

(
Φ∗

n(x− ξd
i )
) ∀x ∈ R

d.

Remark 4.2.

(1) The problem of estimation of D in step (4) is a classical problem in dimension

reduction problems. Several ways exist in the literature. One can for example

use the eigenvalues representation of the matrix Σ−1
n Σe, n, the measure of distance

between spaces as in Li [24] or the selection rule of Ferré [16].
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(2) Consitency on the convergence of ξ̂i0 to ξi0 can be obtained by sketching both

result of Section 3 and results Biau and Cadre [5].

5. Conclusion

In this work, we have proposed two dimension reduction methods for spatial modeling.

The first one is a dimension reduction for spatial regression. It is a natural extension of

the idea of Li [24] (called Inverse Regression method) for spatially dependent variables

under strong mixing condition. Then, on one hand, we can say that is a good alternative

to spatial linear regression model since the link between the variables X and Y is not

necessarly linear. Futhermore, as raises Li [24], any linear model can be seen as a particular

case of model (1.1) with g being the identity function and D = 1. On the other hand, as

in the i.i.d. case, it requieres less data for calculus than spatial non-parametric regression

methods.

The second method that we have studied here deals with spatial prediction modelling.

Indeed, it is more general than kriging method were the gaussian assumption on the X

is needed. Here, we requier that X belongs to a larger class of random variables (that

obey to Li [24]’s condition recalled in the introduction). Futhermore, our spatial prediction

method has the ease of implementation property of the inverse regression methods. Then,

for example, it allows to estimate the number of neighbors need to predict. That cannot

do the non-parametric prediction method of Biau and Cadre [5].

We have presented here the theoretical framework of our techniques. The next step is

to apply them on real data. It is the subjet of works under development.

6. Proofs and Technical Results

6.1. Deviation Bounds . To show the strong consistency results, we will use the fol-

lowing Bernstein type deviation inequality:

Lemma 6.1. Let ( ζv, v ∈ N
N) be a zero-mean real-valued random spatial process such

that each v ∈ (N∗)N there exists c > 0 verifying

(6.1) E |ζv|k ≤ k! ck−2 E |ζv|2 , ∀ k ≥ 2

for some constant c > 0. Let Sn =
∑

v∈In
ζv. Then for each r ∈ [1,+∞] and each

n ∈ (N∗)Nand q ∈ (N∗)N such that 1 ≤ qi ≤ ni

2
and each ε > 0,

(6.2)

P (|Sn| > n̂ε) ≤ 2N+1exp

(
− q̂ε2

4(M2
2 + 2Ncε)

)
+2N×q̂×11

(
1 +

4c pNM
2/r
2

ε

) r
2r+1

α([p])2r/(2r+1)

where M2
2 = supv∈In

Eζ2
v.
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Remark 6.2. Actually, this result is an extension of Lemma 3.2 of Dabo-Niang and Yao [12]

for bounded processes. This extension is necessary since in the problem of our interessed,

assuming the boundness of the processes amounts to assume that the Xi’s are bounded. It

is a restrictive condition which (generally) is incompatible with the cornerstone condition

of the inverse regression (if X is elliptically distributed for example).

We will use the following lemma to get the weak consistency and a law of iterated of

the logarithm as well as for the matrix Σ (as we will see immediately) than for the matrix

Σe (see the proofs of results of Section 3).

Lemma 6.3. Let {Xn, n ∈ N
N} be a zero-mean stationary spatial process sequence, of

strong mixing random variables.

(1) If E||X||2+δ < +∞ and
∑
α(n̂)

δ
2+δ <∞, for some δ > 0. Then,

1

n̂

∑

i∈In

Xi = Op

(
1

n̂

)
.

(2) If E||X||2+δ < +∞ and
∑
α(n̂)

δ
2+δ <∞, for some δ > 0. Then,

√
n̂(

1

n̂

∑

i∈In

Xi)/σ → N (0, 1)

with σ2 =
∑

i∈ZN cov(Xk, Xi)

(3) If E exp γ||X|| < ∞ for some constant γ > 0, if for all u > 0 , α(u) ≤ aρ−u ,

0 < ρ < 1 or α(u) = C.u−θ, θ > N then,

1

n̂

∑

i∈In

Xi = oa.s

(√
log log n̂

n̂

)

.

Remark 6.4.

• The first result is obtained by using covariance inequality for strong mixing pro-

cesses (see Bosq [7]). Actually, it suffices to enumerate the Xi ’s into an arbitrary

order and sketch the proof in Theorem 1.5 of Bosq [7].

• The law of the iterated of the logarithm holds by applying the previous Lemma 6.1

with ε = η
√

log log n̂

n̂
, η > 0 and q̂ =

[
n̂

log log n̂

]
+ 1.

6.2. Consistency of the inverse regression. In Section 3, we have seen that the results

are based on consistency results of the function r(.) which are presented now under some

regularity conditions on the functions: K(.), f(.) and r(.).

• The kernel function K(.) : R → R
+ is a k−order kernel with compact support

and satisfying a Lipschitz condition |K (x) −K (y)| ≤ C|x− y|
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• f(.) and r(.) are functions of Ck(R) (k ≥ 2) such that supy |f (k)(y)| < C1 and

supy ||ϕ(k)(y)|| < C2 for some constants C1 and C2,

we have convergence result:

Lemma 6.5. Suppose α(t) ≤ Ct−θ, t > 0, θ > 2N and C > 0. If n̂h3
n(log n̂)−1 → 0,

n̂hθ1
n (log n̂)−1 → ∞ with θ1 = 4N+θ

θ−2N
, then

(1) (see, [10])

(6.3) supy∈R
|fn(y) − f(y)| = Op (Ψn ) .

(2) Furthermore, if E(||X||) <∞ and ψ(.) = E(||X||2|Y = .) is continuous, then

(6.4) supy∈R
||ϕn(y) − ϕ(y)|| = Op (Ψn) .

Remark 6.6. Actually, only the result (6.3) is shown in Carbon et al [10] but the result

(6.4) is easily obtained by noting that for all ε > 0,

P(supy∈R
||ϕn(y)−Eϕn(y)|| > ε) ≤ E||X||

an

+P(supy∈R
||ϕn(y)−Eϕn(y)|| > ε, ∀i, ||Xi|| ≤ an)

with an = η (log n̂)1/4, η > 0.

Lemma 6.7. If (Zu) is GSM, n̂h3
n(log n̂)−1 → 0 and n̂hn(log n̂)−2N−1 → ∞, then

(6.5) supy∈R
|fn(y) − f(y)| = Oa.s (Ψn) .

Furthermore, if E (exp γ ||X||) < ∞ for some γ > 0 and ψ(.) = E(||X||2|Y = .) is

continuous, then

(6.6) supy∈R
||ϕn(y) − ϕ(y)|| = Oa.s (Ψn) .

Remark. The equality (6.5) is due to Carbon et al [10]. The proof of the equality (6.6) is

obtained applying Lemma 6.1 and sketching the proofs of Theorem 3.1 and 3.3 of Carbon

et al [10]. Then it is omitted.

We will need the following lemma and the spatial block decomposition:

Lemma 6.8. (Bradley’s Lemma in Bosq [6])

Let (X, Y ) be an R
d × R−valued random vector such that Y ∈ Lr(P ) for some r ∈

[1,+∞]. Let c be a real number such that ||Y + c||r > 0 and ξ ∈ (0, ||Y + c||r]. Then there

exists a random variable Y ∗ such that:

(1) PY ∗ = PY and Y ∗ is independent of X,

(2) P (|Y ∗ − Y | > ξ) ≤ 11 (ξ−1||Y + c||r)r/(2r+1) × [α (σ(X), σ(Y ))]2r/(2r+1).
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Spatial block decomposition.

Let Yu = ζv=([ui]+1, 1≤i≤N), u ∈ R
N . The following spatial blocking idea here is that of

Tran [31] and Politis and Romano [26].

Let ∆i =
∫ i1
(i1−1)

...
∫ iN
(iN−1)

Yudu . Then,

Sn =

∫ n1

0

...

∫ nN

0

Yudu =
∑

1 ≤ ik ≤ nk

k = 1, ...N

∆i.

So, Sn is the sum of 2NPN q1 × q2 ×· · ·× qN terms ∆i. And each of them is an integral

of Yu over a cubic block of side p. Let consider the classical block decomposition:

U(1,n, j) =

(2ji+1)p∑

ki=2jip+1, 1≤i≤N

∆k,

U(2,n, j) =

(2ji+1)p∑

ki=2jip+1, 1≤i≤N−1

2(jN+1)p∑

kN=(2jN+1)p+1

∆k,

U(3,n, x, j) =

(2ji+1)p∑

ki=2jip+1, 1≤i≤N−2

2(jN−1+1)p∑

kN−1=(2jN−1+1)p+1

(2jN+1)p∑

kN=2jN p+1

∆k,

U(4,n, j) =

(2ji+1)p∑

ki=2jip+1, 1≤i≤N−2

2(jN−1+1)p∑

kN−1=(2jN−1+1)p+1

2(jN+1)p∑

kN=(2jN+1)p+1

∆k,

and so on. Note that

U(2N−1,n, j) =

2(ji+1)p∑

ki=(2ji+1)p+1, 1≤i≤N−1

(2jN+1)p∑

kN=2jN p+1

∆k.

Finally,

U(2N ,n, j) =

2(ji+1)p∑

ki=(2ji+1)p+1, 1≤i≤N

∆k.

So,

(6.7) Sn =

2N∑

i=1

T (n, i),

with T (n, i) =
∑ql−1

jl=0, l=1,...,N U(i,n, j).

If ni 6= 2pti, i = 1, ..., N , for all set of integers t1, ..., tN , then a term, say T
(
n, 2N + 1

)

containing all the ∆k’s at the end, and not included in the blocks above, can be added
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(see Tran [31] or Biau and Cadre [4]). This extra term does not change the result of

previous proof.

Proof of Lemma 6.1.

Using (6.7) it suffices to show that

(6.8)

P

(
|T (n, i)| > n̂ε

2N

)
≤ 2 exp

(
− ε2

4v2(q)
q̂

)
+q̂×11

(
1 +

4C pNM
2/r
2

ε

)r/(2r+1)

α([p])2r/(2r+1)

for each 1 ≤ i ≤ 2N .

Without loss of generality we will show (6.8) for i = 1. Now, we enumerate (as it is

often done in this case) in arbitrary way the q̂ = q1 × q2 ×· · ·× qN terms U(1,n, j) of sum

of T (n, 1) that we call W1, ...,Wq̂. Note that the U(1,n, j) are measurable with respect

to the σ−field generated by Yu with u such that 2jip ≤ ui ≤ (2ji + 1)p, i = 1, ..., N .

These sets of sites are separated by a distance at least p and since for all m = 1, ..., q̂

there exists a j(m) such that Wm = U(1,n, j(m)) which have the same distribution as

W ∗
m ,

E|Wm|r = E|W ∗
m|r = E

∣∣∣∣∣

∫ (2j1(m)+1)p

2j1(m)p

...

∫ (2jN (m)+1)p

2jN (m)p

Yudu

∣∣∣∣∣

r

, r ∈ [1, +∞].

Noting that

∫ (2jk(m)+1)p

2jk(m)p

Yu du =

∫ [2jk(m)p]+1

2jk(m)p

Yu du +

[(2jk(m)+1)p]∑

vk=[2jk(m)p]+2

ζv +

∫ 2jk(m)+1)p

[(2jk(m)+1)p]

Yu du

= ([2jk(m)p] + 1 − 2jk(m)p) ζ(v, vk=[2jk(m)p]+1) +

[(2jk(m)+1)p]∑

vk=[2jk(m)p]+2

ζv

+((2jk(m) + 1)p− [(2jk(m) + 1)p]) ζ(v, vk=[(2jk(m)+1)p]+1)

=

[(2jk(m)+1)p]+1∑

vk=[2jk(m)p]+1

w(j,v)k ζv

and |w(j,v)k| ≤ 1 ∀k = 1, ..., N , we have by using Minkovski’s inequality and 6.1 one get

(6.9) E

∣∣∣∣
Wm

pN

∣∣∣∣
r

≤ cr−2r!M2
2 , ∀r ≥ 2.



englishKERNEL INVERSE REGRESSION FOR SPATIAL RANDOM FIELDS. 18

Then, using recursively the version of Bradley’s lemma gives in Lemma 6.8 we define

independent random variables W ∗
1 , ...,W

∗
q̂ such that for all r ∈ [1,+∞] and for all m =

1, ..., q̂, W ∗
m has the same distribution with Wm and setting ωr

r = prNcr−2M2
2 , we have:

P (|Wm −W ∗
m| > ξ) ≤ 11

( ||Wm + ωr||r
ξ

)r/(2r+1)

α([p])2r/(2r+1),

where, c = δωrp and ξ = min
(

n̂ε
2N+1q̂

, (δ − 1)ωrp
N
)

= min
(

εpN

2
, (δ − 1)ωrp

N
)

for some

δ > 1 specified below. Note that for each m,

||Wm + c||r ≥ c− ||Wm||r ≥ (δ − 1)ωrp
N > 0

so that 0 < ξ < ||Wm + c||r as required in Lemma 6.8.

Then, if δ = 1 + ε
2ωr

,

P (|Wm −W ∗
m| > ξ) ≤ 11

(
1 +

4ωr

ε

)r/(2r+1)

α([p])2r/(2r+1)

and

P

(
q̂∑

m=1

|Wm −W ∗
m| >

n̂ε

2N+1

)
≤ q̂ × 11

(
1 +

4ωr

ε

)r/(2r+1)

α([p])2r/(2r+1).

Now, note that Inequality (6.9) also leads (by Bernstein’s inequality) to :

P

(∣∣∣∣∣

q̂∑

m=1

W ∗
m

∣∣∣∣∣ >
n̂ε

2N+1

)
≤ 2 exp

(
−

(
n̂ε

2N+1

)2

4
∑q̂

m=1 EW 2
m + cn̂pN

2N+1 ε

)

Thus

P (|T (n, 1)| > n̂ε
2N ) ≤ 2exp

(
− q̂ε2

4( M2
2 +2N cε)

)
+ q̂ × 11

(
1 +

4c pNM
2/r
2

ε

)r/(2r+1)

α([p])2r/(2r+1)

Then, since q̂ = q1 × ... × qN and n̂ = 2NpN q̂, we get inequality (6.8) the proof is

completed by noting that P (|Sn| > n̂ε) ≤ 2NP (|T (n, i)| > n̂ε
2N ). �

6.3. Proof of the Theorem 3.1. We will prove the desired result on Σe, n − Σe using

an intermediate matrix

Σe,n =
1

n̂

∑

i∈In

r(Yi)r(Yi)
T .

Start with the following decomposition

Σe,n − Σe = Σe, n − Σe,n + Σe,n − Σe.

We first show that:

(6.10) Σe, n − Σe, n = Op

(
1

n̂
1
2
+δ

+
Ψ2

n

e2n

)
.
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To this aim, we set :

(6.11) Σe, n − Σe,n = Sn, 1 + Sn, 2 + Sn, 3

with

Sn,1 =
1

n̂

∑

i∈In

(r̂en(Yi) − r(Yi)) (r̂en(Yi) − r(Yi))
T ,

Sn, 2 =
1

n̂

∑

i∈In

r(Yi) (r̂en(Yi) − r(Yi))
T

and

Sn, 3 =
1

n̂

∑

i∈In

(r̂en(Yi) − r(Yi)) r(Yi)
T .

Note that ST
n, 3 = Sn, 2, hence we only need to control the rate of convergence of the first

two terms Sn, 1 and Sn, 2

We will successively prove that

Sn,1 = Op

(
Ψ2

n

e2n

)
,

and

Sn,2 = Op

(
Ψ2

n

e2n
+ hk

n

)

this latter will immediately implies that

Sn,3 = Op

(
Ψ2

n

e2n
+ hk

n

)
.

• Control on Sn, 1

Since for each y ∈ R :

(6.12) r̂en(y) − r(y) =
r(y)

fen(y)
(f(y) − fen(y)) +

1

f̂en(y)
(ϕn(y) − ϕ(y))

and

(6.13) f(y) − fen(y) = f(y) − fn(y) + (fn(y) − en)1{fn(y)<en},

for each i ∈ (N∗)N

‖ren(Yi) − r(Yi)‖ ≤ ‖r(Yi)‖
en

||fn − f ||∞ + 2 ‖r(Yi)‖1{fn(Yi)<en} +
‖ϕn − ϕ‖∞

en
.

and

‖ren(Yi) − r(Yi)‖2 ≤ 3

[
‖r(Yi)‖2 ||fn − f ||2∞

e2n
+ 4 ‖r(Yi)‖2

1{fn(Yi)<en} +
||ϕn − ϕ||2∞

e2n

]
.
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Using the following inequality (see Ferré and Yao [17] for details):

(6.14) 1{fn(Yi)<en} ≤ 1{f(Yi)<en} +
||fn − f ||2∞

e2n
,

and by results on Lemmas 6.3 and 6.5, we have:

Sn,1 ≤
C

n̂

∑

i∈In

‖r(Yi)‖2
1{f(Yi)<en} + Op

(
Ψ2

n

e2n

)
, C > 0.

Now, noting that

1

n̂

∑

i∈In

‖r(Yi)‖2
1{f(Yi)<en} ≤ e2n

1

n̂

∑

i∈In

‖r(Yi)‖2

f(Yi)2
1{f(Yi)<en},

we have (since E
(

||r(Yi)||2
f(Yi)2

1{f(Yi)<en}

)
= O

(
1

n̂1+δ

)
by assumption):

(6.15)
1

n̂

∑

i∈In

‖r(Yi)‖2
1{f(Yi)<en} = Op

(
e2n

n̂1+δ

)

and

Sn,1 = Op

(
e2n

n̂1+δ
+

Ψ2
n

e2n

)

because of Assumption E
(

‖r(Y )‖2

f(Y )2
1{f(Y )<en}

)
= O

(
1

n̂1+δ

)
.

Now, since Ψn = hk
n +

√
log n̂

n̂hn
and en

n̂
1+δ
2

≤ C
√

log n̂

n̂hn
(for n̂ large and C > 0 an arbitrary

constante), we have:

(6.16) Sn,1 = Op

(
Ψ2

n

e2n

)
.

• Control on Sn, 2 .

Noting that : 1
fen

= 1
f
+ f−f̃en

f̃enf
+ f̃en−fen

f̃en f̂en
= 1

f
+ f−en

f̃enf
1{f<en}+

f̃en−fen

f̃enfen
, with f̃en = max{f, en},

we have:

Sn, 2 =
1

n̂

∑

i∈In

r(Yi)r(Yi)
T

fen(Yi)
(f(Yi) − fen(Yi)) +

r(Yi)

fen(Yi)
(ϕn(Yi) − ϕ(Yi))

T

=
1

n̂

∑

i∈In

r(Yi)r(Yi)
T

f(Yi)
(f(Yi) − fn(Yi)) +

r(Yi)

f(Yi)
(ϕn(Yi) − ϕ(Yi))

T +Rn1 +Rn2 .

where

Rn1(Yi) = r(Yi)
[
r(Yi)

T (f(Yi) − fn(Yi)) + (ϕn(Yi) − ϕ(Yi))
T
]

(
1

f(Yi)
1{f(Yi)<en} +

f̃en(Yi) − fen(Yi)

f̃en(Yi)fen(Yi)

)
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and

Rn2 =
r(Yi)r(Yi)

T

fen(Yi)
(fn(Yi) − fen(Yi)) .

Futhermore :

• since for all y ∈ R we have 1
f̃en (y)fen (y)

≤ 1
e2
n

and by several calculus we also have∣∣∣f̃en(y) − fen(y)
∣∣∣ ≤ |f(y) − fn(y)| and then ||f̃en − fen||∞ ≤ ||fn − f ||∞ , we also

have one hand:

Rn1
≤ 1

n̂

∑

i∈In

(
||r(Yi)|| ||ϕn − ϕ||∞ + ||r(Yi)||2 ||fn − f ||∞

) ( 1

f(Yi)
1{f<en} +

||fn − f ||∞
e2
n

)
(6.17)

• on the other hand we have

Rn2 ≤ 1

n̂

∑

i∈In

||r(Yi)||2
|fn(Yi) − en|
fen(Yi)

1{fn(Yi)<en}

≤ 2

n̂

∑

i∈In

||r(Yi)||2 1{fn(Yi)<en}.

because for all y ∈ R , |fn(y) − fen(y)| = |fn(y) − en|1{fn(y)<en} ≤ 2en1{fn(y)<en}.

Then, it follows from (6.14 and 6.15) that:

Rn2 = Op

(
e2n

n̂1+δ
+

Ψ2
n

e2n

)

as for Sn1 , we deduce:

Rn2 = Op

(
Ψ2

n

e2n

)

Now, observious that,

1

n̂

∑

i∈In

||r(Yi)||2
f(Yi)

1{f(Yi)<en} ≤ en
1

n̂

∑

i∈In

||r(Yi)||2
f(Yi)2

1{f(Yi)<en},

we have (as previously):

(6.18)
1

n̂

∑

i∈In

||r(Yi)||2
f(Yi)

1{f(Yi)<en} = Op

( en
n̂1+δ

)
.

Moreover, since E
(

‖r(Y )‖2

f(Y )2
1{f(Y )<en}

)
= O

(
1

n̂1+δ

)
, we also have:

(6.19)
1

n̂

∑

i∈In

||r(Yi)||
f(Yi)

1{f(Yi)<en} = Op

(
1

n̂
1+δ
2

)

So combining (6.17), (6.18) and (6.19), we get:

Rn1 = Op

(
enΨn

n̂1+δ
+

Ψn

n̂
1+δ
2

+
Ψ2

n

e2n

)
= Op

(
Ψn

n̂
1+δ
2

+
Ψ2

n

e2n

)
;
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and since en

n̂
1+δ
2

≤ C
√

log n̂

n̂hn
(for n̂ large) we have:

Rn1 = Op

(
Ψ2

n

e2n

)
.

Then,

Sn, 2 = S
(1)
n, 2 + S

(2)
n, 2 + Op

(
Ψ2

n

e2n

)
;

with

S
(1)
n, 2 =

1

n̂

∑

i=1

r(Yi)r(Yi)
T

f(Yi)
(fn(Yi) − f(Yi))

and

S
(2)
n, 2 =

1

n̂

∑

i=1

r(Yi)

f(Yi)
(ϕn(Yi) − ϕ(Yi))

T .

To finish, we are going to show that

S
(1)
n, 2 = Op(h

k
n +

1

n̂hn

)

S
(2)
n, 2 = Op(h

k
n +

1

n̂hn

)

Note that:

S
(1)
n, 2 =

1

n̂

∑

i=1

τ(Yi) f(Yi) −
1

hn

Vn

where τ(.) is a function defined by τ(y) = r(y) r(y)T

f(y)
for y ∈ R and

Vn =
1

n̂2

∑

i,j∈In

τ(Yi)Khn
(Yi − Yj)

is a second-order Von Mises functional statistic which associated U-statistic is:

Un =
1

2n̂(n̂− 1)

∑

i=1

∑

j 6=i

[τ(Yi) + τ(Yj)]Khn
(Yi − Yj).

Since: Vn = Un + Op(
1
n̂
),

S
(1)
n, 2 =

1

n̂

∑

i=1

τ(Yi) f(Yi) −
1

hn

Un + Op

(
1

n̂hn

)
.

We apply Lemma 2.1 with, m = 2, h(y1, y2) = [τ(y1) + τ(y2)]Khn
(y1 − y2)

h1(y) =
1

2
[τ(y).f ∗Khn

(y) + (τ.f) ∗Khn(y)] ,

and
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Θ(F ) = E (h1(Y )) = E (τ(y).f ∗Khn
(y)) .

Since

||h(Y1, Y2)||4+δ ≤ C.||τ(Y )||4+δ <∞,

by assumption (3.1) then,

Un = Θ(F ) +
2

n̂

∑

i

(h1(Yi) − Θ(F )) + Op(
1

n̂
).

and

S
(1)
n, 2 =

1

n̂

∑

i=1

τ(Yi) f(Yi) −
Θ(F )

hn

− 2

n̂

∑

i

(
h1(Yi)

hn

− Θ(F )

hn

)
+ Op

(
1

n̂hn

)

=
1

n̂

∑

i=1

τ(Yi)

(
f(Yi) −

f ∗Khn
(Yi)

hn

)
+

Θ(F ) − (τ.f) ∗Khn
(yi)

hn

+ Op

(
1

n̂hn

)
.

Since f and r(.) belongs to Ck(R), we get,
∥∥∥∥
f ∗Khn

(y)

hn

− f(y)

∥∥∥∥
∞

= O(hk
n)

and ∥∥∥∥
(τ.f) ∗Khn

(y)

hn

− (τ.f)(y)

∥∥∥∥
∞

= O(hk
n).

Then, we have

1

n̂

∑

i∈In

τ(Yi) f ∗Khn
(Yi)

hn

=
1

n̂

∑

i∈In

(τ.f)(Yi) + Op(h
k
n),

1

n̂

∑

i∈In

(τ.f) ∗Khn
(Yi)

hn

=
1

n̂

∑

i∈In

(τ.f)(Yi) + O(hk
n)

Θ(F )

hn

= E((τ.f)(Y )) + O(hk
n).

Finally:

S
(1)
n, 2 = Op(h

k
n +

1

n̂
+

1

n̂hn

) = Op(h
k
n +

1

n̂hn

).

By using similar arguments and applying Lemma 2.1 with m = 3, one also gets

S
(2)
n, 2 = Op(h

k
n +

1

n̂hn

).

So,

Sn,2 = Op

(
Ψ2

n

e2n
+ hk

n +
1

n̂hn

)

Then, equality, (6.16), and (6.20) lead to (6.10).
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Recall that Ψn = hk
n +

√
log n̂

n̂hn
. Then, the fact that there exist a real A > 0 such that

∀ n̂ > A, 1
n̂hn

< log n̂

n̂hne2
n

and :

(6.20) Sn,2 = Op

(
Ψ2

n

e2n
+ hk

n

)

Finally, using equality (6.10) one has;

(6.21) Σe,n − Σe = Σe,n − Σe + Op

(
Ψ2

n

e2n
+ hk

n

)
.

To complete the proof, we will use Lemma 6.3. To this aim, it suffices to choose θ = δ

with δ > 2N then E||X||4+δ <∞ and
∑

k α(k)
δ

δ+4 <∞; hence we have:

Σe,n − Σe = Op(
1

n̂
).

which ends the proof. �

6.4. Proof of corollary 3.2.

The proof is achieved by replacing hn ≃ n̂−c1 and en ≃ n̂−c2 with c2
k

+ 1
4k
< c1 <

1
2
−2c2

on equality (6.21) �

6.5. Proof of corrollary 3.3.

Chosing hn ≃ n̂−c1 and en ≃ n̂−c2 where c2
k

+ 1
4k
< c1 <

1
2
− 2c2 on equality (6.21), one

gets Σe, n − Σe = Σe,n − Σe + op(
1√
n̂
) and the central limit theorem for spatial data and

Slusky’s theorem completes the proof.

Proof of Theorem 3.4. Let vn =
(

log log n̂

n̂

) 1
2 note that since Y take place on a com-

pact set, 1
f

is bounded and replace the assumption
∥∥∥ r(Y )

f(Y )
1{f(Y )≤en}

∥∥∥
2

= O
(

1

n̂
1
2 +δ

)
by

E
(
exp

(
‖r(Y )‖ 1{f(Y )≤en}

))
= O

(
n̂−ξ
)

for some ξ > 0. Then,

P

(∥∥∥∥∥
1

n̂

∑

i∈In

r(Yi)

f(Yi)
1{f(Yi)≤en}

∥∥∥∥∥ >
ε

vn

)

≤ P

(
C

n̂

∑

i∈In

‖r(Yi)‖ 1{f(Yi)≤en} >
ε

vn

)

and because of Minskovski’s inequality: for all k ∈ N
∗, E

((
1
n̂

∑
i∈In

‖r(Yi)‖ 1{f(Yi)≤en}
)k) ≤

∥∥r(Y ) 1{f(Y )≤en}
∥∥k

k
, we can say that with using the argument E

(
exp

(
‖r(Y )‖ 1{f(Y )≤en}

))
=
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O
(
n̂−ξ
)

:

P

(∥∥∥∥∥
1

n̂

∑

i∈In

r(Yi)

f(Yi)
1{f(Yi)≤en}

∥∥∥∥∥ >
ε

vn

)
≤ E

[
exp

(
‖r(Y )‖ 1{f(Y )≤en}

)]
exp

(
− ε

vn

)

≤ C1 n̂−ξ. exp

(
−ε
(

log log n̂

n̂

)− 1
2

)
for someC1 > 0.

≤ C1 exp

(
−ξ log n̂ − ε

(
n̂

log log n̂

) 1
2

)

≤ C1 exp

(
−min(ξ , ε)

(
log n̂ +

√
log n̂√

log log n̂

))

≤ C1 exp

(

−min(ξ , ε) log n̂

(

1 +
1√

(log n̂) log log n̂

))

as n̂ → +∞, exp

(
−min(ξ , ε) log n̂

(
1 + 1√

(log n̂) log log n̂

))
≃ n̂−C2 where c2 is positive

constant. So, 1
n̂

∑
i∈In

r(Yi)
f(Yi)

1{f(Yi)≤en} = oa.s

((
log log n̂

n̂

) 1
2

)
and the proof is complet by

using Lemma 6.7 and sketching the proof of Theorem 3.1 �

Proof of Corollary 3.5. If moreover we chose hn ≃ n̂−c1 and en ≃ n̂−c2 where c2
k

+ 1
4k
<

c1 <
1
2
− 2c2, then,

√
n̂

log log n̂
× Ψ2

n

e2n
=

√
n̂

log log n̂
×
(
n̂−2kc1+2c2 + n̂−1+c1+2c2 log n̂

)

√
n̂

log log n̂
× Ψ2

n

e2
n

= n̂
1
2−2kc1+2c2√

log log n̂
+ n̂− 1

2
+c1+2c2 log n̂ this latter tend to zero as soon as c2

k
+ 1

4k
≤

c1 <
1
2
− 2c2

The proof is obtained by sketching the proof of Corolary 3.2 and using the law of the

iterated logarithm recalled in Lemma 6.3.
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