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Abstract: We consider the problem of choosing between several models
in least-squares regression with heteroscedastic data. We prove that any
penalization procedure is suboptimal when the penalty is proportional to
the dimension of the model, at least for some typical heteroscedastic model
selection problems. In particular, Mallows’ Cp is suboptimal in this frame-
work, as well as any “linear” penalty depending on both the data and
their true distribution. On the contrary, optimal model selection is possible
in this framework with data-driven penalties such as V -fold or resampling
penalties (Arlot, 2008a,b). Therefore, estimating the “shape” of the penalty
from the data is useful, even at the price of a higher computational cost.
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1. Introduction

In the last decades, model selection has received much interest, commonly
through penalization. In short, penalization chooses the model minimizing the
sum of the empirical risk (how well the model fits data) and of some measure of
complexity of the model (called penalty); see FPE (Akaike, 1970), AIC (Akaike,
1973), Mallows’ Cp or CL (Mallows, 1973). Many other penalization procedures
have been proposed since, such as bootstrap penalties (Efron, 1983), resampling
and V -fold penalties (Arlot, 2008a,b).

Model selection can target two different goals. On the one hand, a procedure
is efficient (or asymptotically optimal) when its quadratic risk is asymptotically
equivalent to the risk of the oracle. On the other hand, a procedure is consistent
when it chooses the smallest true model asymptotically with probability one.
This paper deals with efficient procedures, without assuming the existence of a
true model.

A huge amount of literature exists about efficiency of “linear” penalties, that
is penalties proportional to the dimension of the model. Mallows’ Cp, Akaike’s
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FPE and AIC are asymptotically optimal, as proved by Shibata (1981) for Gaus-
sian errors, by Li (1987) under suitable moment assumptions on the errors,
and by Polyak and Tsybakov (1990) under sharper moment conditions, in the
Fourier case. Non-asymptotic oracle inequalities (with some leading constant
C > 1) have been obtained by Barron et al. (1999) and by Birgé and Massart
(2001) in the Gaussian case, and by Baraud (2000, 2002) under some mo-
ment assumptions on the errors. In the Gaussian case, non-asymptotic ora-
cle inequalities with leading constant Cn tending to 1 when n tends to infin-
ity have been obtained by Birgé and Massart (2007). The oracle inequalities of
Birgé and Massart (2007) also apply to other data-driven linear penalties.

Nevertheless, Mallows’ Cp and other linear penalties were only proved to be
efficient for homoscedastic data, that is data such that the variance of the noise
does not depend on the position in the feature space; such an assumption is
unrealistic for many practical problems. This paper tackles the model selection
problemwhen the noise-level varies over the feature space, that is heteroscedastic
data. Mallows’ Cp is empirically known to fail with heteroscedastic data, as
showed for instance in a previous paper (Arlot, 2008a, Section 5).

Resampling-based model selection procedures are natural candidates for han-
dling heteroscedastic data; among many examples, let us mention cross-validation
(Allen, 1974; Stone, 1974), V -fold cross-validation (Geisser, 1975), resampling
penalties (Efron, 1983; Arlot, 2008a) and V -fold penalties (Arlot, 2008b). In
particular, resampling and V -fold penalties satisfy a non-asymptotic oracle in-
equality with leading constant Cn tending to 1 when n tends to infinity for
selecting among regressogram estimators when data are heteroscedastic (Arlot,
2008a,b).

Compared to linear penalties, resampling methods can be computationally
costly. The goal of this paper is to prove that the additional computational cost
of resampling methods actually yields a better model selection efficiency than
any linear penalization procedure.

More precisely, Theorem 1 shows a typical heteroscedastic model selection
problem for which the excess loss of the estimator selected by any linear penal-
ization procedure is larger than the excess loss of the oracle multiplied by an
absolute constant κ > 1 with large probability (Section 3.1). In particular, no
linear penalty can be asymptotically optimal for this model selection problem,
even a penalty for which the multiplicative constant K̂ depends on the true
distribution of the data.

Theorem 1 is a non-asymptotic result, meaning in particular that the collec-
tion of models is allowed to depend on the sample size n; in practice, it is usual
to allow the number of explanatory variables to increase with the number of ob-
servations. Considering models with a large number of parameters (for example
of the order of a power of the sample size n) is also necessary to approximate
functions belonging to a general approximation space. Thus, the non-asymptotic
point of view allows not to assume that the regression function is described with
a small number of parameters.
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The reason why such a strong negative result holds is that the ideal penalty is
highly non-linear in the dimension of the models when data are heteroscedastic
(Section 3.2). Hence, as soon as the collection of models is rich enough (in par-
ticular not restricted to regular histograms), any model that can be selected by
a linear penalty yields an excess loss larger than the one of the oracle multiplied
by κ > 1.

On the contrary, resampling and V -fold penalties satisfy a non-asymptotic
oracle inequality with leading constant Cn tending to 1 when n tends to infin-
ity for the model selection problem considered in Theorem 1 (Section 3.3). In
particular, these penalties are more efficient than any linear penalty with large
probability, at least when the sample size is large enough.

Note that the suboptimality of data-driven linear penalties for some het-
eroscedastic problems is highly intuitive and certainly known empirically by
many practitioners. Indeed, when data are heteroscedastic, different parameters
of the model are estimated with different uncertainties. Therefore, penalizing
each parameter in the same way seems a poor strategy. Nevertheless, no theoret-
ical result like Theorem 1 has ever been proved, up to the best of our knowledge,
certainly because it requires precise non-asymptotic concentration inequalities
which have only been proved recently (see Section 6.3).

Moreover, Theorem 1 is stronger than a minimax suboptimality result, at
least from two aspects. First, Theorem 1 is not restricted to data-driven linear
penalties: even linear penalization procedures using the knowledge of the true
distribution are suboptimal. Second, since the proof of Theorem 1 applies to
almost any heteroscedastic model selection problem, it proves that linear penal-
ties are suboptimal for each of these problems with large probability, which is
much stronger than being suboptimal in worst case. These are strong arguments
against the practical use of linear penalties.

In Section 4, a simulation study shows that the negative result of Theorem 1
is not restricted to one particular model selection problem or to large sample
sizes. Linear penalties probably fail to attain asymptotic optimality for almost
any model selection problem in heteroscedastic regression, whereas resampling-
based penalties generally perform better, even for small sample sizes.

Therefore, when data are heteroscedastic, whatever the sample size, the com-
putational cost of resampling-based penalties is compensated by a significant
improvement of model selection performance compared to linear penalties.

2. Framework

In this section, we describe the least-squares regression framework, model selec-
tion and the penalization approach.
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2.1. Least-squares regression

Suppose we observe some data (X1, Y1), . . . (Xn, Yn) ∈ X ×R, independent with
common distribution P , where the feature space X is typically a compact set
of R

k. The goal is to predict Y given X , where (X, Y ) ∼ P is a new data
point independent of (Xi, Yi)1≤i≤n. Denoting by s the regression function, that
is s(x) = E [Y | X = x ], we can write

Yi = s(Xi) + σ(Xi)ǫi (1)

where σ : X 7→ R is the heteroscedastic noise level and ǫi are i.i.d. centered noise
terms, possibly dependent on Xi, but with mean 0 and variance 1 conditionally
on Xi.

The quality of a predictor t : X 7→ Y is measured by the quadratic prediction
loss

E(X,Y )∼P [γ(t, (X, Y )) ] =: Pγ(t) where γ(t, (x, y)) = ( t(x) − y )
2

is the least-squares contrast. The minimizer of Pγ(t) over the set of all predic-
tors, called Bayes predictor, is the regression function s. Therefore, the excess
loss is defined as

ℓ (s, t ) := Pγ ( t ) − Pγ (s ) = E(X,Y )∼P (t(X) − s(X))
2

.

Given a particular set of predictors Sm (called a model), the best predictor over
Sm is defined by

sm := arg min
t∈Sm

{Pγ(t)} .

The empirical counterpart of sm is defined by

ŝm := arg min
t∈Sm

{Pnγ(t)}

(when it exists and is unique), where Pn = n−1
∑n

i=1 δ(Xi,Yi) is the empirical
distribution function; ŝm is the well-known empirical risk minimizer, also called
least-squares estimator since γ is the least-squares contrast.

2.2. Model selection, penalization

Let us assume that a family of models (Sm)m∈Mn
is given, hence a family of

empirical risk minimizers (ŝm)m∈Mn
. The model selection problem consists in

looking for some data-dependent m̂ ∈ Mn such that ℓ
(
s, ŝ

m̂

)
is as small as

possible. For instance, it would be convenient to prove an oracle inequality of
the form

ℓ
(
s, ŝ

m̂

)
≤ C inf

m∈Mn

{ ℓ (s, ŝm )} + Rn (2)

in expectation or with large probability, with leading constant C close to 1 and
Rn = o(n−1).
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General penalization procedures can be described as follows. Let pen : Mn 7→
R

+ be some penalty function, possibly data-dependent, and define

m̂ ∈ arg min
m∈Mn

{crit(m)} with crit(m) := Pnγ(ŝm) + pen(m) . (3)

Since the ideal criterion crit(m) is the true prediction error Pγ ( ŝm ), the ideal
penalty is

penid(m) := Pγ(ŝm) − Pnγ(ŝm) .

This quantity is unknown because it depends on the true distribution P . A
natural idea is to choose pen(m) as close as possible to penid(m) for every
m ∈ Mn.

When Card(Mn) ≤ Knα for some K, α < ∞ and pen(m) is a good estimator
of the ideal penalty penid(m) for every m ∈ Mn, then m̂ satisfies an oracle
inequality (2) with large probability, with leading constant C close to 1 and
Rn ≪ n−1 (see Arlot and Massart, 2008, for instance).

A classical penalization procedure in the least-squares regression framework
is Mallows’ Cp (Mallows, 1973). For every m ∈ Mn, Mallows’ penalty is defined
as

pen(m) :=
2σ2Dm

n
,

where Dm is the dimension of the model Sm as a vector space and the noise-
level σ(·) is assumed to be constant equal to σ. Various optimality results for
Mallows’ Cp have been proved, as noticed in Section 1, always assuming the
noise-level to be constant. Note also that when σ is constant but unknown, it
can be estimated from the data by

σ̂2 :=
d2
(
Y1...n, S⌊n/2⌋

)

n − ⌊n/2⌋ , (4)

where Y1...n = (Y1, . . . , Yn) ∈ R
n, d is the Euclidean distance on R

n and S⌊n/2⌋

is a model (that is, a linear subspace of R
n) of dimension ⌊n/2⌋. Baraud (2000,

Section 6) proved an oracle inequality like (2) for Mallows’ Cp when σ2 is esti-
mated by (4).

3. Main results

In this section, we first describe a typical heteroscedastic model selection prob-
lem for which any linear penalty—that is of the form pen(m) = K̂Dm where K̂
is allowed to depend on P and Pn—fails to attain asymptotic optimality (Sec-
tion 3.1, Theorem 1). The main reason for this failure is that the ideal penalty
is not a linear function of the dimension when data are heteroscedastic, as ex-
plained in Section 3.2. Finally, results proved in previous papers (Arlot, 2008a,b)
are recalled in Section 3.3, showing that several resampling-based penalties sat-
isfy with large probability a non-asymptotic oracle inequality (2) with leading
constant C = Cn tending to 1 when n tends to infinity in the framework of
Theorem 1.
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Fig 1. Framework of Theorem 1. Left: one data sample of size n = 1000, with ǫi ∼
U
([

−
√

3;
√

3
])

. Right: The corresponding oracle estimator (the scales are different on the

y-axis).

3.1. Suboptimality of linear penalization

Let us consider the framework of Section 2 with X = [0, 1] and assume the
following. The data (X1, Y1), . . . , (Xn, Yn) are independent and identically dis-
tributed (i.i.d.). For every i, Xi has a uniform distribution over X and (Xi, Yi)
satisfies (1) with s(x) = x, that is Yi = Xi + σ(Xi)ǫi, where

σ(x) =

{
2 if x < 1

2

1 otherwise

and (ǫi)1≤i≤n are i.i.d., independent of (Xi)1≤i≤n and satisfy E [ǫi ] = 0, E
[
ǫ2i
]

=

1 and ‖ǫi‖∞ ≤ 10. For instance, ǫi uniformly distributed over [−
√

3;
√

3] satisfies
these properties. Such a data sample is represented on Figure 1 (left panel).

The collection of models (Sm )m∈Mn
is defined by

Mn =

{
(D1, D2 ) s.t. 1 ≤ D1, D2 ≤ n

2 ( lnn )
2

}

and for every D1, D2 ∈ N\ {0}, S(D1,D2) is the model of piecewise-constant
functions on the partition

{[
k − 1

2D1
;

k

2D1

)
s.t. 1 ≤ k ≤ D1

}
∪
{[

D2 + k − 1

2D2
;
D2 + k

2D2

)
s.t. 1 ≤ k ≤ D2

}
.

In other words, (Sm )m∈Mn
is the collection of histogram models which are

regular on [0, 1/2] and regular on [1/2, 1] with two possibly different bin sizes.
This collection is quite natural since it allows to adapt the bin size to the lo-
cal noise-levels when data are heteroscedastic, which holds in this particular
framework. For instance, on Figure 1 (right panel), the oracle estimator uses
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a smaller bin size on [1/2, 1] than on [0, 1/2]. Remark also that Card(Mn) ≤
(n/(2 ( lnn )

2
))2 ≤ n2. Therefore, as explained in Section 2.2, penalization pro-

cedures using an estimator of penid(m) for every m ∈ Mn as a penalty are
relevant.

The main result of this paper is that any linear penalization procedure fails
to attain asymptotic optimality for the above model selection problem.

Theorem 1. There exist absolute constants C, η > 0 and an event of probability
at least 1 − Cn−2 on which for every K ≥ 0 and every

m̂(K) ∈ arg min
m∈Mn

{Pnγ ( ŝm ) + KDm } ,

ℓ
(

s, ŝ
m̂(K)

)
≥ (1 + η ) inf

m∈Mn

{ ℓ (s, ŝm )} . (5)

Theorem 1 is proved in Section 6.4. Theorem 1 is a quite strong result: no
linear penalization method can be asymptotically optimal for this model selec-
tion problem, even a data-dependent method using the knowledge of s and σ!
In particular, defining the ideal linear penalization procedure by

m⋆
lin ∈ m̂ (K⋆ ) where K⋆ ∈ arg min

K>0

{
ℓ
(

s, ŝ
m̂(K)

)}
, (6)

Theorem 1 proves that the choice m⋆
lin is asymptotically suboptimal.

The proof of Theorem 1 relies on the fact that linear penalties can only
select a small number of models, which was previously noticed by Breiman
(1992, Section 5), who characterized the so-called “RSS-extreme submodels”
(m̂(K))K>0. Whereas Breiman stated that this limitation can be benefic from
the computational point of view in some cases, Theorem 1 shows that it can
also induce suboptimality when data are heteroscedastic.

Indeed, as illustrated by Figures 2 and 3, the oracle model

m⋆ ∈ arg min
m∈Mn

{ℓ (s, ŝm )} (7)

is usually far from the path (m̂(K) )K>0 of models that can be selected with
a linear penalty, hence from m⋆

lin; therefore, the excess loss of m⋆
lin cannot be

asymptotically equivalent to the one of the oracle model m⋆. Note that the
picture is even clearer in three other frameworks considered in Section 4 (see
Figure 7).

Let us now add a few comments. First, the right-hand side of (5) is of order
n−2/3. Hence, no oracle inequality (2) can be proved with a constant C tending
to one when n tends to infinity and a remainder term Rn ≪ n−2/3.

Second, results similar to Theorem 1 hold for several model selection problems
with heteroscedastic data:
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Fig 3. Framework of Theorem 1 with a sample size n = 1000 and ǫi ∼ U
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−
√
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])

.

Left: log10 P

(
m = m⋆

lin

)
represented in R

2 using (Dm,1, Dm,2) as coordinates, where m⋆
lin

is

defined by (6); N = 1000 samples have been simulated for estimating the probabilities. Right:
log10 P (m = m⋆ ) using the same representation and the same N = 1000 samples.
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Fig 4. Ideal penalty vs. Dm in the framework of Theorem 1, with a sample size n = 1000

and ǫi ∼ U
([

−
√

3;
√

3
])

. A similar picture holds in expectation.

• Theorem 1 is actually proved for any function σ satisfying
∫ 1/2

0 (sigma(x))
2
dx 6=∫ 1

1/2 (sigma(x))
2
dx (the constant η depending only on the ratio between

these two quantities), and ‖ǫi‖∞ can take any finite value. Therefore, it
does not depend on any particular distribution of the errors.

• Concentration inequalities proved in a previous paper (Arlot, 2008a) show
that the same result holds with unbounded noises ǫ (for instance Gaus-
sian).

• The proof of Theorem 1 can be adapted to any regression function, pro-
vided that the bias ℓ (s, sD1,D2

) remains close to α1D
−2
1 + α2D

−2
2 when

min(D1, D2) is large, which holds at least when s is continuously differen-
tiable with

α1 =
‖s′‖2

L2([0,1/2])

96
and α2 =

‖s′‖2
L2([1/2,1])

96
.

In short, linear penalties are suboptimal for most heteroscedastic model selec-
tion problems, and we only chose this particular problem in the statement of
Theorem 1 in order to keep the proof as simple as possible.

3.2. Non-linearity of the ideal penalty

The main argument used for proving Theorem 1 is that the ideal penalty is
far from being a linear function of Dm when data are heteroscedastic. In the
framework of Theorem 1, the non-linearity of penid(m) as a function of Dm is
illustrated by Figure 4. In order to understand better the drawbacks of linear
penalties, we comment this point in this subsection.

Let Sm be the set of piecewise constant functions on some partition (Iλ )λ∈Λm

of X . Then, the concentration inequalities of Section 6.3 show that for most of
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the models, the ideal penalty is close to its expectation. Moreover, the expec-
tation of the ideal penalty can be computed explicitly thanks to Proposition 1,
first proved in a previous paper (Arlot, 2008b):

E [penid(m) ] =
1

n

∑

λ∈Λm

(2 + δn,pλ
)
(

(σr
λ)

2
+
(
σd

λ

)2 )
(8)

where

(σr
λ)2 := E

[
(Y − s(X) )2

∣∣∣ X ∈ Iλ

]
= E

[
(σ(X) )2

∣∣∣ X ∈ Iλ

]

(
σd

λ

)2
:= E

[
(s(X) − sm(X))

2
∣∣∣ X ∈ Iλ

]

pλ := P(X ∈ Iλ) and |δn,p| ≤ min

{
L1,

L2

(np)1/4

}

for some absolute constants L1, L2. The classical justification of Mallows’ Cp is
that when the Xi are deterministic and σ(·) is constant equal to σ,

E [penid(m) ] =
2σ2Dm

n
=

2

n

∑

λ∈Λm

(
Dmpλ (σr

λ)
2
)

. (9)

In general, there can be three differences between (9) and (8):

1.
∑

λ∈Λm
(σr

λ)
2 6=

∑
λ∈Λm

(
Dmpλ (σr

λ)
2
)

except when either σ(·) is con-

stant or pλ = D−1
m for every λ ∈ Λm. Hence, when the noise-level is far

from being constant, the ideal penalty is far from being proportional to
the dimension of the models in general. In the framework of Theorem 1,
the collection of models is rich enough so that F (m) = D−1

m

∑
λ∈Λm

(σr
λ)2

varies over Mn.

2.
(
σd

λ

)2
appears in (8) but not in (9); this term can be large if s is far from

sm, that is when s is highly non-smooth or Dm is small.
3. The term δn,pλ

is not exactly zero, especially when npλ is small (see Sec-
tion 6.2).

In Theorem 1, the only term making linear penalties fail is
∑

λ∈Λm
(σr

λ)
2
, which

is not proportional to Dm = Dm,1 + Dm,2 but to 2Dm,1 + Dm,2. It is not clear
whether the two other differences between (9) and (8) can be sufficient to make
linear penalties fail with homoscedastic data. Indeed, linear penalties have been
proved to be asymptotically optimal for homoscedastic regression under mild
assumptions, even when the design is random (see Baraud, 2002, and references
given in Section 1). Therefore, (σd

λ)2 and δn,pλ
may only have to be taken into

account in the penalty for finite sample sizes.

3.3. Comparison with resampling-based penalties

In the framework of Theorem 1, both V -fold penalties (Arlot, 2008b) and “ex-
changeable” resampling penalties (Efron, 1983; Arlot, 2008a) are asymptotically
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)
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of models that can be selected with a linear penalty.

optimal, despite the fact that they are general-purpose penalties. Results proved
for V -fold penalties in a previous paper (Arlot, 2008b) are recalled in this sub-
section.

First, let us define V -fold penalties. Let (Bj )1≤j≤V be a fixed partition of

{1, . . . , n} such that |Card(Bj) − n/V | < 1 for every j. For every j, define

P (−j)
n =

1

n − Card(Bj)

∑

i/∈Bj

δ(Xi,Yi)

and ∀m ∈ Mn, ŝ(−j)
m ∈ arg min

t∈Sm

{
P (−j)

n γ ( t )
}

.

Then, the V -fold penalty is defined by

penVF(m) :=
V − 1

V

V∑

j=1

(
Pn − P (−j)

n

)
γ
(

ŝ(−j)
m

)
. (10)

As proved in a previous paper (Arlot, 2008b, Theorem 2), in the framework
of Theorem 1, a constant C′

V (depending only on V ) and an event of probability
at least 1 − C′

V n−2 exist on which, for every

m̂penVF ∈ arg min
m∈Mn

{Pnγ ( ŝm ) + penVF(m)} ,

ℓ
(

s, ŝ
m̂penVF

)
≤
(

1 + ( lnn)
−1/5

)
inf

m∈Mn

{ℓ (s, ŝm )} .

In other words, provided that n is large enough, V -fold penalties perform strictly
better than any linear penalty with large probability. Therefore, estimating the
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shape of the ideal penalty1 improves significantly the efficiency of the penaliza-
tion procedure when data are heteroscedastic. Hence, the increased computa-
tional cost of V -fold penalties compared to Mallows’ Cp is the price to pay for
a versatile penalization procedure.

Moreover, the advantage of estimating the shape of the penalty by resampling
compared to using the dimension of the model as a shape is clear from Figure 5.
Indeed, the path of models (m̂(K) )K>0 that can be selected with linear penalties
stays far from the oracle because when K decreases, the number of bins on
[0, 1/2] increases before the number of bins on [1/2, 1]. Intuitively, this happens
because given the total number of bins, putting more bins on [0, 1/2] where the
noise-level is high decreases more the empirical risk.

On the contrary, penalties proportional to the Leave-one-out penalty (that is,
the V -fold penalty with V = n and Bj = { j } for every j, denoted by penLoo)
take into account the variations of the noise level over [0, 1]. Therefore, the path
of models selected with penalties proportional to penLoo goes in the opposite
direction: when K decreases, the number of bins on [1/2, 1] increases first.

4. Simulation study

In this section, the suboptimality of linear penalties (Theorem 1) is illustrated
by a short simulation study. In addition to the framework of Theorem 1 (called
“Xu2–1”), we consider three model selection problems, called “X1–005”, “S0–1”
and “HSd2”.

Data are generated according to (1), where n, s, σ and L(ǫi) are given for each
experiment in Table 1. The regression function and one particular sample for
each experiment except Xu2–1 are plotted on Figure 6. The collection of models
(Sm )m∈Mn

is defined as in Section 3.1 for X1–005 and S0–1, except that the

maximal number of bins in each half of [0, 1] is n/(2 lnn) instead of n/(2(lnn)2),
in order to keep a sufficiently large amount of models with n = 200. For reducing
the computational cost, (Sm )m∈Mn

is restricted in HSd2 to “dyadic” partitions,
that is

Mn =
{(

2k1 , 2k2
)

s.t. 1 ≤ 2k1 , 2k2 ≤ n

2

}

with the notation of Section 3.1. In each experiment, the model of constant
functions on [0, 1] is also added to (Sm )m∈Mn

.

In each framework, N = 1 000 independent data samples are generated; for
each sample, the following model selection procedures are compared:

• Mallows’ Cp procedure (Mal), defined as in Section 2.2, estimating the
mean variance by (4) with Sn/2 defined as follows. First, determine the

permutation τ of {1, . . . , n} such that
(
Xτ(i)

)
1≤i≤n

is nondecreasing.

1The shape of the ideal penalty is defined as the way it depends on m up to an increasing
linear transformation.
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Fig 6. Left: Regression functions. Right: One particular data sample.
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Second, let Sn/2 be generated by the family (eτ(2i−1)+eτ(2i))1≤i≤n/2 where
ej is the j-th vector of the canonical basis of R

n. In other words,

σ̂ :=
1

n

n/2∑

i=1

(
Yτ(2i) − Yτ(2i−1)

)2
.

• Mal with a penalty multiplied by a factor Cov ∈ {1.25; 2}, in order to test
for overpenalization.

• The ideal linear penalization procedure (IdLin) defined by (6).
• Leave-one-out penalization (penLoo), that is the V -fold penalty defined

by (10) with V = n and Bj = { j } for every j.
• penLoo with a penalty multiplied by a factor Cov ∈ {1.25; 2}, in order to

test for overpenalization.

In addition, before performing each procedure, the models Sm with less than
2 data points in one piece of their associated partition are removed from the
family (Sm )m∈Mn

; this intends to make the comparison between leave-one-out
penalties (which require this preliminary step) and other procedures clearer.

The signal-to-noise ratio is rather small in the four experimental settings
considered here, and the collection of models is quite large. Therefore, we can
expect overpenalization to be necessary, especially for Xu2–1, X1–005 and S0–1
(see Arlot, 2008a, Section 7.3.2, for more details on overpenalization).

Then, the model selection performance of each procedure is evaluated by the
following benchmark:

Cor :=
E
[
ℓ
(
s, ŝ

m̂

)]

E [ infm∈Mn
ℓ (s, ŝm ) ]

. (11)

Basically, Cor is the constant that should appear in an oracle inequality (2) hold-
ing in expectation with Rn = 0. The values of Cor evaluated for each procedure
in each experiment are reported in Table 1.

The conclusion of this simulation study is that the failure of linear penalties
actually occurs for finite sample sizes, and not only in the framework of The-
orem 1. Indeed, in experiments X1–005, S0–1 and HSd2, even the ideal linear
penalization procedure (IdLin) performs significantly worse than the Leave-one-
out penalty (penLoo) multiplied by the right (deterministic) overpenalization
factor Cov. Estimating Cov from data may not be easy in general, but some pro-
posals have been made for instance in the author’s Ph.D. thesis (Arlot, 2007,
Section 11.3.3).

The reason why linear penalties fail can be visualized on Figure 7, which
is the equivalent of Figure 3 for experiments X1–005, S0–1 and HSd2. The
distribution of the oracle model m⋆ is almost disjoint from the distribution of
m⋆

lin. Importantly, this phenomenon happens for various regression functions
(even non-smooth ones) and various kinds of heteroscedastic noises. Therefore,
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have been simulated for estimating the probabilities. Right: log10 P (m = m⋆ ) using the same
representation and the same samples. The distributions of m⋆ and m⋆

lin
are almost disjoint.
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Table 1

Accuracy indices Cor for each algorithm in two experiments, ± a rough estimate of
uncertainty of the value reported (that is the empirical standard deviation divided by

√
N).

In each column, the more accurate algorithms (taking the uncertainty into account) are
bolded.

Experiment Xu2–1 X1–005 S0–1 HSd2

n 1 000 200 200 2048
s(x) x x sin(πx) HeaviSine(x)
σ(x) 1 + 1x<1/2

1

20
+ 19

20
1x<1/2 1x≥1/2 x

L(ǫi) U
([

−
√

3;
√

3
])

N (0, 1) N (0, 1) N (0, 1)

Mal 3.419 ± 0.066 9.571 ± 0.199 6.500 ± 0.124 1.525 ± 0.012
Mal×1.25 3.051 ± 0.064 7.898 ± 0.204 5.411 ± 0.121 1.373 ± 0.010
Mal×2 2.435 ± 0.048 4.504 ± 0.142 3.363 ± 0.076 1.527 ± 0.004

IdLin 1.650± 0.023 2.039 ± 0.032 2.132 ± 0.030 1.207 ± 0.005

penLoo 2.523 ± 0.056 3.207 ± 0.115 2.439 ± 0.065 1.171 ± 0.004
penLoo×1.25 2.164 ± 0.047 2.496 ± 0.087 2.063 ± 0.048 1.158± 0.003

penLoo×2 1.882 ± 0.031 1.803± 0.047 1.986± 0.037 1.157± 0.003

the suboptimality result of Theorem 1 is certainly valid for a wide range of
model selection problems with heteroscedastic data.

Let us emphasize that performing as well as IdLin is far from being easy
for a data-driven procedure. Therefore, penLoo should mainly be compared
with Mal in terms of model selection performance, leaving the choice of the
overpenalization factor free for both procedures. Table 1 clearly shows that
Mal fails to select a correct model for heteroscedastic model selection problems,
that is heteroscedastic data and a collection (Sm )m∈Mn

allowing to take into
account the variations of the noise level. Moreover, the performance gap between
Mal and penLoo is large in the four experiments and not only due to a lack
of overpenalization. Indeed, for a wide range of overpenalization factors, the
estimated model selection performance Cor of Mal is uniformly much worse
than the one of penLoo.

Finally, another illustration of the suboptimality of linear penalties for het-
eroscedastic model selection problems is provided by Figure 8.

When the sample size increase, the model selection performance of IdLin
remains approximately constant (close to 2) while the model selection perfor-
mance of penLoo constantly decreases (with Cov = 1.25 because overpenaliza-
tion is still needed for n = 3 000 and we could not consider larger sample sizes
for computational reasons). This illustrates perfectly, with finite sample sizes,
the difference between IdLin and penLoo which emerges from the comparison
between Theorem 1 and the optimality results on resampling-based penalties
recalled in Section 3.3.
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N .

5. Conclusion

Both theoretical and experimental results from this paper show that penalties
proportional to the dimension—especially Mallows’ Cp—should not be used for
heteroscedastic model selection. Indeed, assuming that models should only be
penalized proportionally to their dimension is convenient from the computa-
tional point of view but definitely not adapted to heteroscedasticity. As soon
as the collection of models is rich enough to take into account heteroscedas-
ticity (the collections considered in the paper being typical examples), using
a linear penalty restricts the choice among models which are all far from the
oracle. Therefore, linear penalties have a fundamental drawback which can only
be solved by estimating properly the shape of the ideal penalty.

As mentioned in Section 3.3, resampling penalties are natural candidates for
model selection with heteroscedastic data, in particular because they are optimal
in frameworks were linear penalties are suboptimal, as proved in previous papers
(Arlot, 2008a,b). The simulation experiment of Section 4 confirms this advice
by showing that the leave-one-out penalty strongly outperforms Mallows’ Cp;
a properly calibrated leave-one-out penalty is even unbeatable by any linear
penalty, even using the knowledge of the true distribution.

Several other estimators have been proposed for regression with heteroscedas-
tic data, for instance by Galtchouk and Pergamenshchikov (2008) and by Gendre
(2008) using model selection. Nevertheless, these approaches mostly use model
selection as a tool for estimation since they consider very particular collections
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of models from which they select an estimator of the regression function. When
the model selection problem is given a priori and heteroscedasticity of data
makes it difficult, resampling penalization (or cross-validation) are certainly the
only model selection methods that can be optimal with no information on the
variations of the noise-level, up to the best of our knowledge.

To conclude, solving a model selection problem which is difficult because of
heteroscedasticity requires at least the computational cost of V -fold penalties.

Once the shape of the penalty is properly estimated, the next question is
how to calibrate the constant in front of the penalty. In the histogram case,
the constant is known for V -fold and resampling penalties, at least when the
sample size is large enough, but it may not be optimal for other kinds of models.
A completely data-driven procedure has been proposed by Birgé and Massart
(2007) with dimensionality-based penalties, and extended to general shapes by
Arlot and Massart (2008). Theoretical results have been proved in these pa-
pers for either homoscedastic Gaussian data and general linear models or het-
eroscedastic data and histogram models.

Nevertheless, a calibration procedure proved to be asymptotically optimal for
general models and heteroscedastic data is still needed. In addition, the optimal
calibration of penalties for a fixed sample size really matters, as showed in the
simulation study of Section 4; though, up to the best of our knowledge, this
problem is still widely open.

6. Proof of Theorem 1

Before proving Theorem 1, let us define some notation and recall probabilistic
results from other papers (Arlot, 2008a,b; Arlot and Massart, 2008) that are
used in the proof.

6.1. Notation

In the rest of the paper, L denotes an absolute constant, not necessarily the
same at each occurrence. When L is not universal, but depends on p1, . . . , pk,
it is written Lp1,...,pk

.
Define, for every model m ∈ Mn,

p1(m) := Pγ ( ŝm ) − Pγ (sm ) p2(m) := Pnγ (sm ) − Pnγ ( ŝm )

δ(m) := (Pn − P ) (γ (sm ) − γ (s ) )

An(m) := min
λ∈Λm

{Card { i s.t. Xi ∈ Iλ }} Bn(m) := min
λ∈Λm

{nP (Xi ∈ Iλ )} .
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6.2. Probabilistic tools: expectations

Proposition 1 (Proposition 1 and Lemma 7, Arlot, 2008b). Let Sm be the
model of histograms associated with the partition (Iλ)λ∈Λm

. Then,

E [p1(m) ] =
1

n

∑

λ∈Λm

(1 + δn,pλ
)σ2

λ (12)

E [p2(m) ] =
1

n

∑

λ∈Λm

σ2
λ (13)

where σ2
λ := E

[
(Y − s(X) )

2
∣∣∣ X ∈ Iλ

]
=
(
σd

λ

)2
+ (σr

λ)
2

,

pλ = P (X ∈ Iλ ) and δn,p only depends on (n, p). Moreover, δn,p is small when
the product np is large:

|δn,p| ≤ min
{

L1, L2(np)−1/4
}

,

where L1 and L2 are absolute constants.

Note that δn,p can be made explicit:

δn,p = npE
[
Z−11Z>0

]
− 1

where Z is a binomial random variable with parameters (n, p).

Remark 1. Since we deal with histograms, ŝm is not defined when minλ∈Λm
p̂λ =

0, which occurs with positive probability. Therefore, a convention for p1(m) as to
be chosen on the event An(m) = 0 (which has a small probability) so that p1(m)
has a finite expectation (see Arlot, 2008b, for details). This convention is purely
formal, since the statement of Theorem 1 does not involve the expectation of
p1(m). The important point is that the same convention is used in Proposition 2
below.

6.3. Probabilistic tools: concentration inequalities

We state in this section some concentration results on the components of the
ideal penalty, using for p1(m) the same convention as in Proposition 1.

Proposition 2 (Proposition 12, Arlot, 2008a). Let γ > 0. Assume that minλ∈Λm
{npλ } ≥

Bn ≥ 1, ‖Y ‖∞ ≤ A < ∞ and

D−1
m

∑

λ∈Λm

E
[
σ(X)2

∣∣ X ∈ Iλ

]
≥ Q > 0 .

Then, an event of probability at least 1 − Ln−γ exists on which

p1(m) ≥ E [p1(m) ] − LA,Q,γ

[
( lnn )

2
D−1/2

m + e−LBn

]
E [p2(m) ] (14)

p1(m) ≤ E [p1(m) ] + LA,Q,γ

[
( lnn )2 D−1/2

m +
√

Dme−LBn

]
E [p2(m) ] (15)

|p2(m) − E[p2(m)]| ≤ LA,Q,γD−1/2
m ln(n)E [p2(m) ] . (16)
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Lemma 3 (Proposition 8, Arlot and Massart, 2008). Assume that ‖Y ‖∞ ≤
A < ∞. Then for any x ≥ 0, an event of probability at least 1 − 2e−x exists on
which

∀η > 0,
∣∣δ(m)

∣∣ ≤ ηℓ (s, sm ) +

(
4

η
+

8

3

)
A2x

n
. (17)

Lemma 4 (Lemma 12, Arlot, 2008b). Let (pλ)λ∈Λm
be non-negative real num-

bers of sum 1, (np̂λ)λ∈Λm
a multinomial vector of parameters (n; (pλ)λ∈Λm

),
γ > 0. Assume that Card(Λm) ≤ n and minλ∈Λm

{npλ } ≥ Bn > 0. Then, an
event of probability at least 1 − Ln−γ exists on which

min
λ∈Λm

{np̂λ } ≥ minλ∈Λm
{npλ }

2
− 2(γ + 1) lnn . (18)

6.4. Proof of Theorem 1

We actually prove a more general result, assuming only that ǫ and σ satisfy the
following:

‖ǫ‖∞ ≤ E < ∞ and (σa)
2 ≥ (1 + ε) (σb)

2
for some ε > 0

where (σa)
2

:=

∫ 1/2

0

(σ(x) )
2
dx and (σb)

2
:=

∫ 1

1/2

(σ(x) )
2
dx .

Theorem 1 thus corresponds to the case

E = 10 (σa)
2

= 2 (σb)
2

=
1

2
.

In the following, L(H) = LE,σa,σb
denotes any constant depending on the above

parameters only.
The above condition on σ(·) imply that the last assumption of Proposition 2

holds since

D−1
m

∑

λ∈Λm

E
[
σ(X)2

∣∣ X ∈ Iλ

]
=

2Dm,1 (σa)
2

+ 2Dm,2 (σb)
2

Dm,1 + Dm,2

≥ 2 min
{

(σa)
2
, (σb)

2
}

=: Q > 0 .

Let us consider the ideal criterion

critid(m) := ℓ (s, ŝm ) + ∞1An(m)=0 = ℓ (s, sm ) + p1(m) + ∞1An(m)=0 ,

and for every K ≥ 0 the linearly penalized empirical criterion

critK(m) := Pnγ ( ŝm ) + KDm − Pnγ (s ) + ∞1An(m)=0

= ℓ (s, sm ) − p2(m) + KDm + δ(m) + ∞1An(m)=0 .
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The goal is to prove that whatever K ≥ 0, any

m̂(K) ∈ arg min
m∈Mn

{critK(m)}

satisfies

critid (m̂(K) ) ≥
(

1 +
1

230

)
inf

m∈Mn

{critid(m)}

with large probability.

Decomposition of the criteria For every m ∈ Mn,

critid(m) = ℓ (s, sm ) + p1(m) + ∞1An(m)=0

= ℓ (s, sm ) + E [p1(m) ] + (p1(m) − E [p1(m) ] ) + ∞1An(m)=0 (19)

and for every K ≥ 0 and m ∈ Mn,

critK(m) = ℓ (s, sm ) − p2(m) + KDm + δ(m) + ∞1An(m)=0

= ℓ (s, sm ) − E [p2(m) ] + KDm + ∞1An(m)=0 (20)

+
(
E [p2(m) ] − p2(m) + δ(m)

)
. (21)

Bounds on An(m) and Bn(m) For every D1, D2 ≥ 1,

Bn(D1, D2) = min

{
n

D1
,

n

D2

}
.

Using Lemma 4, for every D1, D2, an event of probability at least 1 − Ln−4

exists such that

An(D1, D2) ≥
Bn(D1, D2)

2
− 10 lnn ≥ min

{
n

2D1
,

n

2D2

}
− 10 lnn .

This lower bound is positive provided that max {D1, D2 } ≤ n
11 ln n , which holds

if (D1, D2) ∈ Mn and n ≥ L. The intersection Ω1 of these Card(Mn) ≤ n2

events has a probability larger than 1 − Ln−2.

Computation of the main terms In the decompositions (19) and (21),
we have splitted both criteria into deterministic terms and random remainder
terms. We start here by computing explicitly the deterministic terms, which are
the most important ones. First, the bias is:

ℓ
(
s, s(D1,D2)

)
= E

[(
s(D1,D2)(X) − s(X)

)2 ]

=

∫ 1/2

0

(
s(D1,D2)(x) − s(x)

)2
dx +

∫ 1

1/2

(
s(D1,D2)(x) − s(x)

)2
dx

= D1

∫ 1/(2D1)

0

(
1

4D1
− x

)2

dx + D2

∫ 1/(2D2)

0

(
1

4D2
− x

)2

dx

=
1

96D2
1

+
1

96D2
2

.
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In order to compute E [p1(m) ] and E [p2(m) ], we use Proposition 1, and the
fact that

σ2
λ = E

[
(Y − s(X))

2
∣∣∣ X ∈ Iλ

]

= E

[
(s(X) − sm(X) )2

∣∣∣ X ∈ Iλ

]
+ E

[
(σ(X))2

∣∣∣ X ∈ Iλ

]

=
1

Leb(Iλ)
E

[
(s(X) − sm(X) )

2
1X∈Iλ

]
+

1

Leb(Iλ)
E

[
(σ(X))

2
1X∈Iλ

]
.

Hence,

E [p1(D1, D2) ] =
1

n

∑

λ∈Λm

(1 + δn,pλ
) σ2

λ

=
2D1

(
1 + δn,(2D1)−1

)

n

∫ 1/2

0

[(
s(X) − s(D1,D2)(x)

)2
+ (σ(x))

2
]
dx

+
2D2

(
1 + δn,(2D2)−1

)

n

∫ 1

1/2

[(
s(X) − s(D1,D2)(x)

)2
+ (σ(x))2

]
dx

=
2D1

(
1 + δn,(2D1)−1

)

n

[
1

96D2
1

+ (σa)
2

]

+
2D2

(
1 + δn,(2D2)−1

)

n

[
1

96D2
2

+ (σb)
2

]
.

Moreover,
∣∣δn,(2D1)−1

∣∣ ≤ min
{

L1, L2(n/D1)
−1/4

}
≤ L ( lnn )

−1/2
,

and the same bound holds for
∣∣δn,(2D2)−1

∣∣. Similarly,

E [p2(D1, D2) ] =
D1

n

[
1

48D2
1

+ 2 (σa)
2

]
+

D2

n

[
1

48D2
2

+ 2 (σb)
2

]
.

Remark that in both cases, the terms of order D−1
i n−1 are negligible in front

of the bias, because Di/n ≤ 1/(2(lnn)2).

Control of the remainder terms: large models We now have to prove
that p1(m) − E [p1(m) ] and E [p2(m) ] − p2(m) + δ(m) are close to zero on a
large probability event.

Let us first consider a model m = (Dm,1, Dm,2) of dimension Dm ≥ ( lnn)
6
.

Since max {Dm,1, Dm,2 } ≤ n/(2 ( lnn )2), we also have on Ω1

Bn(m) = min

{
n

2Dm,1
,

n

2Dm,2

}
≥ ( lnn )2 ≥ 1 .

From Proposition 2 (with γ = 4), an event of probability at least 1−Ln−4 exists
on which:

|p1(m) − E [p1(m) ]| ≤ L(H) ( lnn )
−1

E [p2(m) ] (22)

|p2(m) − E[p2(m)]| ≤ L(H) ( lnn )
−2

E [p2(m) ] . (23)
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Moreover, from Lemma 3 (with x = 4 lnn and η = (lnn )
−1

), an event of
probability at least 1 − 2n−4 exists on which

∣∣δ(m)
∣∣ ≤ ℓ (s, sm )

lnn
+

L(H) ( lnn)
2

n
. (24)

We now combine these controls with our previous computations, in order to
make (19) and (21) more explicit. Let us consider the event Ω2 on which (22)–
(24) hold for every m ∈ Mn and Ω = Ω1 ∩ Ω2. The probability of Ω is larger
than 1 − Ln−2.

Then, for every m = (Dm,1, Dm,2) ∈ Mn such that min {Dm,1, Dm,2 } ≥
( lnn )6, and every K > 0, some ǫ1,m and ǫ2,m exist such that the following
holds. First,

critid(Dm,1, Dm,2) =
1

96D2
1

+
2 (σa)

2
(1 + ǫ1,m )D1

n

+
1

96D2
2

+
2 (σb)

2
(1 + ǫ1,m )D2

n
.

(25)

Second,

critK(Dm,1, Dm,2) = KDm +
1

96D2
m,1

− 2 (σa)
2
(1 + ǫ2,m )Dm,1

n

+
1

96D2
m,2

− 2 (σb)
2
(1 + ǫ2,m )Dm,2

n
.

(26)

Third,

max {|ǫ1,m| , |ǫ2,m| } ≤ L ( lnn )
−1/2

.

Small models When the dimension Dm of m is small, we have to control
critid and critK in a different way. Roughly, the bias term will be much larger
than the other ones, because Dm,1 ≤ Dm and Dm,2 ≤ Dm.

More precisely, on Ω, for every m ∈ Mn such that Dm ≤ ( lnn )
6
,

ℓ (s, sm ) =
1

96D2
m,1

+
1

96D2
m,2

≥ 1

48 (lnn )12

E [p1(m) ] ≥ 0

E [p2(m) ] ≤ L(H)Dm

n
≤ L(H) ( lnn )6

n

∣∣δ(m)
∣∣ ≤ ℓ (s, sm )

lnn
+

L(H) ( lnn )
2

n

|p1(m) − E [p1(m) ]| ≤ L(H) ( lnn)
3

E [p2(m) ] ≤ L(H) ( lnn )
9

n

|p2(m) − E [p2(m) ]| ≤ L(H) ln(n)E [p2(m) ] ≤ L(H) ( lnn )
7

n
.
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Hence, for every K ≥ 0,

critid(Dm,1, Dm,2) ≥
1

48 (lnn )12
− L(H) ( lnn )9

n
(27)

critK(Dm,1, Dm,2) ≥ KDm +
(

1 − ( lnn)−1
) 1

48 (lnn )12
− L(H) ( lnn )7

n
.

(28)

Conclusion: a deterministic lemma On the event previously defined, (26),
(27) and (28) show that we can apply Lemma 5 below, with

crit1 = critid crit2,K = critK

α =
1

96
β1 = 2 (σa)2 β2 = 2 (σb)

2 ≤ β1/(1 + ε)

κ1 = 6 κ2 =
1

2
κ3 = 12 c2 = L c3 =

1

50
,

at least for n ≥ L(H). This proves the result provided n ≥ n0 = L(H). To remove
the latter condition, we enlarge the constant K in the probability bound so that
K ≥ n2

0, hence 1 − Kn−2 ≤ 0 when n is not large enough.

Lemma 5. Let α, (βi )i=1,2 , (ci )i=2,3 , (κi )1≤i≤3 be some positive constants,

n ∈ N and Mn =
{

1, . . . , n/(2 ( lnn)
2
)
}
×
{

1, . . . , n/(2 ( lnn )
2
)
}
. Assume

that (1 + ε)β2 ≤ β1 for some ε > 0. For every m = (D1, D2) ∈ Mn, we
define Dm,1 = D1 and Dm,2 = D2. Let crit1 be some function Mn 7→ R, and
(crit2,K )K∈[0,+∞) be a family of functions Mn 7→ R satisfying the following

conditions:

(i) for every m ∈ Mn,

crit1(m) =

(
α

D2
m,1

+
β1Dm,1

n
+

α

D2
m,2

+
β2Dm,2

n

)
(1 + ǫ1,m ) (29)

crit2,K(m) = KDm,1 +

(
α

D2
m,1

− β1Dm,1

n

)
(1 + ǫ2,m ) (30)

+ KDm,2 +

(
α

D2
m,2

− β2Dm,2

n

)
(1 + ǫ2,m )

with maxi=1,2 supm∈Mn s.t. ( ln n )κ1≤Dm
|ǫi,m| ≤ c2 ( lnn )

−κ2 .

(ii) for every m ∈ Mn such that Dm := Dm,1 + Dm,2 < ( lnn )
κ1 ,

crit1(m) ≥ c3 ( lnn )
−κ3 (31)

crit2,K(m) ≥ c3 ( lnn )
−κ3 . (32)
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Then, there exists some constants η > 0 (depending only on ε) and n0 > 0
(depending on α, (βi )i=1,2, (ci )i=2,3, (κi )1≤i≤3) such that, if n ≥ n0, for every
K > 0 and m̂(K) ∈ argminm∈Mn

crit2,K(m),

crit1(m̂(K)) ≥ (1 + η ) inf
m∈Mn

{crit1(m)} . (33)

6.5. Proof of Lemma 5

The proof is in two steps. First, we control the dimensions of “good” models m
for crit1 (points A–B). Second, we show that no model in (m̂(K) )K>0 can be
“good” (point C–E). In the following, L(HL) denotes any constant depending
only on α, ε, (βi )i=1,2, (ci )i=2,3, (κi )1≤i≤3.

A. Upper bound on crit1 for a “good” model Let m⋆ ∈ Mn be any
model such that

∣∣∣∣∣Dm⋆,1 −
(

2αn

β1

)1/3
∣∣∣∣∣ ≤ 1 and

∣∣∣∣∣Dm⋆,2 −
(

2αn

β2

)1/3
∣∣∣∣∣ ≤ 1 .

As soon as n ≥ L(HL), such an m⋆ exists and satisfies min {Dm⋆,1, Dm⋆,2 } >
( lnn )

κ1 . We then deduce from (29) that

crit1(m
⋆) ≤ 3α1/3

22/3n2/3

(
β

2/3
1 + β

2/3
2

)(
1 + Lc2

( lnn )
−min{κ1,κ2 }

)
. (34)

B. Dimension of “good” models for crit1 Let us fix some η ∈ (0, 1/2),
and let m ∈ Mn be such that crit1(m) ≤ (1 + η) crit1(m

⋆). The goal is to prove
that m must have dimensions “close” to the ones of m⋆.

First, the upper bound (34) is smaller than c3 ( lnn )−κ3 (at least when n ≥
L(HL)). Therefore, we must have Dm ≥ ( lnn)

κ1 , hence (29) holds with |ǫ1,m| ≤
c2 ( lnn )−κ2 .

Define

Cm,1 := Dm,1

(
β1

2αn

)1/3

> 0 Cm,2 := Dm,2

(
β2

2αn

)1/3

> 0

and for every x > −1, f(x) = 2−2/3(1 + x)−2 + 21/3(1 + x). Then, (i) and
Lemma 6 below yield

crit1(m) ≥ α1/3

n2/3

(
β

2/3
1 f(Cm,1 − 1) + β

2/3
2 f(Cm,2 − 1)

)(
1 − c2 ( lnn )

−κ2

)

≥ 3α1/3

22/3n2/3

(
β

2/3
1 + β

2/3
2

)
+

3α1/3

214/3n2/3

(
1 − c2 ( lnn )

−κ2

)

×
(

β
2/3
1 min

{
1, (Cm,1 − 1)2

}
+ β

2/3
2 min

{
1, (Cm,2 − 1)2

})
.
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Hence, using (34), (1 + η) crit1(m
⋆) ≥ crit1(m) implies

16
(

β
2/3
1 + β

2/3
2

)(
η + Lc2

( lnn )−min{κ1,κ2 }
)

≥
(

β
2/3
1 min

{
1, (Cm,1 − 1)2

}
+ β

2/3
2 min

{
1, (Cm,2 − 1)2

})

In particular,

min
{

1, (Cm,1 − 1)2
}
≤ 16

(
1 +

(
β1

β2

)2/3
)(

η +
Lc2

( lnn )
min{κ1,κ2 }

)

min
{

1, (Cm,2 − 1)2
}
≤ 16

(
1 +

(
β2

β1

)2/3
)(

η +
Lc2

( lnn )min{κ1,κ2 }

)
.

Let ∆ ∈ (0, 1] and take

0 < η ≤ η∆ :=
∆2

17

(
1 +

(
β1

β2

)2/3
) <

1

2
,

so that when n ≥ L(HL),∆, both upper bounds are smaller than 16∆2/17 < 1,
hence

max {|Cm,1 − 1| , |Cm,2 − 1|} ≤ ∆ . (35)

We now start the second part of the proof: can any m̂(K) be good for crit1 ?
Assume that ∆ ∈ (0, 1], K ≥ 0 and m̂(K) ∈ argminm∈Mn

{crit2,K(m)} exist
such that

(1 + η∆) crit1(m
⋆) ≥ crit1(m̂(K)) . (36)

In particular, D
m̂(K)

≥ ( lnn )
κ1 and (35) holds for m = m̂(K). Considering

separately different ranges of values of K, the idea of the proof is to show this
implies a contradiction.

C. Small values of K Let us first assume that Kn ≤ β1 + (lnn )
−1

. Then,

0 ≤ crit2,K

(
n1/3 ( lnn )

1/2
, D

m̂(K),2

)
− crit2,K(m̂(K))

≤ (Kn − β1 )
(

n−2/3 ( lnn )1/2 − n−1D
m̂(K),1

)
(37)

+

(
α

n2/3 lnn
− α

D2

m̂(K),1

)
+

L(HL)

n2/3 ( lnn )κ2
.

On the one hand, if Kn − β1 ≤ 0, (37) cannot hold for n ≥ L(HL) because the

first terms are negative and L(HL)n
−2/3 ( lnn )

−κ2 is negligible in front of them.
On the other hand, if Kn − β1 ≥ 0,

(Kn − β1 )
(

n−2/3 ( lnn )
1/2 − n−1D

m̂(K),1

)
≤ L(HL) ( lnn )

−1/2
n−2/3 ,

so that the (negative) term −αD−2

m̂(K),1
is the dominant one in the right-hand

side of (37). Hence, (36) cannot hold for n ≥ L(HL) if Kn ≤ β1 + (lnn )
−1

.
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D. Intermediate values of K Assume now that β1 +(lnn )
−1

< Kn ≤ β2 +

n ( lnn)
−max{3κ1,2κ3 }

. Then, for i = 1, 2, (2αn/(Kn−βi))
1/3 is between ( ln n )

κ1

and n/(2(( lnn )2)), at least for n ≥ L(HL), and (Kn−βi)
2/3n−2/3 ≪ ( lnn)−κ3 .

Therefore, a proof similar to the one of (35) (that is, points A–B of the current
proof), with (Kn− β1, Kn− β2) instead of (β1, β2), leads to the following. For
every ∆ ∈ (0, 1], if n ≥ L(HL),∆,

∣∣∣∣∣Dm̂(K),1

(
Kn − β1

2αn

)1/3

− 1

∣∣∣∣∣ ≤ ∆ (38)

∣∣∣∣∣Dm̂(K),2

(
Kn − β2

2αn

)1/3

− 1

∣∣∣∣∣ ≤ ∆ . (39)

If we combine (35) with (38) (with the same ∆), we obtain that if n ≥
L(HL),∆,

(
1 − ∆

1 + ∆

)3

+ 1 ≤ Kn

β1
≤
(

1 + ∆

1 − ∆

)3

+ 1 . (40)

Similarly, the combination of (35) and (39) (with the same ∆) shows that if
n ≥ L(HL),∆,

(
1 − ∆

1 + ∆

)3

+ 1 ≤ Kn

β2
≤
(

1 + ∆

1 − ∆

)3

+ 1 . (41)

Choosing ∆ small enough so that

β2

[(
1 + ∆

1 − ∆

)3

+ 1

]
< β1

[(
1 − ∆

1 + ∆

)3

+ 1

]
, (42)

it follows from (40) and (41) that (36) cannot hold for n ≥ L(HL) if β1 +

(lnn )
−1

< Kn ≤ β2 + n ( ln n)
−max{ 3κ1,2κ3 }

.

E. Large values of K Assume now that Kn > β2 + n ( lnn)
−max{ 3κ1,2κ3 }

.
Then,

0 ≤ crit2,K

(
D

m̂(K),1
, ( lnn )κ1

)
− crit2,K(m̂(K))

≤ (Kn − β2 )

(
( lnn )κ1 − D

m̂(K),2

n

)
+

(Kn − β2)n
1/3L(HL)

( lnn)κ2
, (43)

which is not possible for n ≥ L(HL) since D
m̂(K),2

is of order n1/3.

To conclude, whatever K ≥ 0, (36) cannot hold when ∆ = ∆⋆ is the largest
element of (0, 1] satisfying (42) and n ≥ L(HL),∆⋆ = L(HL), which is the desired
result.
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Lemma 6. Let f : (−1, +∞) 7→ R be defined by f(x) = 2−2/3(1 + x)−2 +
21/3(1 + x). Then, for every x > −1,

f(x) ≥ 3 × 2−2/3 + 3 × 2−14/3
(
x2 ∧ 1

)
.

proof of Lemma 6. We apply the Taylor-Lagrange theorem to f (which is in-
finitely differentiable) at order two, between 0 and x. The result follows since
f(0) = 3 × 2−2/3, f ′(0) = 0 and f ′′(t) = 6 × 2−2/3 × (1 + t)−4 ≥ 3 × 21/3−4 if
t ≤ 1. If t > 1, the result follows from the fact that f ′ ≥ 0 on [0, +∞).
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