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ABSTRACT: This article proposes a new, simple and efficient approach, allowing one to
reduce and construct piezoelectric super elements guaranteeing an accurate representation of
the electrical impedance without the need for static correction. This allows the electronic
coupling to be fully addressed in the optimization of passive shunted piezoelectric transducers,
energy harvesting piezoelectric systems or dense distributed transducers. The model obtained
through this approach is also versatile, of small size, and is therefore quite tractable for use in
intensive computation algorithms. Two example systems are used to demonstrate the
numerical accuracy and convergence properties of the proposed approach.

Key Words: piezoelectric modeling, substructuring, model condensation, electric impedance.

INTRODUCTION

Nowodays, piezoelectric transducers are widely used in 

many physical and industrial applications.

Optimization of their behavior is of major interest to

extend their capability for sensing and actuating

mechanical systems. In current practice, smart structure

integration involves a broad multiphysical modeling

approach including mechanics, smart materials, cou-

pling effects and electronics implementation. When

global energy optimization is considered, all coupling

mechanisms should be carefully introduced in the

simplest possible modeling procedure. For piezoelectric

material these constraints involve the construction of a

robust model (simple and precise) able to represent the

piezoelectric coupling, or from another perspective, to

correctly implement piezoelectric electromechanical

impedances. This latter perspective enables the optimi-

zation and design of electronic devices connected to the

piezoelectric material. Implementation of such an

approach is based on the use of a representative

piezoelectric finite element model but also on a

dedicated model condensation procedure able to

reduce the size of the resulting system of equations.

The objective of this article is to develop and

demonstrate a model reduction approach that yields a

piezoelectric super element guaranteeing accurate

computation of a piezoelectric transducer’s mechani-

cally coupled electrical impedance.

Since the early 1970s, many finite element

models have been proposed for analysis of piezo-

electric mechanical systems. The survey article of

Benjeddou (2000), and the articles by Noor (1991) and

Mackerle (1997) discuss a wide variety of different works

in this area. After numerous publications devoted to

ultrasonic transducers through the early 1990s (Allik,

1970; Allik, 1974), the majority of work for the last two

decades has been dedicated to the development of a

variety of piezoelectric finite elements for sandwich

beams (Collet and Walter, 2003, Maurini, 2004), plates

(Lee, 1989a; Banks and Smith, 1996; Ha, 1990; Kogl,

2005; Lee, 1990; Lee and Chiang, 1991; Wang, 2004;

Fernadez, 2004; Tzou, 1994a; Tzou1, 1997; Saravanos

and Heyliger, 1997), layered composite shells (Yang and

Saigal, 1996; Kogl, 2005; Bernadou, 2003; Banks and

Smith, 1996) or volume elements like those used in many

finite element codes (Lin and Abatan, 1994; Varadan and

Lim, 1996; Tzou1, 1997). In fact, finite element method

applications are rapidly growing andmanyworks already

address the development and implementation of new

piezoelectric finite element tools for linear and nonlinear

analysis. The advantages and disadvantages of each

approach are not discussed here, but we can state that,

today, most of the physical applications can be more or

less precisely modeled using existing methods.

As noted in (Benjeddou, 2000), the most theoretically

advanced finite elements has not been widely used

for practical modeling of adaptive structural

elements for ‘intelligent’ or smart materials and
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structures applications. Because of the difficulty in

building accurate and reduced models for multiphysics

analysis, many authors have used simplified modeling

approaches in order to limit numerical complexity while

focusing on the physical design, computation and

optimization (Hagood, 1991; Crawley, 1994; Rao,

1994; Preumont, 1997; Collet and Walter, 2003;

Monnier, 2005). This particular area of interest drives

the simplifications applied to the modeling. Indeed,

introducing full modeling of the electromechanical

coupling leads to the use of extended three-dimensional

finite element formulations containing both electric and

mechanical degree of freedoms (DOFs). Also, consider-

ing the electric contribution in the discretization

procedure is a difficult task, especially for conventional

one- or two-dimensional mid-plane formulations. The

most common assumption is to consider through-

thickness linear variation of the electrical potential

(Lee, 1989a; Lee, 1989b; Lee, 1990; Hagood, 1991; Lee

and Chiang, 1991; Hac, 1993; Tzou, 1994b; Preumont,

1997; Collet and Walter, 2003). This hypothesis leads to

neglecting the induced potential while the electromecha-

nical coupling will be only partially captured as

described in (Benjeddou, 2000). This approach can

yield up to 30% error in evaluating the equivalent

piezoelectric capacity for small patches. In fact, it is

known that the asymptotic electric potential for a

short-circuited thin plate is quadratic in the thickness

(Rajapakse, 1997; Bernadou, 2003).

The current challenge in designing efficient and

integrated smart systems for active and passive control

or energy harvesting leads to the use of large multi-

physical models including accurate representation of

electromechanical couplings. The growing attention to

smart distributed structures (Vidoli, 2001) and MEMS

piezoelectric systems (Collet and Delobelle, 2004; Meyer

and Verdot, 2007) requires new modeling approaches

guaranteeing robust representation of electromechanical

coupling, especially for piezoelectricity. This will enable

the introduction of electronic devices directly in the

design and optimization process and lead to the

development of new efficient and robust systems. At

present, the only way to achieve this modeling goal is to

use higher order 2D-theory for plates or shells (Carrera,

1997; Chattopadhyay, 1997; Bernadou, 2003; Fernadez,

2004; Maurini and dell’Isola, 2004) or full 3D bricks

(Lin and Abatan, 1994; Varadan and Lim, 1996; Tzou,

1997). The principal problem with such an approach is

the numerical complexity of the finite element formula-

tion and the size of the resulting algebraic system of

equations. Classical Guyan condensation of the elec-

trical DOFs can be used. This leads to an increase of the

structure’s stiffness and an additional load vector that is

difficult to manage when construction of super elements

is considered (super elements are equivalent models with

greatly reduced numerical DOFs as compared to fully

meshed models). Direct projection of the new external

load onto the reduced basis as in (Becker and Fein,

2006) allows one to conserve the actuating effect in the

super element construction but then needs to be

corrected for each specific use by static response

computations for accurate representation of electrical

impedance as for mechanical modal synthesis of the

final assembled system (Geradin, 1997). Guyan or Craig

and Bampton methods could also be used by adding

applied voltage as a master DOF but leads to introduced

inertial coupling and the need for knowledge of its

second time derivative.

This article proposes a new, simple, and efficient

approach, allowing one to reduce and construct piezo-

electric super elements guaranteeing an accurate repre-

sentation of the electrical impedance without the need

for static correction. This allows the electronic coupling

to be fully used in the optimization of passive shunted

piezoelectric transducers, energy harvesting piezoelectric

systems or dense distributed transducers. The obtained

model through this approach is also versatile, of small

size, and is therefore quite tractable for use in intensive

computation algorithms.

The article is organized as follows. The first section

presents the theoretical models for piezoelectric systems.

The next section introduces the numerical procedure

leading to model reduction and super element construc-

tion. Thereafter, two examples are considered to validate

the proposed method. The first example is that of a

full condensation of a piezoelectric stack transducer.

The second example is that of a piezoelectric composite

plate modeled using an extended full 3D approach.

Concluding remarks end the article.

LINEAR PIEZOELECTRIC MECHANICAL

SYSTEMS MODELING AND CONDENSATION

Theoretical Model Synthesis for Substructuring Approach

Consider the generic piezo-mechanical system as

depicted in Figure 1. It represents a mechanical structure

on an open domain � of R3 and its general boundary

conditions applied to a partition of its surface S so that

S ¼ Su [ S� where Su denotes the location of Dirichlet

boundary conditions and S� those of Neumann bound-

ary conditions. f represents the exterior forces and w the

displacement vector. A set of piezoelectric transducers is

connected to this mechanical system. The inputs are P

applied voltages Vp on a partition of the piezoelectric

domain’s boundaries Su
vq. The outputs are the corre-

sponding dual charge qp. The piezo-mechanical trans-

ducer system is precisely shown in Figure 2, where �p

represents the piezoelectric domain, and �s represents

the structural domain consisting of the connections of

each transducer. The boundary surfaces are partitioned
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such that Sui represents the connecting interfaces, So
w�

the localization of the homogeneous Neumann or

Dirichlet mechanical boundary conditions, Sp
vq the

inputs/outputs electrical surfaces and So
vq the homo-

geneous Neumann and Dirichlet electrical boundary

conditions.

The classical 3D electromechanical dynamical equili-

brium can be written as

� €w� r� ¼ f 8x 2 � [�p

�rD ¼ 0 8x 2 �p

�

ð1Þ

with associated mechanical boundary conditions

w ¼ wo 8x 2 Su [ So
w

� � n ¼ To 8x 2 S� [ So
�

w½ � ¼ � � n½ � ¼ 0 8x 2
S

i2½1::I � S
ui

8

<

:

ð2Þ

and electrical boundary conditions

V ¼ 0 8x 2 So
v

V ¼ Vp 8x 2
S

p2½1::P� S
p
vq

D � n ¼ 0 8x 2 So
q

8

<

:

ð3Þ

In the above equations [ ] represents the jump value,

I stands for the number of interfaces between each

transducer and the main structure and P is the number

of piezoelectric input voltages. We add to this set of

equilibrium equations an output expression

qp ¼ �

Z

S
p
vq

DndS p 2 ½1::P� ð4Þ

allowing the introduction of the charge measurement

and hence the dual counterpart of the imposed electrical

Dirichlet boundary condition.

For the sake of simplicity we consider, in the follow-

ing, only homogeneous mechanical Dirichlet boundary

conditions such as wo ¼ 0. The linear constitutive

material behavior relationships can be written as

� ¼ cEðxÞ�� eTðxÞE ð5Þ

D ¼ eðxÞ�þ "SðxÞE ð6Þ

where � represents the Cauchy stress tensor, " ¼ rsymw

the Green strain tensor, E ¼ �rV the electric field

vector (V the voltage), CE the elasticity tensor at

constant electrical field, eT the piezoelectric coupling

tensor and "S the dielectric permittivity at constant

strain.

The equations above are consistent for each kind of

material to the extent that null piezoelectric and

permittivity tensors can be used when passive materials

are considered. All of these tensors also depend on the

spatial location vector x.

For arbitrary admissible virtual mechanical displace-

ments �w and voltage �V, by introducing the Lagrange

multipliers Tui , �qp, and �qo associated, respectively with

the nonhomogeneous Dirichlet boundary conditions

rewritten in Equations (8) and (9), Equations (1), (2),

and (3) are equivalent to Equation (7).
Z

�[�p

ðr� þ f� � €wÞ � �wd�þ

Z

�p

rD�Vd�

þ

Z

S

i2½1::I �
Sui

½w��Tuid�þ

Z

S

p2½1::P�
S
p
vq

ðV� VpÞ�qpd�

þ

Z

So
v

v�qod�þ

Z

Su[So
w

ðw� woÞ�Twd� ¼ 0 ð7Þ

ws � w ¼ 0 8x 2
[

i2½1::I �

Sui
w� ð8Þ

V ¼ Vp 8x 2
[

p2½1::P�

Sp
vq: ð9Þ

By integrating by parts, splitting w into its components

on the main structure ws and those on the piezoelectric

transducers w, and introducing the Neumann conditions

of Equations (2) and (3) as well as the constitutive

Equations (5), (6), we formally obtain the variational

formulation of our continuous problem as follows:

For all �ws, �w, �V virtual mechanical displacement

piezoelectric displacements and voltage in a suitable

admissible space and �Tui and �qp Lagrange multipliers

Piezoelectrical elements

Actuator mechanical parts

Connecting surfaces

x3

x1

x2

qj

Su

Sui Sui

Sui

vj

vp

qp

S
s

s.ni

n

w(xi,t)

f(xi,t)

W

wo
i,

Figure 1. General piezomechanical system description.

So

Sp
vq

So
vq

Sui

Sui v, q = 0

vp, qp

ws

s.nip

s.nip

Ws

Wp

Ws

w o
ip,

wo
ip,

Figure 2. General piezoelectric transducer system description.
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associated with nonhomogeneous Dirichlet conditions,

the partial derivative problem in Equations (1–3) is

equivalent to :
Z

�

� €w�wsþ crsymwsrsym�ws� f�wsd�

þ

Z

�p

�
@2w

@t2
�wþ cErsymwrsym�wþ eTrVrsym�w� f�wd�

þ

Z

�p

�ersymwr�Vþ "rVr�Vd�

�

Z

S�

To�wsd��

Z

S

i2½1::I �
Sui

Tui�wsd�

�

Z

So
�

To�wd��

Z

S

i2½1::I �
Sui

ð�Tui Þ�wd�

�

Z

S

p2½1::P�
S

p
vq

qp�Vd�þ

Z

S

i2½1::I �
Sui

ðws�wÞ�Tuid�

þ

Z

S

p2½1::P�
S

p
vq

ðV�VpÞ�qpd�¼ 0: ð10Þ

By using the Finite Element discretization technique,

we obtain a set of algebraic equations for the structural

behavior as

Ms
ii Ms

ic

MsT
ic Ms

cc

� �

€wsi

€wsc

� �

þ
Ks

ii Ks
ic

KsT
ic Ks

cc

� �

wsi

wsc

� �

¼
fs þ T s

o
P

i2½1::I � �T s
ui

" #

ð11Þ

wsc � wc ¼ 0

and for the piezoelectric transducer as

Mii Mic 0 0

MT
ic Mcc 0 0

0 0 0 0

0 0 0 0

2

6

6

6

4

3

7

7

7

5

€wi

€wc

€V

€Vp

2

6

6

6

4

3

7

7

7

5

þ

Kii Kic Ei Eip

KT
ic Kcc Ec Ecp

�ET
i �ET

c C Cp

�ET
ip �ET

cp CT
cp Cpp

2

6

6

6

4

3

7

7

7

5

wi

wc

V

Vp

2

6

6

6

4

3

7

7

7

5

¼

fþTo
P

i2½1::I �T
s
ui

0

Qp

2

6

6

6

4

3

7

7

7

5

: ð12Þ

wsc �wc ¼ 0

For notational simplicity the same variable labels are

used for the continuous functions and their discretized

counterparts. Each set of equations has been

reorganized through introducing sub-vectors of DOFs.

In Equation (11), wsi is used to denote the internal

structural DOFs and wsc those of the connecting

surface as they naturally appear in the mechanical

part of the term
R

[i2½1::I �S
ui
ðws � wÞ�Tuid� of the weak

formulation in Equation (10). In the same manner, the

transducer DOFs are split as wi for the inner part and wc

for the connecting part of the displacement. Partition of

the voltage terms is introduced by using V for unknown

voltage DOFs and Vp for the applied piezoelectric

potential. The output Equation (4) for each electrode Sp
vq

is the last line of the matrix in Equation (12).

With respect to the modeling development note the

following:

. Homogeneous Dirichlet boundary conditions have

been directly removed from the modeling by use of a

suitable admissible space compatible with these con-

straints. Of course, the same approach could be used if

we need to determine their dual quantities such as the

input charges on the ground electrodes So
v or the

reactive forces on constrained surfaces So
w or Su.

. The variational problem introduced here concerns a

3D modeling of the entire system. Any approach

(beam, plate, shell) can be used as far as the model of

interest retains the complete piezoelectric coupling

effect.

. According to (Benjeddou, 2000) our method permits

the consideration of the ‘induced electrical potential’

and does not introduce any constraint on each

surface’s charge fields qp dual to the applied

voltages Vp even if it does not explicitly appear in

Equation (12), but only through its integral form

Qp ¼
P

qp.

. The entire piezo-mechanical system could be model-

ing using one set of Equations through elimination of

the interconnecting forces �Tui .

At this point, we have obtained a coupled system

of equations that have to be reduced and solved.

The structural part in Equation (11) may be treated

using any kind of model condensation method such as

Guyan, Craig, and Bampton (Geradin, 1997) or dual

FETI (Rixen, 1998). The principal interest of this article,

though, is the condensation of the piezoelectric

elements, which is addressed in the next section.

The Proposed Piezoelectric Condensation Technique

The proposed condensation method is based on

using the static Schur complement (Bernadou, 2003)

of the stiffness matrix obtained in Equation (12). This

approach has been used in previous work (Varadan and

Lim, 1996; Bernadou, 2003; Wang, 2004) to reduce the

number of piezoelectric DOFs for large system

computation. The following shows how this natural

method leads to an original strategy for piezoelectric

condensation, allowing an accurate computation of the

piezoelectric impedances.

First, consider the Schur complement applied to the

piezoelectric set of Equations (12). As Equation (12)

indicates, the electrical response behavior of such a

system is essentially static. In fact, by simply introducing

the Schur complement of the first 3� 3 block of the
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stiffness matrix K, the dynamical equilibrium of our

piezoelectric system is equivalent to

Mii Mic 0

MT
ic Mcc 0

0 0 0

2

6

4

3

7

5

€wi

€wc

€V

2

6

4

3

7

5

þ

Kii þEiC
�1ET

i Kic þEiC
�1ET

c 0

KT
ic þEcC

�1ET
i Kcc þEcC

�1ET
c 0

�ET
i �ET

c C

2

6

4

3

7

5

wi

wc

V

2

6

4

3

7

5

¼

�Eip þEiC
�1Cp

�Ecp þEcC
�1Cp

�Cp

2

6

4

3

7

5
�Vp þ

fþTo
P

i2½1::I �T
s
ui

0

2

6

4

3

7

5
ð13Þ

wsc �wc ¼ 0

Qp ¼ ð�ET
ip þ CT

pC
�1ET

i Þwi þ ð�ET
cp þ CT

pC
�1ET

c Þwc

þ ðCpp � CT
pC

�1CpÞVp: ð14Þ

With the Cmatrix being assumed definite, Equation (12)

is equivalent to Equations (13) and (14). Thus we

consider wi, wc, and V as the state variables of the main

equilibrium Equation (13) and the imposed piezoelectric

voltages Vp as an input variable.

Also, by introducing the matrix product
�

�C�1Cp

I

�

Vp ¼
� �Vo

p

I

�

Vp ¼ Vo
pVp gathering all the static dielectric

solutions of

C Cp

CT
p Cpp

� �

V

Vp

� �

¼
0

Qo
p

� �

ð15Þ

for each different applied voltage and by adopting a

simplified bloc matrix notation, Equations (13) and (14)

can be rewritten as:

M €wþ ðKþ EC�1ETÞw ¼ �Eo
p � V

o
p � Vp þ Fþ T

� ET � wþ C �V ¼ � �Co
p � V

o
p � Vp

ð16Þ

Qp ¼ �V oT
p EoT

p wþ Co
pVp ð17Þ

where F and T stand for the external disturbing forces

and the connection reactions, �V ¼ V� �Vo
pVp is the

induced electrical potential, w ¼
�

wi

wc

�

, Eo
p ¼

�

Ei Eip

Ec Ecp

�

,

E ¼
�

Ei

Ec

�

, �Co
p ¼ ½C Cp�, and M and K are, respectively,

the first 2� 2 block of the mass and stiffness matrices

in Equation (13). We also introduce the equivalent

piezoelectric capacitance (for zero displacement) Co
p ¼

Cpp � CT
pC

�1Cp. We emphasize that Equations (16) and

(17) are strictly equivalent to Equations (12) and (4)

including the induced electric potential in the

second equation of (16) and in the terms of equality in

Equation (17).

At this point, note that most of the previous works

(Lee, 1989a; Lee, 1990; Lee and Chiang, 1991; Hac,

1993; Collet, 1995, 2001; Collet and Walter, 2003),

introduce actuation or sensing behavior by considering

zero charge or zero electrical field on the electrodes.

In our work, we build a reduced order model allowing us

to accurately compute the electrical impedance of such a

piezoelectric system. As can be seen in Equation (12),

the electrical behavior is only ‘static’ with zero terms

in the mass matrix acting on the second time derivative

of the voltage. The approach must also take into

account this static field and integrate it into the basis

used for condensation. Thus, we avoid the use of the

classical modal synthesis method that would lead us to

add static correcting terms to the electrical output

equations. These static terms depending on the global

electromechanical system behavior given by the coupled

Equations (11) and (12) could not be computed by

considering only the sub-structure equilibrium. The

direct use of Craig and Bampton methods to condense

the piezoelectric coupled system in Equation (12) would

introduce a full mass matrix, coupling the electrical

voltage DOFs to the other generalized coordinates.

Thus, we would need to use a second electrical inputs

term €Vp which is not intrinsically a desirable approach.

The key novelty of our proposed method is to add the

dual static displacement field adjoint to the imposed

piezoelectric force �Eo
p:V

o
p in Equation (16) to the

original Craig and Bampton basis. Therefore, the

proposed approximation basis may be represented as

three sets of displacement fields:

1. The classical static Craig and Bampton displacement

field corresponding to the static solutions of the

unitary nonhomogeneous Dirichlet imposed connect-

ing conditions. These fields are constrained to be

orthogonal to the applied piezoelectric force. The

solutions Wu ¼
��

wui

Vui

�

8i

�

are also solutions of the

generic mechanical problem

ðKþ EC�1ETÞwui ¼ 0

�ET � wui þ CVui ¼ 0

Buði; :Þwui ¼ 1

�wT
ui
Eo
pV

o
p ¼ 0

ð18Þ

where Bu represents the localization boolean matrix

of the connecting DOFs such as for each i designating

a particular connecting DOFs Buði; :Þw ¼ wcðiÞ ¼ 1,

where Buði; :Þ is the ith row of Bu.

2. A set of the dual displacement fields adjoint to

the piezoelectric applied forces computed with

homogeneous connecting Dirichlet condition. These

displacements Wvp ¼
��

wvp

Vvp

��

8p
are solutions of the

generic mechanical problem

ðKþ EC�1ETÞwvp ¼ 0

�ETwvp þ CVvp ¼ 0

Buwvp ¼ 0

�wT
vp
Eo
pV

o
pð:; pÞ ¼ 1

ð19Þ

for each p applied unitary static potential vector

Vo
pð:; pÞ (Vo

pð:; pÞ represents the pth column of the

static dielectric solutions matrix Vo
p).
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3. A set of fields that are the inner normal modes

with homogeneous Dirichlet connecting conditions,

orthogonal to the piezoelectric applied forces. These

N fields are represented as �N ¼
��

�n
V�n

�

8n

�

and are

the first N solutions of the eigenvalue problem

represented by

ð�!2
nMþ ðKþ EC�1ETÞÞ�n ¼ 0

�ET�n þ CV�n
¼ 0

Bu�n ¼ 0

��T
n E Ep

� �

Vo
p ¼ 0:

ð20Þ

The number of DOFs in Equations (12) can also be

reduced by simply assuming serial truncation as in

wi

wc

V

Vp

2

6

6

6

4

3

7

7

7

5

�

Wwi
u

Wwc
u

WV
u

0

2

6

6

6

4

3

7

7

7

5

wc þ

Wwi
vp

Wwc
vp

WV
vp

0

2

6

6

6

4

3

7

7

7

5

�p

þ

�
wi

N

�
wc

N

�
V
N

0

2

6

6

6

4

3

7

7

7

5

�n þ

0

0

�Vo
p

Ip

2

6

6

6

4

3

7

7

7

5

Vp ð21Þ

where the notation Wdof represents the vector partition

corresponding to the DOFs in the superscript.

By using the classical covariant transformation,

Equations (12) can be reduced to

Mcc Mcp Mcn

MT
cp Mpp Mpn

MT
cn MT

pn IN

2

6

4

3

7

5

€wc

€�p

€�n

2

6

4

3

7

5
þ

Kcc Kcp 0

KT
cp Kpp 0

0 0 �
2
N

2

6

4

3

7

5

wc

�p

�n

2

6

4

3

7

5

¼

P

i2½1::I � T
s
ui

0

0

2

6

4

3

7

5
þ

0

Ip

0

2

6

4

3

7

5
� Vp þ Fþ To ð22Þ

wsc � wc ¼ 0

and

qp ¼ 0 Ip 0
� �

wc

�p
�n

2

4

3

5þ Co
pVp ð23Þ

where IN stands for the N order unitary matrix, �N for

the diagonal matrix of the eigenvalues !n solutions

of Equation (19) and F and T are the projection of the

exterior applied forces onto the basis.

Remarks

The proposed method is totally compatible with

substructuring techniques such as the classical Craig

and Bampton approach. The output Equation (23)

allows the computation of the piezoelectric impedance

of the super element and therefore of the assembled

system. Thus, we can use it to describe a piezoelectric

transducer’s behavior in a complete formulation, inte-

grating the static electrical input/output relationships via

the feedthrough term Co
p and taking into account

complete piezoelectric behavior such as the induced

potential. The classical approximation orders estab-

lished for the Craig and Bampton technique hold here,

as detailed in (Geradin, 1997).

As previously mentioned, this approach can be used

with any kind of piezoelectric modeling for beams,

plates, shells or composite structures, even if the

electrical behavior does not appear as a standard DOF

as it does in (Lee, 1989a; Lee, 1990; Lee and Chiang,

1991; Hac, 1993) for composite beams and plates.

SUBSTRUCTURED MODELING OF A

PIEZOSTACK TRANSDUCER CONNECTED

TO A BEAM

System Overview

The structure of interest is depicted in Figure 3. It is a

2D plane stress state model of a beam element

(substructure 2) connected to an active substructure

containing a piezostack transducer. The ends of the

beam are assumed to be clamped. The main aim of our

computation is to furnish an accurate piezoelectric super

element of the active substructure by using the

methodology developed above. The final assembled

system should exhibit the same static and dynamic

behavior as a directly meshed structure and therefore the

same impedance.

THE ACTIVE SUBSTRUCTURE

The active substructure (substructure 1 in Figure 3) is

more precisely depicted in Figure 4. The mechanical

characteristics of the steel beam are presented in Table 1,

while those of the piezostack are in Table 2.

The mechanical boundary conditions indicated

in Figure 4 are clamped on the left end and

Stack piezoelectric : 6 layers

Substructure 1 Substructure 2

Interface

0.2

0.4

0.6

0

−0.2

−0.4

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

Clamped section

Clamped section

Figure 3. Mechanical system overview, indicating substructuring
between piezoelectric section and passive section.
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‘Bernoulli Euler’ kinematic fields on the right-hand

interface. On this right-hand interface, the 2D displace-

ments uið y; tÞ and wið y; tÞ, respectively along axis Ox

and Oy, are

uið y; tÞ ¼ uoi ðtÞ � y�
lr

2

	 


�oi ðtÞ ð24Þ

wið y; tÞ ¼ wo
i ðtÞ ð25Þ

where lr represents the section height.

The electrical boundary conditions are also depicted

in Figure 4. The lateral edges of each stack layer are

free of electrical charge. The connecting stack inter-

faces are alternatively grounded and subjected to

an applied common electrical potential Vp. The piezo-

stack component is connected to the support at the

center of its left- and right-hand face to simulate a

ball joint.

The initial mesh has 1312 Lagrange-Quadratic

triangle elements with four Gauss points per element.

The initial total number of DOFs to mesh this part

is 7182.

Remarks on numerical implementation:

. Comsol � Multiphysic software is used for imple-

menting the model. The necessary implementation

of nonclassical Dirichlet constrains, as in

Equations (18–20), may be directly introduced using

this software platform. The details are omitted here,

but note that the piezoelectric dual constraint is

introduced as a sub-domain integral constraint.

Integrations are carried out in each piezoelectric

sub-domain by using an electro-static field Vo
p

(here p ¼ 1) obtained by solving Equation (15), as

indicated by

DualConst ¼

Z

�p

�eTrVo
prsym�wd�: ð26Þ

These general constraints are also set to be equal

to 0 in Equation (18) and (20) or equal to 1 in

Equation (19).

. Other classical constraints are directly imposed by

using coupling variables assigned to be constant.

Such is the case for the ‘Euler Bernoulli’ connective

displacement constraints.

. It must be emphasized, in the case of the global

computation of response involving Neumann

electrical constraints (electrical charge applied to the

electrodes), the dual voltage is set to be identical on

all the participating electrode surfaces in order to

enforce infinite current conductivity on the electrode.

Obviously, additional partial derivative Equations

can be implemented if one seeks to consider resistance

behavior.

THE PASSIVE BEAM

The mechanical characteristics of the supporting steel

beam are presented in Table 1. The boundary conditions

described in Figure 5 are clamped on the right end

section and ‘Euler Bernoulli’ kinematic fields on the

interface section as indicated in Equations (24) and (25).

The initial mesh has 416 Lagrange Quadratic triangle

elements with four Gauss points per element. The initial

total DOFs to mesh this part was 1882.

Clamped
section

Supporting beam

Piezostacks

Poling direction: 

Supports
Supports

Vo, qo

uc

wc

qc

Rigid Euler-Bernoulli
Type connection

0.25 m

0.05 m

0.05 m

0.05 m

0.03 m

0.04 m

0.02 m

Figure 4. Details of active substructure 1.

Table 1. Steel characteristics.

Structural Steel

Name Values Mechanical properties

E 200:109 Pa Young Modulus

	 0.28 Poisson Ratio

� 7800 kgm�3 Density

lar 0.01 m width

lr 0.05 m height
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Implementation of Proposed Condensation

THE ACTIVE SUPER ELEMENT

The active substructure described above is condensed

using the method proposed in section ‘Linear

Piezoelectric Mechanical Systems Modeling and

Condensation’. We also build a super element with 3

static fields corresponding to the connecting ‘Euler

Bernoulli’ type master DOFs as the solutions of

Equation (18), one piezoelectric dual field as the solution

of Equation (19) and five internal modes solutions of

Equation (20). The static electrical field used for writing

the piezoelectric dual constraint in Equations (18–20) is

shown on Figure 6. Figures 7–9 show the first three

displacement fields related to the static connecting

master DOFs, Figure 10 the dual displacement field

and Figures 11–13 the five internal modes. The eigen-

frequencies of these internal modes are in Table 3. In the

following numerical results, we consider three different

mesh refinements of this active substructure. The

meshing quality does not impact the size of the resulting

super element but only the accuracy of the condensation

procedure. In consequence, the total number ofDOFs for

the active super element is always nine.

THE PASSIVE SUPER ELEMENT

The passive super element is directly obtained by

using a Craig and Bampton condensation technique.

The element has three static master DOFs corres-

ponding to the imposed connective ‘Bernoulli Euler’

displacement fields and 20 internal modes. The corres-

ponding eigenfrequencies are compiled in Table 4.

Table 2. Piezostack characteristics.

Piezoelectric material

Name Values Mechanical properties

c11E ¼ c22E 1.27�1011 Pa 11 and 22 stiffness matrix coefficients

c12E 8.02�1010 Pa 12 stiffness matrix coefficient

c13E ¼ c23E 8.46�1010 Pa 13 and 23 stiffness matrix coefficients

c33E 1.17�1011 Pa 33 stiffness matrix coefficient

c44E ¼ c55E 2.30�1010 Pa 44 and 55 stiffness matrix coefficients

c66E 2.34�1010 Pa 66 stiffness matrix coefficient

e31 ¼ e32 6.62 Cm�2 31 and 32 piezoelectric matrix coefficients

e33 �23.24 Cm�2 33 piezoelectric matrix coefficient

e24 ¼ e15 �17.03 Cm�2 24 and 15 piezoelectric matrix coefficients

� 7500 kgm�3 Density

"33S 143.361 "o CV�1m�1 Dielectric permittivity

"11S ¼ "22S 1704 "o CV�1m�1 Dielectric permittivity

n 6 Number of layers

ep 0.02m Layer thickness

lap 0.01m Layer width

lp 0.04m Layer height

Clamped

section 

uc

wc
qc

Rigid Euler-Bernoulli

type connexion

1.75 m

0.05 m

Figure 5. The passive substructure 2.
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Note that :

. According to Craig and Bampton assumptions

(Geradin, 1997), the super element’s frequency

domain of validity extends to about 3800Hz

considering a criterion of one-half of the largest

internal eigenfrequency.

. Therefore, the frequency range for the passive super

element is less than that of the piezoelectric super

element, 4200Hz.
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Figure 6. Static imposed electrical field.
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Figure 7. Displacement norm and electrical fields of the first static
connecting degree of freedom uoi .
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Figure 8. Displacement norm and electrical fields of the second
static connecting degree of freedom wo

i .
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Figure 9. Displacement norm and electrical fields of the third static
connecting degree of freedom �oi .
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Figure 10. Displacement norm and electrical fields of the piezo-
electric dual stress field.
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Figure 11. Displacement norm and electrical fields of the first
internal mode.
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Figure 12. Displacement norm and electrical fields of the second
internal mode.
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Figure 13. Displacement norm and electrical fields of the third
internal mode.
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Numerical Comparison Between Active Super Element

Approach and Direct Modeling

To study the numerical efficiency of the proposed

substructuring approach, a global model (GM) is

also implemented. The meshed piezomechanical

structure is depicted in Figure 14. It has 376 Lagrange

Quadratic elements and 17509 DOFs. The model

quality is also very good for this refined mesh

system and exceeds that of each of the nominal

substructures.

This GM system has the same mechanical and

electrical boundary conditions as those presented

above for each substructure. Even the ‘Bernoulli-Euler’

linking conditions is imposed so as to focus the

analysis on the piezoelectric behavior and not on the

validity of such an assumption. The applied electrical

conditions could be either potential (Dirichlet

conditions) or charge (Neumann conditions) on the

driven electrode depending on which kind of problem we

want to solve.

STATIC RESULTS

The static results are very important in these kinds of

problem because they are linked in a large part to the

piezoelectric behavior of the transducer as mentioned in

section ‘Linear Piezoelectric Mechanical Systems

Modeling and Condensation’:

. The ratios qp=Vp and maxðjwjÞ=Vp are directly

connected to the static piezoelectric coupling effect.

. The difference between the ratios above and the dual

ratios Vp=qp and maxðjwjÞ=qp are directly connected

to the induced stiffness modifications when the

piezoelectric material acts under imposed voltage or

imposed charge.

The static deformations and electric fields of the

global meshed system and the substructured system

under a unit imposed voltage Vp ¼ 1 are presented in

Figures 15 and 16. The obtained deformation and

electrical fields appear identical in both pictures.

In order to assess the convergence quality of our

approach, consider three different mesh refinements.

The first case corresponds to the initial mesh (IM)

defined above, labeled here as refined mesh 1 (RM 1).

The second case, ‘refined mesh 2’ (RM 2), is an

increased quality mesh for the active substructure with

Table 3. Active super element
internal eigenfrequencies.

Mode Frequency (Hz)

1 2421

2 2968

3 3855

4 5642

5 8474

Table 4. Passive super element internal
eigenfrequencies.

Mode Frequency (Hz) Mode Frequency (Hz)

1 89.4 11 3151

2 244.5 12 3766

3 474.4 13 4416

4 774.3 14 4589

5 1139 15 5098

6 1531 16 5808

7 1565 17 6116

8 2046 18 6543

9 2576 19 7300

10 3061 20 7639

0.25

0.2

0.15

0.1

0.05

0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.05

−0.1

−0.15

Figure 14. The global meshed system.

10



3256 elements and 20,490 DOFs. The third case, ‘refined

mesh 3’ (RM 3), enhances the mesh refinement of the

passive substructure with 840 elements and 3778 DOFs

while also using the RM 2 for the active part. We

re-emphasize that the condensed super elements have

fixed numbers of DOFs. Table 5 presents the qualitative

results for the system under a unit applied voltage.

Table 6 shows the dual result obtained for the system

under a unit applied charge. Figures 17 and 18 show the

displacement norm and voltage fields of the deformed

structures respectively obtained with the global and the

substructured mesh.

The results obtained using the proposed substructured

approach are very close to those obtained by a global

mesh with a maximum error of 4%. As for the proposed

method, in the formalism introduced here, imposed

piezoelectric voltage as input and charge as output, the

static response under unit applied voltage is much more

precise with a maximum error of 2% on maximum

displacement with the coarser mesh case than the static

response for unit applied charge. Note that the models

all yield the same value for the dielectric capacitance, Co
p,

since they use the same electrostatic representation.

As shown in Table 6, the accuracy of the results increase

with mesh refinement of the active subsystem. The

results for the displacements, w, converge as Oð2Þ

of the number of DOFs, while the voltage converges

as Oð4Þ.

FREQUENCY RESPONSE

FUNCTION COMPUTATION

The main interest of the proposed method is the

ability to compute the global piezoelectric response

functions by taking into account the global behavior of

such a system. To demonstrate this capability, Figure 19

depicts the frequency response function of the piezo-

electric charge for a unit voltage input, qpð!Þ=Vpð!Þ.
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Figure 15. Static displacement norm and electrical fields of the
global meshed system under unit imposed voltage.
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Figure 16. Static displacement norm and electrical fields of the
substructured system under unit imposed voltage.

Table 5. Static results comparison for different system
meshes under unitary applied voltage.

Quantities GM IM (error) RM 2 (error) RM 3 (error)

qp 10�9 C 1:54 1:54 (0%) 1.54 (0%) 1.54 (0%)

maxðjwjÞ 10�9 m 5:232 5:38 (2%) 5.25 (0.4%) 5.25 (0.4%)

Co
p 10�10 C � V�1 1:5232 1:5232 (0%) 1.5232 (0%) 1.5232 (0%)

Table 6. Static results comparison for different system
meshes under unitary applied voltage.

Quantities GM IM (error) RM 2 (error) RM 3 (error)

Vp 10þ8 V 6:489 6.509 (3.1) 6.4916 (0.04%) 6.4915 (0.038%)

maxð wj jÞ m 3:395 3.49 (2.8%) 3.409 (0.4%) 3.409 (0.4%)

Co
p 10�10

C � V�1

1:5232 1.5232 (0%) 1.5232 (0%) 1.5232 (0%)
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−0.15
−1 −0.6 −0.2 0.2

Maxi: 5.84e8 Maxi: 3.50
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3.5

3

2.5

2

1.5

1
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Figure 17. Static displacement norm and electrical fields of the
global meshed system under unitary imposed charge.
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Figure 18. Static displacement norm and electrical fields of the
substructured system under unitary imposed charge.
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Results for the four cases introduced in the previous

section are shown: the global mesh, and refined mesh 1,

2, and 3. The figure does not reveal any ‘visual’

difference between the results. We note the well known

closed poles/zeros location of the electric transfer

function for a piezoelectric system. The distance between

each successive pole and zero are closely related to the

mechanical damping capability of the passively shunted

circuit (Preumont, 1997; Monnier, 2005). These spacings

can be enhanced by increasing the piezoelectric coupling

coefficient but also by optimizing the mechanical

coupling with a suitable approach as mentioned in

(Monnier, 2005). Thus, the capability to compute these

quantities are fundamental for optimizing active or

passive control systems that use such a piezoelectric

transducer.

The five first poles (resonance frequencies) and zeros

(antiresonance frequencies) of the electrical transfer

function qpð!Þ=Vpð!Þ are presented in Tables 7 and 8.

Notice that the substructuring approach results are

precise enough to compute poles and zeros location with

a maximum error, here, of � 0.2 % with the initial mesh.

The convergence of the method is clearly indicated by

this set of numerical tests. Nevertheless, for the four

cases, the refined mesh three yields some smaller

frequencies than those of the reference global computa-

tion. These may come from specific error introduced by

the two different numerical algorithms used here.
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Figure 19. FRF qpðxÞ=VpðxÞ for the global mesh (dotted line), refined mesh 1 (dash line), 2 (dashdot line) and 3 (plain line).

Table 7. The five first poles of the transfer function qpðxÞ= VpðxÞ.

Pole Number GM IM (error) RM 2 (error) RM 3 (error)

1 72:56Hz 72.69Hz (0.1%) 72.59Hz (0.041%) 72.57Hz (0.014%)

2 194:08Hz 194.33Hz (0.13%) 194.14Hz (0.031%) 194.09Hz (0.005%)

3 369:26Hz 369.55Hz (0.07%) 369.35Hz (0.024%) 369.25Hz (�0.003%)

4 594:17Hz 594.52Hz (0.059%) 594.38Hz (0.035%) 594.15Hz (�0.003%)

5 869:01Hz 869.60Hz (0.06%) 869.48Hz (0.054%) 869.04Hz (0.003%)

Table 8. The five first zeros of the transfer function qpðxÞ= VpðxÞ.

Zero Number GM IM (error) RM 2 (error) RM 3 (error)

1 72:95Hz 73.10Hz (0.2%) 72.98Hz (0.041%) 72.967Hz (0.023%)

2 194:78Hz 195.06Hz (0.14%) 194.83Hz (0.026%) 194.79Hz (0.005%)

3 369:90Hz 370.19Hz (0.078%) 369.95Hz (0.013%) 369.85Hz (�0.013%)

4 594:38Hz 594.67Hz (0.049%) 594.53Hz (0.025%) 594.30Hz (�0.013%)

5 869:02Hz 869.64Hz (0.071%) 869.53Hz (0.059%) 869.09Hz (0.008%)
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Finally, note that the differences between each succes-

sive electrical pole and zeros are not improved by the

mesh refinement, it only increases the frequency resolu-

tion for each pole/zero pair.

MODAL SYNTHESIS OF A SEMI DISTRIBUTED

PIEZOCOMPOSITE PLATE

Now consider the direct application of the proposed

technique to the modal synthesis of a piezoelectric

impedance dedicated LTI model. The aim is also to

provide a reduced order LTI of a piezoelectric system

capable to accurately compute impedances such as

qp=Vp but also electromechanical effects such as

qp;Vp=F, w=Vp; qp or mechanical impedance, w=F. The

resulting simple model could also be used in optimiza-

tion processes that employ numerous iterations.

Numerical Model

PIEZOMECHANICAL DESCRIPTION

The system, depicted in Figure 20, corresponds to that

used by Hagood and von Flotow (Hagood, 1991). It is a

cantilever beam on which are glued two pairs of

piezoelectric patches. Each pair of patches can be

considered as either actuator or sensor. The material

properties are detailed in Tables 9 and 10 while the

dimensions are in Figure 20. Each patch on each side of

the beam has the same polarization direction through

their thickness. The complete piezoelectric material

characterization was not precisely found into literature.

So, some values have been estimated by using different

articles such as (Hagood, 1991; Shah and Joshi, 1993;

Crawley, 1994). Inconsistencies between these articles

for the same material, and inadequate specificity as to

how the values were determined, lead us to simplify our

estimation and assume the use of an isotropic mechan-

ical behavior and permittivity tensor as previously

employed in (Crawley, 1994).

Shunted pair 2.1 cm
Driving pair

5 cm

2.55 cm

3.17 mm

6.2 cm

29.3 cm
0.25 mm thick patches bonded top and bottom of beam

Zsu Vin

Clamp

Figure 20. The considered piezoelectric beam system.

Table 9. Beam characteristics.

Structural material

Name Values Mechanical properties

E 6.3� 1010 Pa Young’s Modulus

	 0.30 Poisson Ratio

� 2700 kgm�3 Density

Table 10. Piezostack characteristics.

Piezoelectric material

Name Values Mechanical properties

s11E ¼ s22E ¼ s33E 15.9�10�12 Pa�1 11, 22, and 33 compliance matrix coefficients

s12E ¼ s13E ¼ s23E �4.13�10�12 Pa�1 12, 13, and 23 compliance matrix coefficient

s44E ¼ s55E ¼ s66E 41.3�10�12 Pa�1 44, 55, and 66 compliance matrix coefficients

d31 ¼ d32 �254� 10�12 CN�1 31 and 32 piezoelectric matrix coefficients

d33 580� 10�12 CN�1 33 piezoelectric matrix coefficient

d24 ¼ d15 730� 10�12 CN�1 24 and 15 piezoelectric matrix coefficients

� 7600 kgm�3 Density

"33T ¼ "11T ¼ "22T 2780 "o CV�1m�1 Dielectric permittivity
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The electrical boundary conditions applied to each

patch are:

. Lateral faces are free of charge.

. Face in contact with the beam is grounded.

. Controlling voltage is applied on the external face,

V1;2, where the subscript 1 indicates the pair located

near the clamped edge and 2 for the other pair.

The dual charge is q1;2.

To assess the capability of the super element synthesis

to address mechanical quantities, an external force F is

applied in the middle of the free edge of the beam. The

collocated displacement wF is also computed. The LTI

representation of such a system has three inputs: V1, V2,

F, and three outputs: q1, q2, and wF.

STUDIED MESH CASES

The system is meshed using Lagrange-Quadratic

quadrangular elements with four Gauss points per

element. This 3D element was chosen to emphasize the

generic capability of such an approach even in the

case of thin-layer modeling. By using this generic

approach, even if it is not particularly adapted to thin

composite layer modeling, we avoid modeling issues

pertaining to the choice of a composite beam or plate

model. Two different refined mesh cases are taken into

consideration as depicted in Figures 21 and 22. In each

case we use two elements in the thickness for each

piezoelectric layer.

Mesh case 1 has 34,371 DOFs in 896 elements.

Refined mesh case 2 has 70,213 DOFs in 1896 elements.

Figure 21. Mesh case 1.

Figure 22. Refined mesh case 2.
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MODIFIED MODAL SYNTHESIS METHOD

The modal synthesis is performed by applying the

proposed approach without computing any linking

displacement fields. We only compute two sets of

approximation fields corresponding to the solution

of Equations (19) and (20). The complete behavior of

the piezoelectric system is also projected on the

results. The system is condensed by using the so-called

modified modal synthesis method which adds the

piezoelectric dual field stress to the classical modal

approach.

The two specific fields corresponding to the solutions

for each piezopatch of Equation (19) are shown in

Figures 23 and 24.

Table 11 presents for the two mesh cases the first 20

frequencies of the inner modes as solution of

Equation (20). It is apparent that the refined mesh case

2 does not induce a significant accuracy improvement

in the frequency computation, with a maximum variation

of about 0:4% in the estimate for the 12th mode.

The electrostatic equivalent capacitances of each

pair of patches are obtained respectively equal to

Co
1 ¼ 1:92e� 7 CV�1 and Co

2 ¼ 1:55e� 7 CV�1 in both

mesh cases.

Static Numerical Results

As our LTI model has three inputs and three outputs,

there are a maximum of 27 possible charge cases if we

want to explore all primal and dual solutions; this

number of cases cannot be concisely presented. Instead,

consider the first piezoelectric patch as the only actuator

on which can be applied either voltage or charge with

Dirichlet or Neumann boundary conditions imposed on

the second piezoelectric patch. The external applied

force is also considered as the only mechanical

perturbation. This reduces the space such that only

eight cases are computed. Tables 12 and 13 contain the

results.

Table 12 clearly indicates that the two piezoelectric

patches are electrically quasi-uncoupled. Increasing the

number of modes used does not improve the numerical

computation whereas the refinement enhances the

voltage approximation as well as for electrical

(Table 12) and mechanical perturbations (Table 13).

The proposed modal synthesis method enables one to

obtain very accurate static results compared to those

given by a nonsubstructured global computation.

Further, note that the charge estimation is almost the

same between the cases. Finally, the computed voltage

exhibits a maximum error of about 1:9% compared to

the global mesh.

Dynamic Results and Electric Impedance Computation

As was done in the first example, Table 14 presents the

first three flexural pole-zero estimates for the different

cases. Note that increasing the number of modes does not

improve the computed results. The proposed synthesis

method introduces a maximum bias of 0:16% on the

estimation of the electrical poles/zeros. This is due to the

numerical procedure used to solve the constrained

problems. The numerical procedure is improved by

mesh refinement and demonstrates the convergence

property of such approaches. These computations

indicate a very close location between poles and zeros.

The differences depend on the piezomechanical coupling

Maxi: 35.915

Mini: 0
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Figure 23. First dual piezo stress field. Isosurfaces: Piezo voltage
[V]; Displacement [m].

Maxi : 23.689

Mini : 0

20

15
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5

0

Figure 24. Second dual piezo stress field. Isosurfaces: Piezo
voltage [V]; Displacement [m].

Table 11. Internal eigenfrequencies (in Hz) of the
passive super element.

Mode MC 1 MC 2 Mode MC 1 MC2

1 37.61 37.58 11 3353.8 3340.5

2 203.30 203.20 12 3781.7 3781.0

3 256.75 256.71 13 3812.3 3808.9

4 553.40 553.10 14 4329.3 4328.9

5 705.14 702.30 15 4439.7 4422.0

6 1067.1 1066.6 16 5064.1 5058.4

7 1430.7 1430.5 17 5969.2 5945.7

8 1824.2 1823.0 18 6582.6 6573.7

9 1876.7 1869.2 19 6883.2 6881.6

10 2679.9 2677.8 20 7551.7 7522.9
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coefficient, therefore, on the mechanical design and on

the piezoelectric coupling coefficient k31. To optimize the

use of such devices for active or passive applications

requires good numerical accuracy in poles/zeros compu-

tation as underlined in (Preumont, 1997; Monnier, 2005).

The possibility to reach a good compromise between

numerical complexity and precision makes our method

very attractive to be used in such procedures.

Table 15 presents the computed zeros for the

mechanical transfer function. Obviously, the poles

Table 12. Static results for different electrical applied conditions and different modeling approaches and mesh
refinements: modal synthesis with 10 or 20 modes, global mesh. (EBC stands for ‘electrical boundary conditions’, MC
for ‘mesh case’).

P1 P2 MC 1 MC2: MC 1: MC 2: MC1 MC2

EBC EBC Quantities 10 modes 10 modes 20 modes 20 modes Glob Mesh Glob Mesh

q2=0 q1 (
C) 0.262 0.263 0.262 0.263 0.265 0.265

V2 (mV) �0.234 �0.225 �0.234 �0.225 �0.236 �0.227

V1 ¼ 1 wF (
m) �2.30 �2.30 �2.30 �2.30 �2.28 �2.28

V2=0 q1 (
C) 0.262 0.263 0.263 0.263 0.265 0.265

q2 (pC) 49.7 47.7e 49.7 47.6 50.6 48.6

wF (
m) �2.30 �2.30 �2.30 �2.30 �2.28 �2.28

q2=0 V1 (MV) 3.81 3.81 3.81 3.81 3.76 3.77

V2 (kV) �0.893 �0.855 �0.894 �0.855 �0.893 �0.856

q1 ¼ 1 wF (m) �8.78 �8.75 �8.78 �8.75 �8.63 �8.59

V2=0 V1 (MV) 3.81 3.81 3.81 3.81 3.78 3.77

q2 (mC) 0.189 0.181 0.189 0.181 0.191 0.183

wF (m) �8.78 �8.75 �8.78 �8.75 �8.62 �8.59

Table 13. Static results for a unitary applied force F and different modeling approaches and mesh refinements: modal
synthesis with 10 or 20 modes, global mesh. (EBC stands for ‘electrical boundary conditions’, MC for ‘mesh case’).

P1 P2 MC 1 MC2: MC 1: MC 2: MC1 MC2

EBC EBC Quantities 10 modes 10 modes 20 modes 20 modes Glob Mesh Glob Mesh

q2=0 q1 (
C) �2.30 �2.30 �2.30 �2.30 �2.28 �2.28

V2 (V) 5.80 5.79 5.80 5.79 5.72 5.71

V1 ¼ 0 wF (mm) 1.32 1.32 1.32 1.32 1.33 1.33

V2=0 q1 (
C) �2.30 �2.30 �2.30 �2.30 �2.28 �2.28

q2 (
C) �1.23 �1.23 �1.23 �1.22 �1.22 �1.22

wF (mm) 1.33 1.3 1.33 1.33 1.33 1.34

q2=0 V1 (V) 8.78 8.75 8.78 8.75 8.62 8.59

V2 (V) 5.80 5.79 5.80 5.79 5.71 5.70

q1 ¼ 0 wF (mm) 1.30 1.30 1.30 1.30 1.31 1.31

V2=0 V1 (V) 8.78 8.75 8.78 8.75 8.62 8.59

q2 (
C) �1.23 �1.23 �1.23 �1.23 �1.22 �1.22

wF (mm) 1.31 1.31 1.31 1.31 1.32 1.32

Table 14. Poles/Zeros evaluations (Hz) for different modeling approaches and mesh refinements: modal synthesis with
10 or 20 modes, global mesh. (EBC stands for ‘electrical boundary conditions’, MC for ‘mesh case’).

P2 MC 1 MC2: MC 1: MC 2: MC1 MC2

EBC q1/V1 Number 10 modes 10 modes 20 modes 20 modes Glob mesh Glob mesh

Poles 1 35.917 35.900 35.917 35.900 35.872 35.860

2 198.70 198.64 198.70 198.64 198.44 198.39

V2 ¼ 0 3 546.70 546.47 546.70 546.47 545.84 545.63

Zeros 1 36.267 36.252 36.267 36.252 36.211 36.196

2 199.41 199.35 199.41 199.35 199.12 199.06

3 547.00 546.77 547.00 546.77 546.12 545.90

Poles 1 35.997 35.983 35.997 35.983 35.950 35.937

2 199.19 199.13 199.19 199.13 198.92 198.86

q2 ¼ 0 3 548.12 547.89 548.12 547.89 547.22 547.00

Zeros 1 36.349 36.333 36.349 36.333 36.291 36.276

2 199.89 199.82 199.89 199.82 199.59 199.52

3 548.42 548.18 548.42 548.18 547.50 547.27
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correspond to those presented in Table 14. We clearly

observe the influence of the number of modes on

the numerical accuracy of the mechanical transfer

function. As previously mentioned, the proposed

synthesis method introduces a maximum numerical

error of 0:14%. Once again, the condensation method

allows one to obtain an accurate estimation of the

mechanical behavior while using fewer DOFs.

Finally, we present in Figures 25 and 26 and the

frequency response functions corresponding to unit

Table 15. First three nonnull zeros (in Hz) of the mechanical transfer function wF=F for different modeling approaches
and mesh refinements: modal synthesis with 10 or 20 modes, global mesh. (EBC stands for ‘electrical boundary
conditions’, MC for ‘mesh case’).

P1 P2 MC 1 MC2: MC 1: MC 2: MC1 MC2

EBC EBC Number 10 modes 10 modes 20 modes 20 modes Glob mesh Glob mesh

V2 ¼ 0 1 139.83 139.79 139.75 139.71 139.55 139.51

2 256.75 256.71 256.75 256.71 256.68 256.64

V1 ¼ 0 3 445.94 445.77 445.00 444.83 444.20 444.04

q2 ¼ 0 1 139.95 139.91 139.86 139.82 139.67 139.62

2 256.75 256.71 256.75 256.71 256.68 256.64

3 447.56 447.38 446.62 446.44 445.78 445.61
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applied voltage on the first piezoelectric patch and to

unit applied force F, for the refined condensed model

with 20 inner modes. The difference between the

locations of the poles and zeros for these cases is due

to the electrical connection. These small perturbations

are of great importance for patch impedance optimiza-

tion for control of beam response. The proposed

piezoelectric modal synthesis allows one to accurately

introduce the underlying coupling phenomena in the

suitable condensed model for optimization-intensive

procedures.

CONCLUDING REMARKS

We have presented here an original numerical

approach to build a condensed super element for a

piezo-mechanical sub-system. The proposed method

allows accurate modeling of the specific piezoelectric

coupling phenomena. Thus, the reduced order model is

able to precisely evaluate any kind of electrical,

mechanical, or mixed transfer function. Attention

has been paid in the analysis to the numerical accuracy

in computing the static response and therefore the

location of the zeros of the input/output system.

As these quantities are important for passive or active

optimization of such a piezoelectric transducer, the

procedure provides a suitable and accurate condensed

model able to be intensively used in numerical

procedures.

The proposed methodology corresponds to a mod-

ified Craig and Bampton condensation able to take into

account the entire piezoelectric coupling as far as it is

accurately introduced in the basic model employed. This

work showed characteristic results for two examples

using ‘2D plane constrained’ and complete ‘3D’ models.

The method could be applied for any piezoelectric

approach as far as the electrical inputs/outputs are well

defined in the approach.

Consideration of the convergence properties for the

approach indicate that the precision in the electrical

input/output transfer functions depend on the mesh

refinement of the basic model and does not depend on

the number of internal modes used in the super element.

The mechanical and mixed transfer functions also

converge like for the Craig and Bampton approach,

depending on the mesh refinement and on the introduced

modes.

Finally, note that the proposed approach allows

one to achieve complete multiphysics models includ-

ing complex piezoelectric mechanical and acoustical

parts coupled with models of attached electronics.

The method should permit one to address the problem

of the complete optimization of electrical circuits

for passive/active control or energy harvesting using

piezoelectric transducers.
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