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Active damping of ‘parasitic’ vibration modes
of a quartz sensor
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3, rue Fernand Hainaut, 93407 Saint Ouen Cedex, France
2 FEMTO ST département LMARC, UMR 6174, 25 000 Besançon, France

An original control approach for active vibration stabilization of sensors made of quartz is introduced in this paper. The idea 
explored is to use the piezoelectric framework of sensors, with respect to their operation, so as to damp ‘parasitic’ vibration 
modes. To accomplish this, actuating electrodes are conveniently located on the device surface by means of a simple 
optimization approach. The proposed stabilization control is implemented and optimized for a monolithic vibrating inertial 
sensor made of quartz. The performance and the energy cost of modeling are compared with the experimental ones.

1. Introduction

Many sensing components are made of piezoelectric materi-

als [1–3]. For precise sensing applications, the two key prop-

erties are high quality factor and good temperature stability.

Compared to other piezoelectric materials, a quartz crystal pro-

vides an interesting combination of properties. The material

properties of quartz are highly repeatable, manufacturable and

extremely stable with respect to temperature shifts and age-

ing. The frequency–temperature coefficient can be limited by

a precise crystal cut (AT-cut, BT-cut, SC-cut . . .) [4–6]. In-

trinsically, quartz structures have limited changes of material

properties over a given period of time [7]. For example, the

common ageing rate for commercial quartz resonators is ap-

proximatively 5 ppm (parts per million) per year. Moreover,

the internal losses of quartz material are very low [8], so that

an intrinsic quality factor of about 107 at 1 MHz can be easily

obtained. For these singular properties, quartz is largely and

commonly used for sensing applications [9, 10] in many scien-

tific fields [11].

Good operation of sensing electronic components, such as

inertial sensors [12], is essential to the operation of electronic

cards used in various civil and military applications. Sensitive

components endure intense accelerations due to vibrations of

their host structure. Their frequency stability, measurement

accuracy and service life are strongly disturbed by these

vibrations, and the improvement of dynamics of sensors is

currently a major economic and strategic issue. One of

the best ways to improve a vibratory behavior is to use

an active control process [13]. Generally, this solution is

applied to the host electronic cards by using piezoelectric

patches [14–17]. Another solution is to control the vibratory

behavior of electronic components themselves. Limiting the

vibration transfer between an element and its support can

be one method [18–20]. Another method is to modify the

parameters of the studied structure (for example, stiffness) with

environmental shifts. This original method is examined in

the paper. The principal idea is to individually stabilize each

sensitive component made of quartz, by using the piezoelectric

properties of their framework. The simplest way is to design

a multi-electrode set-up deposited onto a quartz framework in

order to actively control it. The main benefit of this strategy

is the smallness of the amount of mass to be controlled. In

this case, the required control energy level remains moderate

and can be provided by electrical energy sources, already

implemented on the host electronic cards. Thus, the electrode

network necessary to the stabilization process has to be

integrated into the design phase of sensitive components.

The control law is founded on a classical collocated

sky-hook strategy with an absolute sensor [13, 21]. An

actuator and a sensor are considered as collocated whenever

they are physically at the same spot on the structure and

energetically dual. Due to the dimensional specifications of the

studied sensors (from a few millimeters to micrometers), the
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Figure 1. Force–frequency effect on a vibrating beam.

Figure 2. Force–frequency effect on a vibrating beam through a
proof-mass.

transducing elements can be considered as pseudo-collocated.

Alternation of poles and zeros of the transfer function

associated with the system guarantees the control loop stability.

In this case, sky-hook vibration control is the simplest and

the most common control strategy. This method is robust

and unconditionally stable [13]. The idea is to actively

introduce, in a mechanical framework, a viscous damper

rigidly fixed to a stationary coordinate system. The design of

this controller is based on an absolute sensing signal such as

acceleration, transmitted force, absolute velocity or absolute

displacement. Studies of various sky-hook-type strategies are

broadly proposed in the literature [22].

The objective of this study is to design, manufacture and

test a multi-actuating electrode set-up integrated onto a sensor

framework in order to prove active stabilization feasibility

for an single sensitive component by using its piezoelectric

substrate.

The paper is organized as follows. Section 2 describes

operation of a monolithic vibrating inertial sensor, made of

quartz, and operation of the studied structure. In section 3, a

piezoelectric linear formulation, applied to quartz material, is

provided. This section is a base for the numerical development

of the optimization criterion in section 4. In the following

section, the topological optimization process is performed for

the studied accelerometer. Optimization constraints are given

to clearly set the validity domain of the following control

strategy. The efficiency and the energy cost of numerical

control strategy are compared with experimental ones, in

section 6. Finally, conclusions are discussed.

2. Monolithic vibrating inertial sensors

2.1. Operation of a monolithic vibrating inertial sensor

Monolithic vibrating inertial sensors, made of quartz crystal,

constitute an innovating research field. The principle of

physics used in vibrating sensors is the force–frequency

effect [23, 24]. As shown in figure 1, this effect is based on the

Figure 3. Computer-aided design modeling of a monolithic vibrating
accelerometer.

resonance-frequency shift of a bending structure subjected to

an external tensile or compressive stress. Resonance-frequency

variation is very close to being proportional to the amplitude of

input stresses [24].

The design basis of a monolithic sensing element is

the use of micro-machining collective methods, such as

the chemical etching process. Thus, several products are

machined in a one-time process [25]. So, it becomes simpler

and cheaper to produce and miniaturize new generations of

inertial sensors. The most common applications are vibrating

gyrometers [26–28], vibrating beam force sensors [29–31]

and vibrating beam accelerometers [32, 33, 35, 36]. In the

paper, the device that we consider is a monolithic vibrating

accelerometer made of quartz crystal.

2.2. Operation of a monolithic vibrating accelerometer

The principle of a monolithic vibrating accelerometer is quite

simple. A cantilever with a tip mass is considered. This

bending beam, made of quartz, is excited in its first natural

frequency by the piezoelectric effect. Acceleration acts on the

mass and then forces this beam in tension or in compression

as shown in figure 2. Small amplitudes of motion are assumed

for the proof-mass. Rotational effects are neglected. Thus, the

result is a variation of the first natural frequency proportional

to acceleration.

The technological device is given in the literature [34–36].

The whole structure is made of quartz crystal. The typical

dimensions of this device are 8 × 10−3 m diameter and 5 ×

10−4 m thick. In figure 3, a computer-aided design modeling

of a monolithic vibrating accelerometer is presented.

The vibrating beam is excited on its first natural frequency,

about 65 kHz. The sensor is aimed at detecting frequency

shift due to acceleration applied to the proof-mass along the

sensitive axis (
−→
Y -axis). The sensor framework keeps the

mass in a stable position at rest and concentrates the maximal

useful vibrating energy in the middle of the device. Moreover,

this framework is designed to uncouple the sensitive axis and
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Figure 4. Different mechanical connections of a monolithic vibrating
accelerometer. The red parts of the device are called the lateral sides.

others. Mechanical connections of the framework and hinges

between the proof-mass and the framework are very stiff along

the sensitive
−→
Y -axis and more flexible along the other axes.

The different connections are presented in figure 4.

An ideal case is considered. The three axes are assumed

to be perfectly uncoupled and the first natural frequency of the

structure is preponderant along each axis. Only the sensitive

axis and the
−→
Z -axis are considered for simplicity. A modal

projection provides one one-degree-of-freedom system, that is

to say an equivalent ‘mass–spring–damper’ system, for each

axis.

The eigenfrequency of the structure along the sensitive

axis is far above the operating point of the beam because of

the high stiffness of the mechanical connection along this axis.

The eigenfrequency of the structure along the
−→
Z -axis is far

below the operating point of the beam because of the low

bending stiffness of the mechanical connection along this axis.

Consequently, excitations along the
−→
Z -axis are filtered at the

operating point, as shown in figure 5.

Unfortunately, the case presented in figure 5 is without

imperfections. In reality, the different axes are coupled by

inevitable micro-machining imperfections. The natural modes

of the structure along the axis
−→
X and

−→
Z also constrain

the central beam. Thus, they disturb good operation of

the sensor along its sensitive axis. Indeed, when signal

processing is performed to extract acceleration, the presence

of these parasitic resonances affects the process and degrades

measurement precision. Consequently, it becomes necessary to

control these inevitable ‘parasitic’ vibration modes to minimize

this drawback.

3. Piezoelectric linear formulation

3.1. Governing equations

In a structural domain �0, mechanical displacement u and

electric potential V satisfy stress equations of motion (Navier’s

Figure 5. Schematic transfer functions between external
acceleration, applied to the device base, and acceleration endured by
the mass along the Y -axis (solid line) and the Z -axis (dotted line) in
log-scale and for a random excitation.

equation) and Gauss’s law of electrostatics.

σi j,i + f j = ρü j (1)

Di,i = ρe = 0 (2)

where σ represents the mechanical stress tensor (N m−2), D

electric displacement (C m−2), ρ mass density (kg m−3), ρe

volume charge density (C m−3) and f external volume force

density (N m−3).

Associated mechanical boundary conditions are

u = u0 ∀x ∈ ∂�u
0

niσi j = t̄ j ∀x ∈ ∂�T
0

(3)

where ∂�u
0 and ∂�T

0 represent respectively Dirichlet mechan-

ical conditions and Neumann mechanical conditions and n an

outward normal vector at ∂�T
0 .

Associated electric boundary conditions

V = 0 ∀x ∈ ∂�V
0

V = Va ∀x ∈ ∂�V
a

[ni Di ] = 0 ∀x ∈ ∂�
q

0

(4)

where ∂�V
0 , ∂�V

a and ∂�
q

0 represent respectively Dirich-

let electrical conditions, Dirichlet electrical conditions at in-

put/output electrical surfaces and Neumann electrical condi-

tions, and n an outward normal vector at ∂�
q

0 .

3.2. Quartz crystal constitutive equations

In order to determine the solution of the piezoelectric vibration

problem, we will have to know the arrays of material

coefficients for the particular symmetry of quartz crystal.

Because of their symmetry, mechanical stress and strain

tensors can be brought together in stress T and strain S vectors

containing six independent values by using the compressed

matrix notation (IEEE standard).
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Figure 6. Meshed structure.

The piezoelectric behavior law can be described by tensor

relations. These equations express the main constitutive

formulations between stress and strain tensors. If the magnetic

and thermal effects are considered negligible, multiphysics

relationships are written in compressed matrix notation as

follows:

Tp = cE
pqSq − ekpEk (5)

Di = eiqSq + εS
ikEk (6)

where E = −∇V .

cE , εS, e and E are respectively the elasticity matrix at

constant electric field (N m−2), dielectric permittivity matrix

at constant strain (F m−1), quartz electromechanical coupling

matrix (C m−2) and electric field vector (V m−1). The

coefficients of matrices (7), (8) and (9) are extracted from [37].

The mass density of the quartz crystal is 2648 kg m−3.

ekp =

[
e11 −e11 0 e14 0 0

0 0 0 0 −e14 −e11

0 0 0 0 0 0

]

(7)

where e11 = 0.171 and e14 = −0.046.

cE
pq[1010]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 c14 0 0

c12 c11 c13 −c14 0 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 0

0 0 0 0 c44 c14

0 0 0 0 c14
c11−c12

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8)

where c11 = 8.67, c12 = 0.7, c13 = 1.19, c14 = −1.79,

c33 = 10.72 and c44 = 5.79.

εS
ik[10−11] =

[
ε11 0 0

0 ε11 0

0 0 ε33

]

(9)

where ε11 = 3.91 and ε33 = 4.1.

Figure 7. Evolution of the second principal strain on the top surface
of the device for the studied parasitic mode.

Rotations, defining crystal cut, have to be applied to the

electromechanical coupling matrix, permittivity matrix and

elasticity matrix, as defined in relationships (10). An easy way

to perform these rotations is the use of a Bond matrix [38]. A

Bond matrix, M , is a matrix composed of the classical rotation

matrix, a, but each quadrant of the Bond matrix is different

combinations of the classical rotation matrix.

e∗ = aeMT

cE∗ = McE MT

εS∗ = aεSaT .

(10)

4. Optimization criterion

In this section, we seek an optimization criterion taking into

account the structural parameters of the device and acting on

the shape of the actuating electrodes. Due to design constraints,

an appropriate choice of electrode shape has been retained.

4.1. Design constraints and electrode shape

Due to the sensor geometry, actuating electrodes cannot be

deposited on the lateral sides. Moreover, one of the faces

is reserved for the operating electrodes of the sensor. Thus,

actuating electrodes are deposited only onto one surface of the

device. The minimal gap between the electrodes is limited by

the metallization process to 5 × 10−6 m. Paschen’s law [39]

specifies the breakdown voltage for a chosen gap. It is about

550 V in a primary vacuum of 10−2 mbar.

4.2. Optimization criterion

In equation (5), we consider the displacement vector u as a

harmonic function of time, t , with a pulsation ω (rad s−1).

The subscripts are dropped from the different functions for

simplicity. By introduction of (5) into (1), we obtain the weak
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Figure 8. Evolution of the electric field along the thickness axis in electrostatics for the used quartz crystal.

formulation (11) for the actuation part. Note that ∗ indicates

the tensor is rotated with respect to the crystal cut angles.

∀ũ an admissible displacement field,
∫

�0

ũ · (∇T − f − ρω2u) d�0 = 0

⇐⇒∫

∂�T
0

ũ · t̄ d∂� −

∫

�0

(S̃ · (cE∗S) + ũ · (f + ρω2u)) d�0

=

∫

�0

S̃ · (eT ∗E) d�0

︸ ︷︷ ︸

C

(11)

where t̄ j is defined in equation (3).

The energy term C proves that, in order to inject

the maximum of a ‘control energy’ in the structure by

the piezoelectric effect, it is necessary to design actuating

electrodes so as to maximize electric field on the areas of

maximum strain for the studied modes. Thus, the objective

function to be treated can be written as

J = |C| =

∣
∣
∣
∣

∫

�0

S · (eT ∗E) d�0

∣
∣
∣
∣
. (12)

To simplify the study, a pair of rectangular electrodes is

considered. Moreover, only one ‘parasitic’ mode is considered.

So, the external excitation is applied along the
−→
Z -axis. Thus,

the modes to be controlled are those which correspond to

motion along
−→
Z . In addition, the material electromechanical

coupling coefficient of quartz is very low, approximatively
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Figure 9. Location of rectangular actuating electrodes with their
dimensions.

10−2. Consequently, the field of displacement and the electric

field can be supposed to be perfectly uncoupled [40–44]. The

study of these two fields is performed sequentially. As an aside

and as shown in figure 7, electric field in a complex structure

requires a 3D modeling. This is why, in this study, a 3D

modeling of the device is used.

By considering E2 = 0 (rectangular electrodes) and a

specific and confidential crystal cut, the criterion J can be

rewritten as

J =

∣
∣
∣
∣

∫

�0

(e∗
11 E1S1 + e∗

12 E1S2 + e∗
13 E1S3

+ 2e∗
14 E1S4) d�0

∣
∣
∣
∣
. (13)

5. Topological optimization of actuating electrodes

For the optimization process, a modal analysis and an

electrostatic analysis are performed. This process leads to an

optimal location of actuating electrodes on the device. Control

of the ‘parasitic’ modes is carried out by this set of electrodes

as so to induce feedback efforts.

5.1. Studied mesh case

The geometry of the device is meshed as depicted in figure 6. A

finite-element formulation for the response of the piezoelectric

solid is used [45]. The multiphysics equations (1)–(6) are

discretized using a Lagrange-quadratic tetrahedral element

that leads to a final discretized system of 65 103 degrees of

freedom. Numerical integrations are performed using ten

Gauss points per element.

5.2. Numerical optimization process

It is necessary to study and maximize the term (12). Initially,

general strain evolution of the ‘parasitic’ natural mode of the

structure is studied in order to locate areas of maximum strain.

Thus, two areas of strong strains are delimited as shown in

figure 8. An optimization process is performed for these two

specific areas.

In postprocessing with Comsol© software, evolution of

the various strains with respect to the coordinate along the
−→
Y -

axis for the studied mode is computed for Dirichlet electric

conditions equal to zero (Va = 0). Strain evolutions are fitted

by a polynomial approximation.

In addition, the analytical expression of the electric fields

in electrostatics is determined by considering an electric field

evanescent along the thickness axis [40]. Thus, evolution of

the term (13) can be obtained for both studied areas. Actuating

electrodes are optimized so as to obtain the term (13) as large

as possible. The optimized rectangular actuating electrodes are

located as depicted in figure 9.

Figure 10. (a) Numerical control architecture. (b) Bode diagrams between external solicitation and velocity signal for uncontrolled system
(solid line) and controlled system (dotted line).
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Figure 11. (a) Damping ratio evolution with respect to control voltage. (b) Resonance peak attenuation with respect to control voltage.

Figure 12. Experimental control scheme.

5.3. Active stabilization

The equations of motion are projected on the ‘parasitic’ natural

mode. Thus, control study is reduced to a one-degree-of-

freedom system. Consequently, it is obvious that it is just

necessary to make a proportional feedback with an absolute

velocity signal in order to increase the damping ratio of

the device. This strategy is called direct velocity feedback

(DVF) [46, 13].

The loop necessary for control is set up as shown in

figure 10(a). The structure is perturbed by a random vibration

of 20grms amplitude and the performance results of the control

feedback are observed.

The damping ratio evolution and resonance peak

attenuation with respect to voltage applied to the optimized

actuating electrodes are traced respectively in figures 11(a)

and (b).

Considering the dimensions of the device, the voltage

to be applied seems huge. But, quartz material is slightly

piezoelectric [40–44], which explains this important value.

6. Experimental active stabilization

6.1. Experimental set-up

The control strategy is set up in order to stabilize the ‘parasitic’

modes by using an external measurement. A velocity

measurement provided by a laser vibrometer from Ometron is

chosen. The control electrodes that we used are deposited with

the dimensions obtained during the optimization process.

A DVF control loop, that is to say a sky-hook strategy, is

set up as illustrated in figure 12.

The studied accelerometer is clamped with a special

support made of Nylon as shown in figure 13. A Siglab

data acquisition system with four input channels and two

output channels is employed for data acquisition and signal

processing. The device is disturbed, along the
−→
Z -axis, via

a seismic table with a random vibration of 20grms amplitude.

The reference signal is the velocity that we measure with an

Ometron vibrometer in a stationary coordinate system. The

control law is a simple proportional feedback. This law

is implemented with a DSpace© platform whose sampling

frequency ( fsampling = 20 000 Hz) is much higher than

frequency of the mode to be damped (around 3280 Hz).

However, the control line limits the control voltage to 200 V.

Thus, optimal control performances shown by the numerical

study cannot be reached.

6.2. Experimental active stabilization with an external sensor

In figure 14, curves for uncontrolled (black line) and controlled

(gray lines) systems are presented. These curves are a close-up

of the mode studied for various control gains.

In table 1, the optimal results obtained during experiments

are compared to simulated ones for the ‘parasitic’ mode. A

maximal control voltage of about 200 V is reached.

A theoretical attenuation of −10 dB, that is to say a

damping ratio of 0.2%, is performed. During experiments, an

attenuation of −13 dB, that is to say a damping ratio of 0.19%,

is obtained. The attenuation performance is a little different

from simulation. This may be due to the initial damping
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Figure 14. Bode diagrams between external excitation and velocity signal for different control gains between 0 and 2000.

Table 1. Comparison between numerical and experimental results
for a 200 V control voltage.

Numeric results Experiment

Frequency 3180 3300
Attenuation −10 −13
Damping ratio 0.2 0.19

introduced in modeling. The experimental damping ratio is

hard to evaluate for this type of device. Nevertheless, the

results listed in table 1 are in quite good correlation. Note that

the ‘parasitic’ mode is damped in exploitable proportions so as

to decrease its influence on device operation.

6.3. Experimental exploitations of the studied accelerometer

Currently, the commercial accelerometers are bonded and

used on electronic cards. Their operation requires the use of

instruments for signal processing and power supplies. Thus,

control electronics necessary for vibration control (voltage

amplifier, charge conditioning amplifiers, energy supply,

devices for signal processing and real-time operation with a

power supply) is already physically present on these electronic

cards. To achieve vibration control, a reference signal is

necessary. The first experiments, with the laser velocimeter

used as a reference signal, demonstrate that optimized control

electrodes can damp, in quite interesting proportions, the

8



Figure 15. Equivalent electric scheme of the device connected to a conditioning amplifier.

Figure 16. Bode diagrams between an input signal applied to electrodes of the sensitive central beam and an output signal issued to the
actuating electrodes in a log scale.

‘parasitic’ eigenfrequencies. However, it is difficult to include

physically in the device a laser velocimeter.

Consequently, for miniaturization, we try to use, as

a reference signal for control, the signal provided by the

sensor itself. The accelerometer signal is experimentally

analyzed. The frequency response function (FRF) between an

input signal applied to the electrodes of the sensitive central

beam and an output signal issued to the optimized actuating

electrodes is measured. The presence of a strong electric

coupling is suspected. To evaluate this, the FRF is presented in

a log-scale diagram. As shown in figure 16, a strong capacitive

coupling exists between electrodes of the sensitive central

beam (i.e. the sensor itself) and optimized control electrodes.

Indeed, the 20 dB/dec slope in the magnitude diagram is

a characteristic of a derivative function. This function is

introduced into the system by a capacitive coupling between

input and output [19]. The device connected to a conditioning

amplifier can be electrically modeled as shown in figure 15.

This device with respect to the sensing electrodes is equivalent

to an electric capacitance and a generator of electric charges in

parallel.

The relationship between control voltage and measure-

ment can be written as

qmeasured

Va

=
Ch Vmeasured

Va

=
Ca RmCcs

1 + (RmCc + Ca Rm)s
︸ ︷︷ ︸

A

+
(1 + Ca Rms)Hsys

1 + (RmCc + Ca Rm)s
︸ ︷︷ ︸

B

. (14)

Part A is related to the contribution of the electric coupling

and part B to the contribution of the mechanical system.

Thus, the ‘parasitic’ natural modes are perfectly hidden by this

coupling. Consequently, the signal issued to the sensor itself is

not usable as an input of control strategy.

To overcome this difficulty, two solutions can be

envisaged.

Observation electrodes, duly optimized, can be deposited

on the device surface. This option requires a new design of the

sensor to be controlled.

An active suspension system can be also added between

the support on which the sensor is fixed (for example,

an electronic card) and the sensor itself. This solution
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makes it possible to withdraw the structure from its ambient

environment in the frequency bandwidth which parasitizes

operation of the structure [18–20]. This option does not require

a new design of the sensor to be controlled and does not affect

its operation.

7. Concluding remarks

A feasibility test of active stabilization of a monolithic

vibrating beam sensor is performed. For a random excitation

of 20grms amplitude, it is necessary to apply, experimentally, to

the actuating electrodes a voltage of approximately 200 V in

order to obtain a damping ratio of 0.2%. This experimental

implementation gives promising results with an external

reference measurement. The trend and the performances of

experimental control are in good correlation with modeling.

But, the limitation of control voltage does not enable us to

reach the breakdown limit and, consequently, the optimal

control efficiency.

For miniaturization, using the signal provided by the

sensor itself as the reference signal can be an interesting idea.

Unfortunately, this signal is not usable as an input of the control

strategy because of a strong capacitive coupling. To overcome

this difficulty, two solutions can be envisaged. Observation

electrodes, duly optimized, can be deposited onto the device,

or an active suspension can be added between the support on

which the sensor is fixed and the sensor itself.
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