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In this paper we deal with the regression problem in a random design setting. We investigate asymptotic optimality under minimax point of view of various Bayesian rules based on warped wavelets. We show that they nearly attain optimal minimax rates of convergence over the Besov smoothness class considered. Warped wavelets have been introduced recently, they offer very good computable and easy-to-implement properties while being well adapted to the statistical problem at hand. We particularly put emphasis on Bayesian rules leaning on small and large variance Gaussian priors and discuss their simulation performances, comparing them with a hard thresholding procedure.

Introduction

We observe independent pairs of variables (X i , Y i ), for i = 1, . . . , n, under a random design regression model:

Y i = f(X i ) + ε i , 1 ≤ i ≤ n, (1.1) 
where f is an unknown regression function that we aim at estimating, and ε i are independent normal errors with E(ε i ) = 0, Var(ε i ) = σ 2 < ∞. The design points X i are assumed to be supported in the interval [0, 1] and have a density g which will be supposed to be known. Furthermore we assume that the design density g is bounded from below, i.e. 0 < m ≤ g, where m is a constant. Many approaches have been proposed to tackle the problem of regression in random design, we mention among others the work of Hall and Turlach [START_REF] Hall | Interpolation methods for nonlinear wavelet regression with irregularly spaced design[END_REF], Kovac and Silverman [START_REF] Kovac | Extending the scope of wavelet regression methods by coefficient-dependent thresholding[END_REF], Antoniadis et al. [START_REF] Antoniadis | Random design wavelet curve smoothing[END_REF], Cai and Brown [START_REF] Cai | Wavelet shrinkage for nonequispaced samples[END_REF] and the model selection point of view adopted by Baraud [6].

The present paper provides a Bayesian approach to this problem based on warped wavelet basis. Warped wavelet basis {ψ jk (G) j ≥ -1, k ∈ Z} in regression with random design were recently introduced by Kerkyacharian and Picard in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF]. The authors proposed an approach which would depart as little as possible from standard wavelet thresholding procedures which enjoy optimality and adaptivity properties. These procedures have been largely investigated in the case of equispaced samples (see a series of pioneering articles by Donoho et al. [START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF], [START_REF] Donoho | Wavelet shrinkage: asymptopia?[END_REF], [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF]). Kerkyacharian and Picard actually pointed out that expanding the unknown regression function f in the warped basis instead of the standard wavelet basis could be very interesting. Of course, this basis has no longer the orthonormality property nonetheless it behaves under some conditions as standard wavelets. Kerkyacharian and Picard investigated the properties of this new basis. They showed that not only is it well adapted to the statistical problem at hand by avoiding unnecessary calculations, but it also offers very good theoretical features while being easily implemented. More recently Brutti [START_REF] Brutti | Warped wavelets and vertical thresholding[END_REF] highlighted their easy-to-implement computational properties.

The novelty of our contribution lies in the combination of Bayesian techniques and warped wavelets to treat regression in random design. We actually want to investigate whether this yields optimal theoretical results and promising pratical performances, which will prove to be the case. We do not deal with the case of an unknown design density g which requires further machinery and will be the object of another paper.

Bayesian techniques for shrinking wavelet coefficients have become very popular in the last few years. The majority of them were devoted to fixed design regression scheme. Let us cite among others, papers of Abramovich et al. [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF], [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF], Clyde et al. [START_REF] George | Flexible Empirical Bayes Estimation for Wavelets[END_REF], [START_REF] Clyde | Multiple shrinkage and subset selection in wavelets[END_REF], [START_REF] Clyde | Empirical Bayes estimation in wavelet nonparametric regression[END_REF], [START_REF] Autin | Large variance Gaussian priors in Bayesian nonparametric estimation: a maxiset approach[END_REF], Chipman et al. [START_REF] Chipman | Adaptive Bayesian Wavelet Shrinkage[END_REF], Rivoirard [START_REF] Rivoirard | Bayesian modeling of sparse sequences and maxisets for Bayes rules[END_REF], Pensky [START_REF] Pensky | Frequentist optimality of Bayesian wavelet shrinkage rules for Gaussian and non-Gaussian noise[END_REF] in the case of i.i.d errors not necessarily Gaussian.

Most of those works are taking as distribution prior a mixture of Gaussian distributions. In particular, Abramovich et al. in [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF] and [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF] have explored optimality properties of Gaussian prior mixed with a point mass at zero and which may be viewed as an extreme case of a Gaussian mixture:

β jk ∼ π j N (0, τ 2 j ) + (1 -π j )δ(0),
where β jk are the wavelet coefficients of the unknown regression function, τ 2 j = c 1 2 -jα and π j = min(1, c 2 2 -jβ ) are the hyperparameters. This particular form was devised to capture the sparsity of the expansion of the signal in the wavelet basis.

Our approach will consist in a first time in using the same prior but in the context of warped wavelets. In Theorem 1, we show that the Bayesian estimator built, using warped wavelets with this prior and this form of hyperparameters achieves the optimal minimax rate within logarithmic term, on the considered Besov functional space. Unfortunately, the Bayesian estimator turns out not to be adaptive. Indeed, the hyperparameters depend on the Besov smoothness class index. In order to compensate this drawback, Autin et al. in [START_REF] Autin | Large variance Gaussian priors in Bayesian nonparametric estimation: a maxiset approach[END_REF] suggested to consider Bayesian procedures based on Gaussian prior with large variance. Following this suggestion, we will consider priors still specified in terms of a normal density mixed with a point mass at zero but with large variance Gaussian densities. In Theorem 2, we prove again that the Bayesian estimator built with this latter form of prior, still combined with warped wavelets achieves nearly optimal minimax rate of convergence while being adaptive. Eventually, our simulation results highlight the very good performances and behaviour of these Bayesian procedures, whatever the regularity of the test functions, the noise level and the design density which can be far from the uniform case.

This paper is organized as follows. In section 2 some necessary methodology is given: we start with a short review of wavelets and warped wavelets, explain the prior model and discuss the two hyperparameters form we consider. We give in section 3 some definitions of the functional spaces we consider. In section 4, we investigate the performances of our Bayesian estimators in terms of minimax rates in two cases: the first one when the Gaussian prior has small variance, the second case focuses on Gaussian prior with large variance. Section 5 is devoted to simulation results and discussion. Finally, all proofs of main results are given in the Proofs section.

Methodology

Warped bases

Wavelet series are generated by dilations and translations of a function ψ called the mother wavelet. Let φ denote the orthogonal father wavelet function. The function φ and ψ are compactly supported. Assume ψ has r vanishing moments. Let:

φ jk (x) = 2 j/2 φ(2 j x -k), j, k ∈ Z ψ j,k (x) = 2 j/2 ψ(2 j x -k), j, k ∈ Z.
For a given square-integrable function f in L 2 [0, 1], let us denote

ζ j,k =< f, ψ j,k > .
In this paper, we use decompositions of 1-periodic functions on wavelet basis of L 2 [0, 1]. We consider periodic orthonormal wavelet bases on [0, 1] which allow to have the following series representation of a function f:

f(x) = j≥-1 2 j -1 k=0 ζ jk ψ jk (x) (2.1)
where we have denoted ψ -1,k = φ 0,k the scaling function.

We are now going to give the essential background of warped wavelets which were introduced in details in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF]. First of all, let us define

G(x) = x 0 g(x)dx. (2.2)
G is assumed to be a known function, continuous and strictly monotone from

[0, 1] to [0, 1].
Let us expand the regression function f in the following sense:

f(G -1 )(x) = j≥-1 2 j -1 k=0 β jk ψ jk (x)
or equivalently

f(x) = j≥-1 2 j -1 k=0 β jk ψ jk (G(x))
where

β jk = f(G -1 )(x)ψ jk (x)dx = f(x)ψ jk (G(x))g(x)dx.
Hence, one immediately notices that expanding f(G -1 ) in the standard basis is equivalent to expand f in the new warped wavelet basis {ψ jk (G), j ≥ -1, k ∈ Z}. This may give a natural explanation that in the follow-on, regularity conditions will be expressed not for f but for f(G -1 ).

We

set βjk = (1/n) n i=1 ψ jk (G(X i ))Y i . βjk is an unbiased estimate of β jk since E( βjk ) = (1/n) n i=1 E(ψ j,k (G(X i ))(f(X i ) + ǫ i )) = E(ψ j,k (G(X))f(X) = f(x)ψ jk (G(x))g(x)dx = f(G -1 )(x)ψ jk (x)dx = β jk .

Priors and estimators

We set in the following

γ 2 jk = σ 2 n 2 n i=1 ψ 2 jk (G(X i )). (2.3)
As in Abramovich et al. (see [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF], [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF]), we use the following prior on the wavelet coefficients β jk of the unknown function f with respect to the warped basis {ψ jk (G), j ≥ -1, k ∈ Z}:

β jk ∼ π j N (0, τ 2 j ) + (1 -π j )δ(0).
Considering the L 1 loss, from this form of prior we derive the following Bayesian rule which is the posterior median:

βjk = M ed(β jk | βjk ) = sign( βjk ) max(0, ζ jk ) (2.4)
where

ζ jk = τ 2 j γ 2 jk + τ 2 j | βjk | - τ j γ jk γ 2 jk + τ 2 j Φ -1 1 + min(η jk , 1) 2 (2.5) 
where Φ is the normal cumulative distributive function and

η jk = 1 -π j π j τ 2 j + γ 2 jk γ jk exp - τ 2 j β2 jk 2γ 2 jk (τ 2 j + γ 2 jk )
.

(2.6)

We set:

w j (n) := π j 1 -π j .
(2.7)

We introduce now the estimator of the unknown regression f

f(x) = j≤J 2 j -1 k=0 βjk ψ jk (G(x)), (2.8) 
where J is a parameter which will be specified later. Note that in our case, the estimator resembles the usual ones in [START_REF] Autin | Large variance Gaussian priors in Bayesian nonparametric estimation: a maxiset approach[END_REF], [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF] and [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF], except that the deterministic noise variance has been replaced by a stochastic noise level γ 2 jk . Its expression is given by (2.3). This change will have a marked impact both on the proofs of theorems by using now large deviation inequalities and on simulation results.

Futhermore, such L 1 rule is of thresholding type. Indeed, as underlined in [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF] and [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF], βjk is null whenever βjk falls below a certain threshold λ B . Some properties of the threshold λ B that will be used in the sequel are given in lemma 1 in the Proofs section.

Gaussian priors with small variance

In this paper, two cases of hyperparameters will be considered. The first one involves Gaussian priors with small variances. We will state as suggested in Abramovich et al. (see [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF], [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF]):

τ 2 j = c 1 2 -jα π j = min(1, c 2 2 -jβ ), (2.9) 
where α and β are non-negative constants, c 1 , c 2 > 0. This choice of hyperparameters is exhaustively discussed in Abramovich et al. [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF]. The authors stressed that this form of hyperparameters was actually designed in order to capture the sparsity of wavelet expansion. They pointed out the connection between Besov spaces parameters and this particular form of hyperparameters. They investigate various practical choices.

For this case of hyperparameters (2.9), the estimator of f will be denoted f .

Gaussian priors with large variance

The second form of hyperparameters considered in the paper involves Gaussian priors with large variance as suggested in Autin et al. [START_REF] Autin | Large variance Gaussian priors in Bayesian nonparametric estimation: a maxiset approach[END_REF].

As a matter of fact, we suppose that the hyperparameters do not depend on j and we set:

τ 2 j := τ (n) 2 = 1/ n log(n). (2.10) 
Besides, w j (n) := w(n). We suppose that there exist q 1 and q 2 such that for n large enough

n -q1/2 ≤ w(n) ≤ n -q2/2 . (2.11)
This form of hyperparameters was emphasized in [START_REF] Autin | Large variance Gaussian priors in Bayesian nonparametric estimation: a maxiset approach[END_REF] in order to mimic heavy tailed priors such as Laplace or Cauchy distributions. Indeed, Johnstone and Silverman in [START_REF] Johnstone | Needles and straw in haystacks: empirical Bayes estimates of possibly sparse sequences[END_REF], [START_REF] Johnstone | Empirical Bayes selection of wavelet thresholds[END_REF] showed that their empirical Bayes approach for regular regression setting, with a prior mixing a heavy-tailed density and a point mass at zero proved fruitful, both in theory and practice. Pensky in [START_REF] Pensky | Frequentist optimality of Bayesian wavelet shrinkage rules for Gaussian and non-Gaussian noise[END_REF] also underlined the efficiency of this kind of hyperparameters. We underscore that contrary to the first form of hyperparameters (2.9), these latter forms (2.10) and (2.11) lead to an adaptive Bayesian estimator.

For this case of hyperparameters (2.10) and (2.11), the estimator of f will be denoted f .

Functional spaces

In this paper, the functional classes of interest are Besov bodies and weak Besov bodies. Let us define them. Using the decomposition (2.1), we characterize the Besov spaces by using the following norm

f spq = j≥-1 2 jq(s+1/2-1/p) (β j,k ) k q ℓp 1/q if q < ∞ sup j≥-1 2 j(s+1/2-1/p) (β j,k ) k ℓp if q = ∞. If max(0, 1/p -1/2) < s < r and p, q ≥ 1 f ∈ B s p,q ⇐⇒ f spq < ∞.
The Besov spaces have the following simple relationship B s1 p,q1 ⊂ B s p,q , for s 1 > s or s 1 = s and q 1 ≤ q and B s p,q ⊂ B s1 p1,q , for p 1 > p and s 1 ≥ s -1/p + 1/p 1 . The index s indicates the smoothness of the function. The Besov spaces capture a variety of smoothness features in a function including spatially inhomogeneous behavior when p < 2.

We recall and stress that in this paper as mentioned above, the regularity conditions will be expressed for the function f(G -1 ) due to the warped basis context.

More precisely we shall focus on the space B s 2,∞ . We have in particular

f ∈ B s 2,∞ ⇐⇒ sup J≥-1 2 2Js j≥J k β 2 jk < ∞. (3.1) 
We define the Besov ball of some radius R as

B s 2,∞ (R) = {f : f s2∞ ≤ R}. Let us define now the weak Besov space W (r, 2) Definition 1. Let 0 < r < 2.
We say that a function f belongs to the weak Besov body W (r, 2) if and only if:

f Wr := [sup λ>0 λ r-2 j≥-1 k β 2 jk I{|β jk ≤ λ|}] 1/2 < ∞. (3.2)
And we have the following proposition

Proposition 1. Let 0 < r < 2 and f ∈ W (r, 2). Then sup λ>0 λ r j≥-1 k I{|β jk | > λ} ≤ 2 2-r f 2 Wr 1 -2 -r . (3.3)
For the proof of this proposition see for instance [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well concentrated basis[END_REF].

To conclude this section, we have the following embedding

B s 2,∞ ⊂ W 2,2/(1+2s) ,
which is not difficult to prove (see for instance [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well concentrated basis[END_REF]).

Minimax performances of the procedures

Bayesian estimators based on Gaussian priors with small variances

Theorem 1. Assume that we observe model (1.1). We consider the hyperparameters defined by (2.9). Set J := J α such that 2 Jα = (3/(2n)) -1/α . Let α > 1 and α ≥ s, then we have the following upper bound:

sup f(G -1 )∈B s 2,∞ (R) E f -f 2 2 = O((1/n) 1-1/α log 2 (n)) + O((1/n) 2s/α ). (4.1)
The optimal choice of the hyperparameter α in Theorem 1 should minimize the upper bound derived in (4.1). Consequently, let us choose now in (4.1) α = 2s + 1, we immediately deduce the following corollary.

Corollary 1. If one chooses for the prior parameter α = 2s + 1, one gets

sup f(G -1 )∈B s 2,∞ (R) E f -f 2 2 = O(log 2 (n)n -2s/(2s+1) ).
This corollary shows that with this specific choice of hyperparameter α, one recovers the minimax rate of convergence up to a logarithmic factor that one achieves in a uniform design.

Bayesian estimators based on Gaussian priors with large variance

Theorem 2. We consider the model (1.1). We assume that the hyperparameters are defined by (2.10) and (2.11). Set J := J n such that 2 Jn = n/ log n, then we have:

sup f(G -1 )∈B s 2,∞ (R) E f -f 2 2 ≤ C log(n) n 2s/(2s+1)
.

It is worthwhile to make some comments about the results of Theorem 2. Here, the estimator turns out to be adaptive and contrary to the similar results in Proposition 2 in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF], we no longer have the limitation on the regularity index s > 1/2. Moreover, Kerkyacharian and Picard [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] had to stop the highest level J such that 2 J = (n/ log(n)) 1/2 , here we stop at the usual level J n such that 2 Jn = n/ log(n), one gets in standard thresholding.

Simulations and discussion

A simulation study is conducted in order to compare the numerical performances of the two Bayesian estimators based on warped wavelets and on Gaussian prior with small or large variance, described respectively in section 2.2.1 and 2.2.2 and the hard thresholding procedure using the universal threshold σ 2 log(n), based on warped basis and introduced by Kerkyacharian and Picard [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] for the nonparametric regression model in a random design setting. For more details on Kerkyacharian and Picard procedure, the readers are referred to Willer [START_REF] Willer | Estimation non paramétrique et problèmes inverses[END_REF], see also [START_REF] Gannaz | Estimation par ondelettes dans les modèles partiellement linéaires[END_REF]. In fact, we have decided to concentrate on the procedure of Kerkyacharian and Picard. Indeed, it is interesting to point out differences and compare performances obtained by Bayesian procedures which apply local thresholds and a universal threshold procedure.

The main difficulties lie in implementing the Bayesian procedures with the stochastic variance (2.3). Note also the responses proposed by Amato et al. [START_REF] Amato | Wavelet kernel penalized estimation for non-equispaced design regression[END_REF] and Kovac and Silverman [START_REF] Kovac | Extending the scope of wavelet regression methods by coefficient-dependent thresholding[END_REF].

All the simulations done in the present paper have been conducted with MATLAB and the Wavelet toolbox of MATLAB.

We consider here four test functions of Donoho and Johnstone [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] representing different level of spatial variability. The test functions are plotted in Fig. 1. For each of the four objects under study, we compare the three estimators at two noise levels, one with signal-to-noise ratio RSN R = 4 and another with RSN R = 7. As in Willer [START_REF] Willer | Estimation non paramétrique et problèmes inverses[END_REF], we also consider different cases of design density which are plotted in Fig. 2. The first two densities are uniform or slightly varying whereas the last two ones aim at depicting the case where a hole occurs in the density design. The sample size is equal to n = 1024 and the wavelet we used is the Symmlet8.

In order to compare the behaviors of the estimators, the RMSE criterion was retained. More precisely, if f (X i ) is the estimated function value at X i and n is the sample size, then

RM SE = 1 n n i=1 ( f (X i ) -f(X i )) 2 .
(5.1)

The RMSE displayed in Tab. 1 are computed as the average over 100 runs of expression (5.1). In each run, we hold all factors constant, except the design points (random design) and the noise process that were regenerated. E1 corresponds to the Bayesian estimator based on Gaussian prior with large variance, E2 to the Bayesian estimator based on Gaussian prior with small variance and E3 to the estimator built following the Kerkyacharian and Picard procedure in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF].

In order to implement E1, we made the following choices of hyperparameters described in section 2.2.2: in (2.11), q 1 = q 2 = q = 1 proved to be a good compromise whatever the function of interest to be estimated while leading to good graphic reconstructions. We set w(n) = 20 × n -q/2 and τ (n) = 20 × σ 2 /(n log(n)). To implement E2, we set c 1 = 1, c 2 = 2, α = 0.5 and β = 1, following the choices recommended in [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF].

The following plots compare the visual quality of the reconstructions (see Fig. 3. to Fig. 8). The solid line is the estimator and the dotted line is the true function.

We shall now comment and discuss the results displayed in Tab. 1 as well as the various visual reconstructions. The performances are always better for the Bayesian estimators except for the case of the HeaviSine test function. More precisely, the RMSE for Blocks whatever the noise level and design densities are smaller for Estimator 1. Moreover the RMSE are almost equal for Estimator 1 and 2 in the case of Bumps test function, whatever the design densities and for a noise level RSNR=4. This may be due to the irregularity of the Bumps, Blocks and Doppler test functions which are much rougher than the HeaviSine which is more regular. Indeed, Estimator 1 and 2 tend to detect better the corner of Blocks, the high peaks in Bumps, and the high frequency parts of Doppler as the graphics show it. We may explain this by the fact that Estimators 1 and 2 have level-dependent thresholds whereas Estimator 3 has a hard universal threshold.

As for the reconstructions, one can see that they are slightly better in the case of Sine density and small noise, whereas there are small deteriorations when a hole occurs in the design density, but this change does not affect the visual quality in too big proportions. This fact highlights the interest of "warping" the wavelet basis. Warping the basis allows the estimators to behave still correctly when the design densities are far from the uniform density such as in the case of Hole2.

Proofs

In the sequel C denotes some positive constant which may change from one line to another line. We also assume without loss of generality that σ = 1 in model (1.1).

We have that

E(ψ 2 jk (G(X))) = ψ 2 jk (G(x))g(x)dx = ψ 2 jk (y)dy = 1.
hence we get E(γ 2 jk ) = 1/n, the expression of γ 2 jk being given by (2.3). Let us define the following event:

Ω δ n = {|γ 2 jk -1/n| ≤ δ}. (6.1)
To make proofs clearer, we recall the Bernstein inequality that we will use in the sequel. (see in [START_REF] Massart | Concentration inequalities and model selection[END_REF] Proposition 2.8 and formula (2.16))

Proposition 2. Let Z 1 , . . . , Z n be independent and square integrable random variables such that for some nonnegative constant b, Z i ≤ b almost surely for all i ≤ n. Let

S = n i=1 (Z i -E[Z i ]) and v = n i=1 E(Z 2 i ).
Then for any positive x, we have

P[S ≥ x] ≤ exp -v b 2 h( bx v ) where h(u) = (1 + u) log(1 + u) -u. It is easy to prove that h(u) ≤ u 2 2(1 + u/3) which immediately yields P[S ≥ x] ≤ exp -x 2 2(v + bx/3) .
Lemma 1. Let ς be some positive constant. We have

P(|γ 2 jk -1/n| > ς/n) ≤ 2e -n 1-1/α ς 2 2C(1+ς/3) ∀ j ≤ J α (6.2) P(|γ 2 jk -1/n| > ς/n) ≤ 2e -ς 2 log(n)/(C ψ 4 4 +ς ψ 2 ∞ ) ∀ j ≤ J n . (6.3)

Proof of Lemma 1

Let us deal with the first case j ≤ J α . To bound P(|γ 2 jk -1/n| > ς/n) we will use the Bernstein inequality and apply Proposition 2. In the present situation

Z i = (1/n 2 )ψ 2 jk (G(X i ))
. First of all, in order to apply the Bernstein inequality, we need the value of the sum

v = n i=1 E[((1/n 2 )ψ 2 j,k (G(X i ))) 2 ]
we have

Eψ 4 j,k (G(X)) = 1 0 ψ 4 j,k (G(x))g(x)dx = 1 0 ψ 4 j,k (y)dy ≤ 1 0 2 2j ψ 4 (2 j y -k)dy ≤ 2 j ψ 4 (y)dy ≤ C ψ 4 4 2 j (6.4) hence (1/n 4 ) n i=1 Eψ 4 j,k (G(X i )) ≤ (C/n 3 )2 Jα = C n 3-1/α moreover ψ 2 jk (G(X)) ≤ ψ 2 ∞ 2 j ≤ Cn 1/α j ≤ J α a.s so P(|γ 2 jk -1/n)| > ς/n) ≤ 2 exp(- ς 2 2C(1 + ς/3) n -2 n -3+1/α ).
Let us now deal with the second case j ≤ J n . To bound P(|γ 2 jk -1/n| > ς/n) we will follow the lines of the proof of the first case. Here again

Z i = 1/n 2 ψ 2 jk (G(X i )).
According to (6.4), we have

E(1/n 4 ψ 4 jk (G(X))) ≤ C2 j /n 4 ≤ C/(n 3 log(n)), j ≤ J n and v = n i=1 E(1/n 4 ψ 4 jk (G(X))) ≤ C ψ 4 4 /(n 2 log(n)) and 1/n 2 ψ 2 jk (G(X))) ≤ ψ 2 ∞ 2 j /(n 2 ) ≤ ψ 2 ∞ /(n log(n)), j ≤ J n a.s consequently P(|γ 2 jk -1/n| > ς/n) ≤ 2e -ς 2 log(n)/(C ψ 4 4 +ς ψ 2 ∞ ) .
The following lemma shows that the properties of the Bayesian estimators f and f can be controlled on the event Ω δ n . To lighten the notations for the proof of this lemma, we will denote Ω n for Ω δ n and Ω c n the complementary of Ω n .

Lemma 2. We have

E[I(Ω c n ) f -f 2 2 ] = o((log(n)/n) 2s/(2s+1) E[I(Ω c n ) f -f 2 2 ] = o((1/n) 1-1/α log(n)). Proof of Lemma 2.
We have

E I(Ω c n ) f -f 2 2 ≤ CJ n E   j≤Jn k ( βjk -β jk ) 2 I(Ω c n )   + P(Ω c n ) j>Jn k β 2 jk ≤ V + B.
Let us first deal with the variance term V. The estimator βjk can be written as βjk = w jk βjk with 0 ≤ w jk ≤ 1. We have

V ≤ CJ n E   j≤Jn,k w jk ( βjk -β jk ) -(1 -w jk )β jk 2 I(Ω c n )   ≤ 2CJ n E   j≤Jn k w 2 jk ( βjk -β jk ) 2 I(Ω c n )   + 2CJ n j≤Jn k E (1 -w jk ) 2 β 2 jk I(Ω c n ) ≤ 2CJ n E   j≤Jn k ( βjk -β jk ) 2 I(Ω c n )   + 2CJ n j≤Jn k E β 2 jk I(Ω c n )
because 0 ≤ w jk ≤ 1. Then, using Cauchy Scharwz inequality we get

V ≤ 2CJ n j≤Jn k E( βjk -β jk ) 4 1 2 P(Ω c n ) 1 2 + 2CJ n j≤Jn k β 2 jk P(Ω c n ).
Using (6.3) and (6.23) we have

V ≤ 2CJ n 2 Jn e -ς 2 log(n)/(2C ψ 4 4 /n+ς ψ 2 ∞ ) + 2CJ n f(G -1 ) 2 2 e -ς 2 log(n)/(C ψ 4 4 +ς ψ 2 ∞ ) .
We recall that 2 Jn = n/ log(n), accordingly by choosing ς large enough we have

V = o((log(n)/n) 2s/(2s+1)
As for the term

B B ≤ C2 -2Jns e -ς 2 log(n)/(C ψ 4 4 +ς ψ 2 ∞ )
which completes the proof for f .

The proof for f is similar, all inequalities hold a fortiori since, in the case of the estimator f we have P(Ω c n ) ≤ e -Cn 1-1/α (see (6.2)). We consider the setting of Theorem 1. We recall that βjk is zero whenever | βjk | falls below a threshold λ B and we have the following lemma concerning the behavior of λ B . Lemma 3. On the event Ω δ n defined by (6.1) with δ = 1/(2n), for α > 1 we have

λ B ≈ log(n) n , j < J α (6.5)
and J α is taken such that 2 Jα = ( 3 2n ) -1/α . Proof of Lemma 3. We follow the lines of the proof of lemma 1. in [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF].

On the one hand we have (see proof of lemma 1. in [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF] page 228)

λ B 2 ≤ 2γ 2 jk (γ 2 jk + τ 2 j ) τ 2 j log 1 -π j π j γ 2 jk + τ 2 j γ jk + c
where c is some suitable positive constant. Besides, we have 1/(2n) ≤ γ 2 jk ≤ 3/(2n), therefore

λ B 2 ≤ 2(3/(2n))((3/(2n)) + c 1 (3/(2n))) c 1 (3/(2n)) × log 1 -c 2 (3/(2n)) β/α c 2 (3/(2n)) β/α (1 + c 1 )(3/(2n)) 1/(2n) + c hence we get λ B 2 ≤ c(1/n) log(c(1/n) (-β α ) + c
) where c denotes a positive constant depending on c 1 and c 2 and which may be different at different places. Since

c(1/n) log(c(1/n) (-β α ) + c) ≈ -c(β/α)(1/n) log(1/n) we finally get λ B 2 ≤ -c(β/α)(1/n) log(1/n).
On the other hand, for the reverse inequality, we have (see proof of lemma 1. in [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF] page 228 and formula ( 14) in [START_REF] Abramovich | On optimality of Bayesian wavelet estimators[END_REF] page 221)

λ B 2 ≥ 2γ 2 jk (γ 2 jk + τ 2 j ) τ 2 j log 1 -π j π j γ 2 jk + τ 2 j γ jk but |γ 2 jk -1/n| ≤ 1/(2n) consequently one has λ B 2 ≥ -c(β/α)(1/n)(log(1/n))
which completes the proof.

Proof of Theorem 1.

On the event Ω δ n defined by (6.1) with δ = 1/(2n), by the usual decomposition of the MISE into a variance and a bias term, we get

E f -f 2 2 ≤ 2 E j≤Jα k ( βjk -β jk )ψ j,k (G) 2 2 + j>Jα k β jk ψ j,k (G) 2 2 ≤ 2(V + B) with V = E j≤Jα k ( βjk -β jk )ψ j,k (G) 2 2 B = j>Jα k β jk ψ j,k (G) 2 2 .
We first deal with the term V . We have

j≤Jα k ( βjk -β jk )ψ j,k (G) 2 2 ≤ J α j≤Jα k ( βjk -β jk )ψ j,k (G) 2 2 .
We want to show that

k ( βjk -β jk )ψ j,k (G) 2 2 ≤ C k ( βjk -β jk ) 2 .
For this purpose we have

k ( βjk -β jk )ψ j,k (G) 2 2 = | k ( βjk -β jk )ψ jk (G(x))| 2 dx = | k ( βjk -β jk )ψ jk (x)| 2 1 g(G -1 (x)) dx = k ( βjk -β jk )ψ j,k 2 L2(̺)
where ̺(x) = 1/(g(G -1 ))(x). Now using inequality (44) p. 1075 in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] we have

k ( βjk -β jk )ψ j,k 2 
L2(̺) ≤ C2 j k | βjk -β jk | 2 ̺(I j,k )
where

I j,k denotes the interval [ k 2 j , k+1 2 
j ] and ̺(I jk ) = Ijk ̺(x)dx. But the design density g is bounded from below by m. Hence we get

̺(I j,k ) ≤ 2 -j /m and consequently k ( βjk -β jk )ψ j,k 2 L2(̺) ≤ C k ( βjk -β jk ) 2 .
We decompose now V into three terms

V ≤ CJ α E j≤Jα k [( βjk -β ′ jk ) 2 + (β ′ jk -β ′′ jk ) 2 + (β ′′ jk -β jk ) 2 ]
where

β ′ jk = b j βjk I{| βjk | ≥ κλ B } with κ a positive constant and b j = τ 2 j τ 2 j + γ 2 jk β ′′ jk = b j β jk .
As a consequence we have

V ≤ CJ α (A 1 + A 2 + A 3 ).
We are now going to upperbound each term A 1 , A 2 and A 3 . We start with A 1

A 1 = j≤Jα k E[( βjk -β ′ jk ) 2 ].
As precised in the beginning of section 2.2, βjk = 0 for

| βjk | < λ B . As well, β ′ jk = 0 for | βjk | < κλ B and βjk -β ′ jk → 0 monotonically as βjk → ∞. Hence max βjk | βjk -β ′ jk | = b j λ B which implies A 1 ≤ C j<Jα k E(b 2 j λ 2 B ).
We have λ B ≈ log n n and b j ≤ 1 for j ≤ J α hence we get

A 1 ≤ C j≤Jα 2 j -1 k=0 log(n) n so A 1 ≤ C log(n) n j≤Jα 2 j (6.6) ≤ C log(n) n 1 n -1/α (6.7)
finally

A 1 = O log(n) 1 n 1-1/α
Let us now consider the second term A 2

A 2 = j≤Jα 2 j -1 k=0 E(β ′ jk -β ′′ jk ) 2 = j≤Jα 2 j -1 k=0 E(b j βjk I{| βjk | ≥ κλ B } -b j β jk ) 2
We have that b j ≤ 1, consequently it follows

A 2 = j≤Jα 2 j -1 k=0 E(( βjk -β jk ) 2 I{| βjk | ≥ κλ B }) + E j≤Jα 2 j -1 k=0 β 2 jk I{| βjk | < κλ B } = A ′ 2 + A ′′ 2
We have

A ′ 2 ≤ j≤Jα 2 j -1 k=0 E( βjk -β jk ) 2 .
Using inequality (64) in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] p. 1086 we have

E( βjk -β jk ) 2 ≤ C 1 + f 2 ∞ n (6.8) hence A ′ 2 = O((1/n) 1-1/α
). We now bound the term A ′′ 2 :

A ′′ 2 = E j≤Jα 2 j -1 k=0 β 2 jk I{| βjk | < κλ B }(I{|β jk | < 2κλ B } + I{|β jk | > 2κλ B }) ≤ E j≤Jα 2 j -1 k=0 β 2 jk I{|β jk | < 2κλ B } + j≤Jα 2 j -1 k=0 β 2 jk P(| βjk -β jk | > κλ B ) = T 3 + T 4 (6.9)
We have

T 3 ≤ C j≤Jα λ 2 B 2 j ≤ C log(n) n n 1/α = C log(n)n -1+1/α .
Let us focus on T 4 , we have βjk -

β jk = 1/n n i=1 ψ j,k (G(X i ))(f(X i ) + ε i ) -Eψ j,k (G(X))f(X) Hence P(| βjk -β jk | > κ log(n)/n) ≤ P 1 + P 2
where

P 1 = P(|1/n n i=1 ψ j,k (G(X i ))(f(X i )) -Eψ j,k (G(X))f(X)| > κ/2 (log(n)/n))
(6.10) and

P 2 = P(|1/n n i=1 ψ j,k (G(X i ))ε i | > κ/2 (log(n)/n)) (6.11)
Kerkyacharian and Picard in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] in order to prove inequality (65) in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] showed p. 1088 that

P 1 ≤ 2 exp - 3κ 2 log(n) 4 f ∞ (3 + κ) (6.12)
if 2 j ≤ n/ log(n). As for P 2 , conditionally on (X 1 , . . . , X n ) we have

1/n n i=1 ψ j,k (G(X i ))ε i ∼ N (0, γ 2 jk ),
where γ 2 jk has been defined in (2.3). Using exponential inequality for Gaussian random variable we have

P 2 ≤ E(exp(- κ 2 log(n) 8nγ 2 

jk

))

= Ee Using (6.2) with ς = 1/2, we have for α > 1

T 4 ≤ 2e (-Cn 1-1/α ) + e -κ 2 log(n) 12 + 2 exp -3κ 2 log(n) 4 f ∞ (3 + κ) j≤Jα 2 j -1 k=0 β 2 jk ≤ 2e (-Cn 1-1/α ) + e -κ 2 log(n) 12 + 2 exp -3κ 2 log(n) 4 f ∞ (3 + κ) f(G -1 ) 2 2
It remains to fix κ large enough so that we get

T 4 = O(log(n)n -1+1/α ).
So we have for A ′′ 2 , with α > 1,

A ′′ 2 = O log(n) n 1-1/α
Finally we get for A 2

A 2 = O log(n) 1 n 1-1/α .
Let us consider now the term A 3

A 3 ≤ C j≤Jα 2 j -1 k=0 E(β " jk -β jk ) 2 = C j≤Jα 2 j -1 k=0 β 2 jk (1 -b j ) 2 = j≤Jα 2 j -1 k=0 γ 2 jk τ 2 j + γ 2 jk 2 β 2 jk .
Since |γ 2 jk -1/n| ≤ 1/(2n), we get

A 3 ≤ j≤Jα 3/(2n) c 1 2 -jα + 1/(2n) 2 2 j -1 k=0 β 2 jk but f(G -1 ) belongs to the Besov ball B s 2,∞ (R) which entails 2 j -1 k=0 β 2 jk ≤ M 2 -2js hence A 3 ≤ C/n 2 j≤Jα 2 2j(-s+α)
We have

A 3 ≤ C/n 2 (1/n) -2(-s+α) α = O(1/n) 2s/α .
We are now in position to give an upper bound for the variance term V namely

V ≤ CJ α (log(n)(1/n) 1-1/α + (1/n) 2s/α ).
It remains to bound the bias term B. In [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] p.1083 using inequality (44) the authors have proved that for any l we get j≥l k

β jk ψ j,k (G) 2 ≤ j≥l k β jk ψ j,k (G) 2 ≤ C j≥l 2 j/2 k |β jk | 2 ̺(I j,k ) 1/2
. (6.14)

Applying (6.14) with in our case of a bounded from below design density, ̺(I j,k ) ≤ 2 -j /m and l = J α , it follows j≥Jα k

β jk ψ j,k (G) 2 ≤ C j≥Jα k |β jk | 2 1/2 ≤ C j≥Jα 2 -js ≤ C2 -Jαs hence B = j>Jα 2 j -1 k=0 β jk ψ j,k (G(x)) 2 2 ≤ C2 -2Jαs = C(1/n) 2s/α
which completes the proof of Theorem 1.

Lemma 4. Let w jk a sequence of random weights lying in [0, 1]. We assume that there exist positive constants c, m and K such that for any ε > 0, βn = (w jk βjk ) jk is a shrinkage rule verifying for any n, Then sup

w jk (n) = 0, a.e. ∀ j ≥ J n with 2 Jn ∼ n/ log(n) := t 2 n , ∀ k (6.15) | βjk | ≤ mt n ⇒ w jk ≤ ct n , ∀ j ≤ J n , ∀ k, (6.16) 
(1 -w jk (n)) ≤ K t n | βjk | + t n a.e. ∀ j ≤ J n , ∀ k. ( 6 
f(G -1 )∈B s 2,∞ (R) E f -f 2 2 ≤ (log(n)/n) 2s/(2s+1) .
Proof of Lemma 4.

E f -f 2 2 ≤ 2C J n j≤Jn k E( βjk -β jk ) 2 + j>Jn k β 2 jk ψ jk (G(x)) 2 2 ≤ V 1 + B 1 .
We first consider the term

V 1 V 1 ≤ 2J n E j≤Jn k (w 2 jk ( βjk -β jk ) 2 + (1 -w jk ) 2 β 2 jk )I{| βjk | ≤ mt n } + J n E j≤Jn k (w 2 jk ( βjk -β jk ) 2 + (1 -w jk ) 2 β 2 jk )I{| βjk | > mt n } = V ′ 1 + V " V ′ 1 = J n (T 5 + T 6 ) T 5 = E j≤Jn k w 2 jk ( βjk -β jk ) 2 I{| βjk | ≤ mt n }
but according to (6.8) we have for 2 j ≤ log(n)/n

E( βjk -β jk ) 2 ≤ C 1 + f 2 ∞ n
hence using (6.16) it follows

T 5 ≤ Ct 2 n 2 Jn 1/n.
As for T 6

T 6 = E j≤Jn k (1 -w jk ) 2 β 2 jk I{| βjk | ≤ mt n } ≤ E j≤Jn k (1 -w jk ) 2 β 2 jk I{| βjk | ≤ mt n } × [I{|β jk | ≤ 2mt n } + I{|β jk > 2mt n |}].
By (3.3) we get

T 6 ≤ 2(mt n ) 2s/(2s+1) f 2 W 2/(1+2s) + j≤Jn k β 2 jk P(| βjk -β jk | > mt n ).
We are going to bound P(| βjk -β jk | > mt n ). We have

P(| βjk -β jk | ≥ m log(n)/n) ≤ P 3 + P 4
where

P 3 = P(|1/n n i=1 ψ j,k (G(X i ))(f(X i ) -Eψ j,k (G(X))f(X)| ≥ m/2 log(n)/n) (6.

18) and

P 4 = P(|1/n n i=1 ψ j,k (G(X i ))ε i | > m/2 (log(n)/n)). ( 6.19) 
Kerkyacharian and Picard in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] in order to prove inequality (65) in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] showed p. 1088 that

P 3 ≤ 2 exp - 3m 2 log(n) 4 f ∞ (3 + m) (6.20) if 2 j ≤ n/ log(n). As for P 4 , conditionally on (X 1 , . . . , X n ) we have 1/n n i=1 ψ j,k (G(X i ))ε i ∼ N (0, γ 2 jk )
where γ 2 jk has been defined in (2.3). 

P 4 ≤ E exp - m 2 log(n) 8nγ 2 jk = Ee - m 2 log(n) 8nγ 2 jk (I(|γ 2 jk -1/n| ≤ ς/n) + I(|γ 2 jk -1/n| > ς/n)) ≤ e - m 2 
P(| βjk -β jk | > mt n ) ≤ 2e -ς 2 log(n)/(C ψ 4 4 +ς ψ 2 ∞ ) + e -m 2 log(n) 8(ς+1) + 2e (-3m 2 log(n) 4 f ∞ (3+m) ) thus P(| βjk -β jk | > mt n ) ≤ 2n -ς 2 C ψ 4 4 +ς ψ 2 ∞ + n -m 2 8(ς+1) + 2n -3m 2 4 f ∞ (3+m) (6.22)
which entails by fixing m and ς large enough

T 6 ≤ 2(mt n ) 4s/(2s+1) f 2 W 2/(1+2s) + t 2 n j≤Jn k β 2 jk ≤ 2(mt n ) 4s/(2s+1) f 2 W 2/(1+2s) + f(G -1 ) 2 2 t 2 n .
Let us look at the term V " Furthermore, using inequality (64) p. 1086 in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] we get for 2 j ≤ n/ log(n) It remains to bound the bias term B 1 . To this purpose we use the fact that f ∈ B s Proof of Theorem 2.

E( βjk -β jk ) 4 ≤ C 1 + f
In order to prove the Theorem 2., we have to prove that the Bayesian estimators (2.4) based on Gaussian priors with large variance (2.10) and (2.11) satisfy the conditions of Lemma 4. We will not get into details of the proof because this latter is identical to the proof of Theorem 3. in [START_REF] Autin | Large variance Gaussian priors in Bayesian nonparametric estimation: a maxiset approach[END_REF], with the sole exception that here, the proof is carried over the event Ω δ n with δ = ς/n, ς some positive constant. Indeed, as precised above in section 2.2, a key observation is that instead of having a deterministic noise ε = 1/ √ n like in [START_REF] Autin | Large variance Gaussian priors in Bayesian nonparametric estimation: a maxiset approach[END_REF], here we have to deal with a stochastic noise γ 2 jk which expression is given by (2.3).
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- κ 2 log(n) 8nγ 2 jk 12 +

 2212 (I(|γ 2 jk -1/n| ≤ 1/2n) + I(|γ 2 jk -1/n| > 1/(2n)))≤ e -κ 2 log(n) P(|γ 2 jk -1/n| > 1/(2n)).(6.13) 

w

  jk βjk ψ jk (G(x))

2 + j≤Jn k β 2

 22 jk ( βjk -β jk ) 2 + (1 -w jk ) 2 β 2 jk )I{| βjk | > mt n } jk ( βjk -β jk ) 2 + (1 -w jk ) 2 β 2 jk )I{| βjk | > mt n } × [I{|β jk | ≤ mt n /2} + I{|β jk > mt n /2|}] = T 7 + T 8for the term T 7 , we use the Cauchy Scharwz inequalityT 7 ≤ j≤Jn k (E( βjk -β jk ) 4 ) 1/2 (P(| βjk -β jk | > mt n /2)) 1/jk I{| βjk | > mt n }I{|β jk | ≤ mt n /2}.

β

  jk ψ j,k (G(x)) 2 2 ≤ C2 -2Jns = Ct 2s n ≤ Ct 4s/(2s+1)n which completes the proof.

Table 1

 1 Values of RMSE over 100 runs

				RSNR=4			RSNR=7
		design density	E1	E2	E3	E1	E2	E3
	Blocks	Sine	0.0194	0.0219 0.0227	0.0113 0.0161	0.0129
		Hole2	0.0196	0.0220 0.0226	0.0114 0.0163	0.0130
	Bumps	Sine	0.0243	0.240	0.259	0.0156 0.0167	0.0172
		Hole2	0.0241	0.0237 0.0253	0.0155 0.0167	0.0169
	HeaviSine	Sine	0.0164	0.0141 0.0133	0.0103 0.0092	0.0093
		Hole2	0.0169	0.0146 0.0138	0.0107 0.0097	0.0096
	Doppler	Sine	0.0236	0.0231 0.0236	0.0157 0.0238	0.0248
		Hole2	0.0244	0.0238 0.0248	0.0166 0.0172	0.0176

  P(| βjk -β jk | > mt n /2) ≤ 2nfrom which follows by fixing again m and ς large enoughT 7 ≤ C/n.2 Jn (n I{|β jk | ≤ mt n /2} ≤ t 2 n + ((m/2)t n ) 4s/(1+2s) f 2 W s/(2s+1) . jk ( βjk -β jk ) 2 + (1 -w jk ) 2 β 2 jk ) × I{| βjk | > mt n }I{|β jk > mt n /2|} -w jk ) 2 β 2 jk I{| βjk | > mt n }I{|β jk > mt n /2|} × [I{| βjk | ≥ |β jk /2|} + I{| βjk | < |β jk /2|}]. -w jk ) 2 β 2 jk )I{| βjk | > mt n }I{|β jk > mt n /2|} × [I{| βjk | ≥ |β jk /2|} + I{| βjk | < |β jk /2|}] βjk -β jk | > mt n /4) using (6.22) we get for m and ς large enough -w jk ) 2 β 2 jk I{| βjk | > mt n }I{|β jk | > mt n /2}I{| βjk | ≥ |β jk |/2} I{| βjk | ≥ |β jk |/2}I{|β jk | > mt n /2} I{|β jk | > mt n /2} + 2K 2 t 2 n f(G -1 ) 2

	∞ 4 -m 2 32(ς+1) + 2n 32(ς+1) + 2n n 2 +ς ψ 2 -ς 2 C ψ 4 4 ∞ + n -ς 2 C ψ 4 4 +ς ψ 2 ∞ + n -m 2 -3m 2 16 f ∞ (3+m) -3m 2 16 f ∞ (3+m) ) 1/2 β 2 jk For the term T 8 j≤Jn k and by (6.22) + j≤Jn k T 8 = E j≤Jn k (w 2 ≤ 4m -2/(2s+1) (1 -2 -2/(1+2s) ) f 2 W 2/(1+2s) (t n ) 4s/(1+2s) + E j≤Jn k (1 Hereafter we decompose E j≤Jn k (1 = T ′ 8 + T " 8 T " 8 ≤ j≤Jn k β 2 jk P(| T " 8 ≤ (2n -ς 2 C ψ 4 4 +ς ψ 2 ∞ + n -m 2 128(ς+1) + 2n -3m 2 64 f ∞ (3+m) ) j≤Jn k β 2 jk ≤ t 2 n as for T ′ 8 T ′ 8 = E T ′ 8 ≤ E j≤Jn k K 2 β 2 jk t n | βjk | + t n 2 ≤ K 2 j≤Jn k β 2 jk 2t n |β jk | + t n 2 I{|β jk | > mt n /2} ≤ 2K 2 j≤Jn k β 2 jk 4t 2 n |β jk | 2 + t 2 n I{|β jk | > mt n /2} = 8K 2 t 2 n j≤Jn k 2 using (3.3) it follows (1 using (6.17) we get T ′ 8 ≤ 8K 2 t 2 n mt n 2 -2/(1+2s) 2 2-2/(1+2s) W 2/(1+2s) + 2K 2 t 2 n f(G -1 ) 2 (6.23) 2 1 -2 -2/(1+2s) f 2 ≤ 32K 2 m -2/(1+2s) 1 -2 -2/(1+2s) t 4s/(1+2s)

n + 2K 2 t 2 n f(G -1 ) 2 2 .
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