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Abstract

In this paper we deal with the regression problem in a random
design setting. We investigate asymptotic optimality under minimax
point of view of various Bayesian rules based on warped wavelets and
show that they nearly attain optimal minimax rates of convergence
over the Besov smoothness class considered. Warped wavelets have
been introduced recently, they offer very good computable and easy-
to-implement properties while being well adapted to the statistical
problem at hand. We particularly put emphasis on Bayesian rules
leaning on small and large variance Gaussian priors and discuss their
simulation performances comparing them with a hard thresholding
procedure.
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1 Introduction

We observe independant pairs of variables (Xi, Yi), for i = 1, . . . , n, under
a random design regression model:

Yi = f(Xi) + εi, 1 ≤ i ≤ n, (1)

where f is an unknown regression function that we aim at estimating, and
εi are independant normal errors with E(εi) = 0, Var(εi) = σ2 < ∞. For
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sake of simplicity, in the sequel we assume σ = 1. The design points Xi are
assumed to be supported in the interval [0, 1] and have a density g which
will be supposed to be known. Furthermore we assume that the design
density g is bounded, i.e 0 < m ≤ g ≤ M < ∞, where m and M are two
constants. Many approaches have been proposed to tackle the problem of
regression in random design, we mention among others the work of Hall
and Turlach [16], Kovac and Silverman [21], Antoniadis et al. [3], Cai and
Brown [7] and the model selection point of view adopted by Baraud [5].
The present paper provides a Bayesian approach to this problem based on
warped wavelet basis. Warped wavelets basis {ψjk(G) j ≥ −1, k ∈ Z} in
regression with random design were recently introduced by Kerkyacharian
and Picard in [19]. The authors proposed an approach which would depart
as less as possible from standard wavelet thresholding procedures which
enjoy optimality and adaptivity properties. These procedures have been
largely investigated but in the case of equispaced samples (see a series of
pioneered articles by Donoho et al. [13], [14], [12]). Kerkyacharian and Pi-
card actually pointed out that expanding the unknown regression function
f in the warped basis instead of the standard wavelets basis proved very
interesting. Of course, this basis has no longer the orthonormality property
but it proved to behave under some conditions as standard wavelets. They
investigated the properties of this new basis and showed that not only is it
well adapted to the statistical problem at hand by avoiding unnecessary cal-
culations but it also offers very good theoretical features while being easily
implemented. More recently Brutti [6] highlighted their easy-to-implement
computational properties.
The aim of the present paper will consist in combining warped wavelets and
Bayesian techniques. Bayesian techniques for shrinking wavelet coefficients
have become very popular in the last few years. The majority of them were
devoted to fixed design regression scheme. Let us cite among others, papers
of Abramovich et al. [1], [2], Clyde et al. [9], [10], [11], [4], Chipman et
al. [8], Rivoirard [24], Pensky [23] in the case of i.i.d errors not necessarily
Gaussian.
Most of those works are taking as distribution prior a mixture of Gaussian
distributions. In particular, Abramovich et al. in [1] and [2] have explored
optimality properties of Gaussian prior mixed with a point mass at zero
and which may be viewed as an extreme case of a Gaussian mixture:

βjk ∼ πjN(0, τ 2
j ) + (1− πj)δ(0)
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where βjk are the wavelet coefficients of the unknown regression function,
τ 2
j = c12

−jα and πj = min(1, c22
−jβ) are the hyperparameters. This partic-

ular form was devised to capture the sparsity of the expansion of the signal
in the wavelets basis.
Our approach will consist in a first time in using the same prior but in
the context of warped wavelets. In Theorem 1 we show that the Bayesian
estimator built using warped wavelets with this prior and form of hyper-
parameters achieves the optimal minimax rate within logarithmic term on
the considered Besov functional space. Unfortunately, the Bayesian estima-
tor turns out not to be adaptive. Indeed, the hyperparameters depend on
the Besov smoothness class index. In order to compensate this drawback,
Autin et al. in [4] proposed to consider a Bayesian procedures based on
Gaussian prior with large variance. Following this suggestion, we will con-
sider priors still specified in terms of a normal density mixed with a point
mass at zero but with a large variance Gaussian densities. In Theorem 2 we
prove again that the Bayesian estimator built with this latter form of prior,
still combined with warped wavelets achieves nearly optimal minimax rate
of convergence while being adaptive. Eventually, our simulations results
highlight the very good performances and behaviour of these Bayesian pro-
cedures whatever the regularity of the test functions, the noise level and
the design density which can be far from the uniform case.
This paper is organized as follows. In section 2 some necessary methodol-
ogy is given: we start with a short review of wavelets and warped wavelets,
explain the prior model and discuss the two hyperparameters form we con-
sider and give in section 3, some definitions of functional spaces we consider.
In section 4, we investigate the performances of our Bayesian estimators in
terms of minimax rates for two cases: the first one when the Gaussian prior
has small variance, the second case focuses on Gaussian prior with large
variance. Section 5 is devoted to simulation results and discussion. Finally,
all proofs of mains results are given in the Appendix.

2 Methodology

2.1 Warped bases

Wavelet series are generated by dilations and translations of a function
ψ called the mother wavelet. Let φ denote the orthogonal father wavelet
function. The function φ and ψ are compactly supported. Assume ψ has r
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vanishing moments. Let:

φjk(x) = 2j/2φ(2jx− k), j, k ∈ Z
ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z.

For a given square-integrable function f in L2[0, 1], let us denote

ζj,k =< f, ψj,k > .

In this paper, we use decompositions of 1- periodic functions on wavelet
basis of L2[0, 1]. We consider periodic orthonormal wavelet bases on [0, 1]
which allow to have the following series representation of a function f :

f(x) =
∑
j≥−1

2j−1∑

k=0

ζjkψjk(x) (2)

where we have denoted ψ−1,k = φ0,k the scaling function.
We are now going to give the essential background of warped wavelets which
were introduced in details in [19]. First of all let us define

G(x) =

∫ x

0

g(x)dx. (3)

G is assumed to be a known function, continuous and strictly monotone
from [0, 1] to [0, 1].
Let us expand the regression function f in the following sense:

f(G−1)(x) =
∑
j≥−1

2j−1∑

k=0

βjkψjk(x)

or equivalently

f(x) =
∑
j≥−1

2j−1∑

k=0

βjkψjk(G(x))

where

βjk =

∫
f(G−1)(x)ψjk(x)dx =

∫
f(x)ψjk(G(x))g(x)dx.

Hence one immediately notices that expanding f(G−1) in the standard ba-
sis is equivalent to expand f in the new warped wavelets basis {ψjk(G), j ≥
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−1, k ∈ Z}. This may give a natural explanation that in the follow-on,
regularity conditions will be expressed not for f but for f(G−1).

We set β̂jk = 1/n
∑n

i=1 ψjk(G(Xi))Yi. β̂jk is an unbiased estimate of
βjk since

E(β̂jk) = 1/n
n∑

i=1

E(ψj,k(G(Xi))(f(Xi) + εi)) = E(ψj,k(G(X))f(X)

=

∫
f(x)ψjk(G(x))g(x)dx =

∫
f(G−1)(x)ψjk(x)dx = βjk.

2.2 Priors and estimators

We set in the following

γ2
jk = 1/n2

n∑
i=1

ψ2
jk(G(Xi)). (4)

As in Abramovich et al. (see [1], [2]), we use the following prior on the
wavelet coefficients βjk of the unknown function f with respect to the warped
basis {ψjk(G), j ≥ −1, k ∈ Z}:

βjk ∼ πjN(0, τ 2
j ) + (1− πj)δ(0).

Considering the L1 loss, from this form of prior we derive the following
Bayesian rule which is the posterior median:

β̃jk = Med(βjk|β̂jk) = sign(β̂jk) max(0, ζjk) (5)

where

ζjk =
τ 2
j

γ2
jk + τ 2

j

|β̂jk| − τjγjk√
γ2

jk + τ 2
j

Φ−1

(
1 + min(ηjk, 1)

2

)
(6)

where Φ is the normal cumulative distributive function and

ηjk =
1− πj

πj

√
τ 2
j + γ2

jk

γjk

exp

(
− τ 2

j β̂2
jk

2γ2
jk(τ

2
j + γ2

jk)

)
. (7)
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We set :
wj(n) :=

πj

1− πj

. (8)

We introduce now the estimator of the unknown regression f

f̃(x) =
∑
j≤J

2j−1∑

k=0

β̃jkψjk(G(x)) (9)

where J is a parameter which will be precised later.
Note that in our case, the estimator resembles the usual ones in [4], [1]
and [2], except that the deterministic noise variance has been replaced by
a stochastic noise level γ2

jk. Its expression is given by (4). This change will
have a marked impact both on the proofs of theorems by using now large
deviations inequalities and on simulations results.
Futhermore, such L1 rule is of thresholding type. Indeed, as underlined in
[1] and [2], β̃jk is null whenever β̂jk falls below a certain threshold λB. Some
properties of the threshold λB that will be used in the sequel are given in
lemma 1 in Appendix.

2.2.1 Gaussian priors with small variance

In this paper, two cases of hyperparameters will be considered. The first one
involves Gaussian priors with small variances. We will state as suggested
in Abramovich et al (see [1], [2]) :

τ 2
j = c12

−jα πj = min(1, c22
−jβ), (10)

where α and β are non-negative constants, c1, c2 > 0.
This choice of hyperparameters is exhaustively discussed in Abramovich
et al. [2]. The authors stressed that this form of hyperparameters was
actually designed in order to capture the sparsity of wavelet expansion.
They pointed out the connection between Besov spaces parameters and
this particular form of hyperparameters. They investigate various practical
choices.
For this case of hyperparameters (10), the estimator of f will be denoted
f̂ .

2.2.2 Gaussian priors with large variance

The second form of hyperparameters considered in the paper involves Gaus-
sian priors with large variance as suggested in Autin et al. [4].
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As a matter of fact, we suppose that the hyperparameters do not depend
on j and we set :

τ 2
j := τ(n)2 = 1/

√
n log(n). (11)

Besides, wj(n) := w(n). We suppose that there exist q1 and q2 such that
for n large enough

n−q1/2 ≤ w(n) ≤ n−q2/2. (12)

This form of hyperparameters was emphasized in [4] in order to mimic heavy
tailed priors such as Laplace or Cauchy distributions. Indeed, Johnstone
and Silverman in [17], [18] showed that their empirical Bayes approach for
regular regression setting with a prior mixing a heavy-tailed density and a
point mass at zero proved fruitful both in theory and practice. Pensky in
[23] also underlined the efficiency of this kind of hyperparameters.
We underscore that contrary to the first form of hyperparameters (10), this
latter forms (11) and (12) lead to an adaptive Bayesian estimator.
For this case of hyperparameters (11) and (12), the estimator of f will be
denoted f̌ .

3 Functional spaces

In this paper, functional classes of interest are Besov bodies and weak Besov
bodies. Let us define them. Using the decomposition (2), we characterize
Besov spaces by using the following norm

‖f‖spq =

{ [ ∑
j≥−1 2jq(s+1/2−1/p)‖(βj,k)k‖q

`p

]1/q
if q < ∞

supj≥−1 2j(s+1/2−1/p)‖(βj,k)k‖`p if q = ∞.

If max(0, 1/p− 1/2) < s < r and p, q ≥ 1

f ∈ Bs
p,q ⇐⇒ ‖f‖spq < ∞.

The Besov spaces have the following simple relationship

Bs1
p,q1

⊂ Bs
p,q, for s1 > s or s1 = s and q1 ≤ q

and
Bs

p,q ⊂ Bs1
p1,q, for p1 > p and s1 ≥ s− 1/p + 1/p1.
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The index s indicates the smoothness of the function. The Besov spaces
capture a variety of smoothness features in a function including spatially
inhomogeneous behavior when p < 2.
We recall and stress that in this paper as mentioned above, the regularity
conditions will be expressed for the function f(G−1) due to the warped basis
context.
More precisely we shall focus on the space Bs

2,∞. We have in particular

f ∈ Bs
2,∞ ⇐⇒ sup

J≥−1
22Js

∑
j≥J

∑

k

β2
jk < ∞. (13)

We define the Besov ball of some radius R as Bs
2,∞(R) = {f : ‖f‖s2∞ ≤ R}.

Let us define now the weak Besov space W (r, 2)

Definition 1. Let 0 < r < 2. We say that a function f belongs to the weak
Besov body W (r, 2) if and only if:

‖f‖Wr := [sup
λ>0

λr−2
∑
j≥−1

∑

k

β2
jkI{|βjk ≤ λ|}]1/2 < ∞. (14)

And we have the following proposition

Proposition 1. Let 0 < r < 2 and f ∈ W (r, 2). Then

sup
λ>0

λr
∑
j≥−1

∑

k

I{|βjk| > λ} ≤ 22−r‖f‖2
Wr

1− 2−r
. (15)

For the proof of this proposition see for instance [20] .
To conclude this section, we have the following embedding

Bs
2,∞ ⊂ W2,2/(1+2s)

which is not difficult to prove (see for instance [20]).

4 Minimax performances of the procedures

4.1 Bayesian estimators based on Gaussian priors with
small variances

Theorem 1. Assume that we observe model (1). We consider the hyper-
parameters defined by (10). Set J := Jα such that 2Jα = (3/(2n))−1/α.

8



Let α > 1 and α ≥ s, then we have the following upper bound:

sup
f(G−1)∈Bs

2,∞(R)

E‖f̂ − f‖2
2 = O((1/n)1−1/α log2(n)) +O((1/n)2s/α). (16)

Corollary 1. If one chooses for the prior parameter α = 2s + 1, one gets

sup
f(G−1)∈Bs

2,∞(R)

E‖f̂ − f‖2
2 ≤ C(log2(n)n−2s/(2s+1)).

This corollary shows that with this specific choice of parameter α, one
recovers the minimax rate of convergence up to a logarithmic factor that
one achieves in the regular setting.

4.2 Bayesian estimators based on Gaussian priors with
large variance

Theorem 2. We consider the model (1). We assume that the hyperparam-
eters are defined by (11) and (12). Set J := Jn such that 2Jn = n/ log n,
then we have :

sup
f(G−1)∈Bs

2,∞(R)

E‖f̌ − f‖2
2 ≤ C

(
log(n)

n

)2s/(2s+1)

.

It is worthwhile to make some comments about the results of Theorem
2. Here, contrary to the similar results in Proposition 2 in [19] we no longer
have the limitation on the regularity index s > 1/2. Moreover, the authors
there had to stop the highest level J such that 2J = (n/ log(n))1/2, here we
stop at the usual level Jn such that 2Jn = n/ log(n) one gets in standard
thresholding .

5 Simulations and discussion

A simulation study is conducted in order to compare the numerical perfor-
mances of the two Bayesian estimators based on warped wavelets and on
Gaussian prior with small or large variance, described respectively in sec-
tion 2.2.1 and 2.2.2 and the hard thresholding procedure using the universal
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threshold σ
√

2 log(n) based on warped basis introduced by Kerkyacharian
and Picard [19] for the nonparametric regression model in a random design
setting. The Kerkyacharian and Picard procedure has already been the ob-
ject of a simulation study (see Willer [25]) which aimed at comparing this
latter procedure with the Cai and Brown one (see [7]). For more simulations
results and details on Kerkyacharian and Picard procedure, the readers are
referred to Willer [25], see also [15].
All the simulations done in the present paper have been conducted with
MATLAB and the Wavelet toolbox of MATLAB.
We consider here four test functions of Donoho and Johnstone [12] repre-
senting different level of spatial variability. The test functions are plotted
in Fig. 1. For each of the four objects under study, we compare the three
estimators at two noise levels, one with signal-to-noise ratio RSNR = 4
and another with RSNR = 7. As in Willer [25] we also consider different
cases of design density which are plotted in Fig. 2. The first two densities
are uniform or slightly varying whereas the last two ones aim at depicting
the case where a hole occurs in the density design. The sample size is equal
to n = 1024 and the wavelet we used is the Symmlet8.
In order to compare the behaviors of the estimators, the RMSE criterion
was retained. More precisely, if f̂(Xi) is the estimated function value at Xi

and n is the sample size, then

RMSE =

√√√√ 1

n

n∑
i=1

(f̂(Xi)− f(Xi))2. (17)

The RMSE displayed in Tab. 1 are computed as the average over 100 runs
of expression (17). In each run, we hold all factors constant, except the
design points (random design) and the noise process that were regenerated.
E1 corresponds to the Bayesian estimator based on Gaussian prior with
large variance, E2 to the Bayesian estimator based on Gaussian prior with
small variance and E3 to the estimator built following the Kerkyacharian
and Picard procedure in [19].
In order to implement E1, we made the following choices of hyperparam-
eters described in section 2.2.2 : in (12), q1 = q2 = q = 1 proved to be a
good compromise whatever the function of interest to be estimated while
leading to good graphics reconstructions. We set w(n) = 20 × n−q/2 and
τ(n) = 20×σ2/(n log(n)). To implement E2, we set c1 = 1, c2 = 2, α = 0.5
and β = 1, following the choices recommended in [2].
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The following plots compare the visual quality of the reconstructions (see
Fig. 3. to Fig. 8). The solid line is the estimator and the dotted line is the
true function.

RSNR=4 RSNR=7

design density E1 E2 E3 E1 E2 E3

Blocks Sine 0.0194 0.0219 0.0227 0.0113 0.0161 0.0129
Hole2 0.0196 0.0220 0.0226 0.0114 0.0163 0.0130

Bumps Sine 0.0243 0.240 0.259 0.0156 0.0167 0.0172
Hole2 0.0241 0.0237 0.0253 0.0155 0.0167 0.0169

HeaviSine Sine 0.0164 0.0141 0.0133 0.0103 0.0092 0.0093
Hole2 0.0169 0.0146 0.0138 0.0107 0.0097 0.0096

Doppler Sine 0.0236 0.0231 0.0236 0.0157 0.0238 0.0248
Hole2 0.0244 0.0238 0.0248 0.0166 0.0172 0.0176

Table 1: Values of RMSE over 100 runs
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Fig. 1 Test functions
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Fig. 3 Blocks target and Sine density, RSNR=4
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Fig. 4 Blocks target and Hole2 design density, RSNR=4
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Fig. 5 Blocks target and Hole2 design density, RSNR=7
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Fig. 6 Bumps target and Sine design density, RSNR=4
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Fig. 7 HeaviSine target and Sine design density, RSNR=7
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Fig. 8 Doppler target and Hole2 design density, SNR=4

We shall now comment and discuss the results displayed in Tab.1 as
well as the various visual reconstructions.
The performances are always better for the Bayesian estimators except for
the case of the HeaviSine test function. More precisely, the RMSE for Blocks
whatever the noise level and design densities are smaller for Estimator 1,
moreover the RMSE are almost equal for Estimator 1 and 2 in the case
of Bumps test function, whatever the design densities and for a noise level
RSNR=4. This may be due to the irregularity of the Bumps, Blocks and
Doppler test functions which are much rougher than the HeaviSine which is
more regular. Indeed, Estimator 1 and 2 tend to detect better the corner of
Blocks, the high peaks in Bumps, and the high frequency parts of Doppler
as the graphics show it. We may explain this by the fact that Estimators
1 and 2 have level-dependent thresholds whereas Estimator 3 has a hard
universal threshold.
As for the reconstructions, one can see that they are slighly better in the
case of Sine density and small noise, whereas there are small deteriorations
when a hole occurs in the design density but this change does not affect
the visual quality in too big proportions. This fact highlights the interest
of ”warping” the wavelet basis. Warping the basis allows the estimators
to behave still correctly when the design densities are far from the uniform
density such as in the case of Hole2.
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Thesis , Université Joseph Fourier, 2007.

[16] P. Hall and B. A. Turlach. Interpolation methods for nonlinear wavelet regression
with irregularly spaced design. 25:1912–1925, 1997.

[17] I. M. Johnstone and B. W. Silverman. Needles and straw in haystacks: empirical
Bayes estimates of possibly sparse sequences. Ann. Statist., 32(4):1594–1649, 2004.

[18] I. M. Johnstone and B. W. Silverman. Empirical Bayes selection of wavelet thresh-
olds. Ann. Statist., 33(4):1700–1752, 2005.

[19] G. Kerkyacharian and D. Picard. Regression in random design and warped wavelets.
Bernoulli, 10(6):1053–1105, 2004.

[20] G. Kerkyacharian and D. Picard. Thresholding algorithms, maxisets and well con-
centrated basis. Test, 9(2):283–344, 2004.

[21] A. Kovac and B. W. Silverman. Extending the scope of wavelet regression methods
by coefficient-dependent thresholding. J. Amer. Statist. Assoc., 95:172–183, 2000.

[22] P. Massart. Concentration inequalities and model selection, volume 1896 of Lec-
ture Notes in Mathematics. Lectures from the 33rd Summer School on Probability
Theory held in Saint-Flour, July 6–23, 2003.

[23] M. Pensky. Frequentist optimality of Bayesian wavelet shrinkage rules for Gaussian
and non-Gaussian noise. Ann. Statist., 34(2):769–807, 2006.

[24] V. Rivoirard. Bayesian modeling of sparse sequences and maxisets for Bayes rules.
Math. Methods Statist., 14(3):346–376, 2005.

[25] T. Willer. Estimation non paramétrique et problèmes inverses. Ph.D. Thesis ,
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6 Appendix

In the sequel C denotes some positive constant which may change from one line to
another line.
We have that

E(ψ2
jk(G(X))) =

∫
ψ2

jk(G(x))g(x)dx =
∫

ψ2
jk(y)dy = 1.

hence we get E(γ2
jk) = 1/n, the expression of γ2

jk being given by (4).
Let us define the following event:

Ωδ
n = {|γ2

jk − 1/n| ≤ δ}. (18)
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To make proofs clearer we recall the Bernstein inequality that we will use in the sequel.
(see in [22] Proposition 2.8 and formula (2.16))

Proposition 2. Let Z1, . . . , Zn be independant and square integrable random variables
such that for some nonnegative constant b, Zi ≤ b almost surely for all i ≤ n. Let

S =
n∑

i=1

(Zi − E[Zi])

and v =
∑n

i=1 E(Z2
i ). Then for any positive x, we have

P[S ≥ x] ≤ exp
(−v

b2
h(

bx

v
)
)

where h(u) = (1 + u) log(1 + u)− u.
It is easy to prove that

h(u) ≤ u2

2(1 + u/3)
which immediately yields

P[S ≥ x] ≤ exp
( −x2

2(v + bx/3)

)
.

Lemma 1. Let ς be some positive constant. We have

P(|γ2
jk − 1/n| > ς/n) ≤ 2e−n1−1/α ς2

2C(1+ς/3) ∀ j ≤ Jα (19)

P(|γ2
jk − 1/n| > ς/n) ≤ 2e−ς2 log(n)/(C‖ψ‖44+ς‖ψ‖2∞) ∀ j ≤ Jn. (20)

Proof of Lemma 1
Let us deal with the first case j ≤ Jα. To bound P(|γ2

jk − 1/n| > ς/n) we will
use the Bernstein inequality and apply Proposition 2. In the present situation Zi =
(1/n2)ψ2

jk(G(Xi)).
First of all, in order to apply the Bernstein inequality, we need the value of the sum

v =
n∑

i=1

E[((1/n2)ψ2
j,k(G(Xi)))2]

we have

Eψ4
j,k(G(X)) =

∫ 1

0

ψ4
j,k(G(x))g(x)dx =

∫ 1

0

ψ4
j,k(y)dy

≤
∫ 1

0

22jψ4(2jy − k)dy ≤ 2j

∫
ψ4(y)dy ≤ C‖ψ‖442j (21)

hence

(1/n4)
n∑

i=1

Eψ4
j,k(G(Xi)) ≤ (C/n3)2Jα =

C

n3−1/α
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moreover
ψ2

jk(G(X)) ≤ ‖ψ‖2∞2j ≤ Cn1/α j ≤ Jα

so

P(|γ2
jk − 1/n)| > ς/n) ≤ 2 exp(− ς2

2C(1 + ς/3)
n−2

n−3+1/α
).

Let us now deal with the second case j ≤ Jn. To bound P(|γ2
jk − 1/n| > ς/n) we will

follow the lines of the proof of the first case. Here again

Zi = 1/n2ψ2
jk(G(Xi)).

According to (21), we have

E(1/n4ψ4
jk(G(X))) ≤ C2j/n4 ≤ C/(n3 log(n)), j ≤ Jn

and

v =
n∑

i=1

E(1/n4ψ4
jk(G(X))) ≤ C‖ψ‖44/(n2 log(n))

and
1/n2ψ2

jk(G(X))) ≤ ‖ψ‖2∞2j/(n2) ≤ ‖ψ‖2∞/(n log(n)), j ≤ Jn

consequently
P(|γ2

jk − 1/n| > ς/n) ≤ 2e−ς2 log(n)/(C‖ψ‖44+ς‖ψ‖2∞).

The following lemma shows that the properties of the Bayesian estimators f̌ and f̂ can
be controlled on the event Ωδ

n. To lighten the notations for the proof of this lemma, we
will denote Ωn for Ωδ

n and Ωc
n the complementary of Ωn.

Lemma 2. We have

E[I(Ωc
n)‖f̌ − f‖22] = o((log(n)/n)2s/(2s+1)

E[I(Ωc
n)‖f̂ − f‖22] = o((1/n)1−1/α log(n)).

Proof of Lemma 2.

We have

E
[
I(Ωc

n)‖f̌ − f‖22
] ≤ CJnE


∑

j≤J

∑

k

(β̃jk − βjk)2I(Ωc
n)


 + P(Ωc

n)
∑

j>Jn

(∑

k

β2
jk

)1/2

≤ V + B.
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Let us first deal with the variance term V. The estimator β̃jk can be written as
β̃jk = wjkβ̂jk with 0 ≤ wjk ≤ 1. We have

V ≤ CJnE


 ∑

j≤Jn,k

(
wjk(β̂jk − βjk)− (1− wjk)βjk

)2

I(Ωc
n)




≤ 2CJnE


 ∑

j≤Jn

∑

k

w2
jk(β̂jk − βjk)2I(Ωc

n)


 + 2CJn

∑

j≤Jn

∑

k

E
[
(1− wjk)2β2

jkI(Ωc
n)

]

≤ 2CJnE


 ∑

j≤Jn

∑

k

(β̂jk − βjk)2I(Ωc
n)


 + 2CJn

∑

j≤Jn

∑

k

E
[
β2

jkI(Ωc
n)

]

because 0 ≤ wjk ≤ 1. Then, using Cauchy Scharwz inequality we get

V ≤ 2CJn

∑

j≤Jn

∑

k

[
E(β̂jk − βjk)4

] 1
2 P(Ωc

n)
1
2 + 2CJn

∑

j≤Jn

∑

k

β2
jkP(Ωc

n).

Using (20) and (40) we have

V ≤ 2CJn2Jne−ς2 log(n)/(2C‖ψ‖44/n+ς‖ψ‖2∞) + 2CJn‖f(G−1)‖22e−ς2 log(n)/(C‖ψ‖44+ς‖ψ‖2∞).

We recall that 2Jn = n/ log(n), accordingly by choosing ς large enough we have

V = o((log(n)/n)2s/(2s+1)

As for the term B
B ≤ C2−2Jnse−ς2 log(n)/(C‖ψ‖44+ς‖ψ‖2∞)

which completes the proof for f̌ .
The proof for f̂ is similar, all inequalities hold a fortiori since, in the case of the estimator
f̂ we have P(Ωc

n) ≤ e−Cn1−1/α

(see (19)).

Let us place in the setting of Theorem 1. We recall that β̃jk is zero whenever |β̂jk|
falls below a threshold λB and we have the following lemma concerning the behavior of
λB

Lemma 3. On the event Ωδ
n defined by (18) with δ = 1/(2n), for α > 1 we have

λB ≈
√

log(n)
n

, j < Jα (22)

and Jα is taken such that 2Jα = ( 3
2n )−1/α.

Proof of Lemma 3. We follow the lines of the proof of lemma 1. in [1].
On the one hand we have (see proof of lemma 1. in [1] page 228)

λB
2 ≤ 2γ2

jk(γ2
jk + τ2

j )
τ2
j

log
(

1− πj

πj

√
γ2

jk + τ2
j

γjk
+ c

)
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where c is some suitable positive constant. Besides, we have 1/(2n) ≤ γ2
jk ≤ 3/(2n),

therefore

λB
2 ≤ 2(3/(2n))((3/(2n)) + c1(3/(2n)))

c1(3/(2n))
log

(
1− c2(3/(2n))β/α

c2(3/(2n))β/α

√
(1 + c1)(3/(2n))√

1/(2n)
+c

)

hence we get
λB

2 ≤ c̃(1/n) log(c̃(1/n)(−
β
α ) + c)

where c̃ denotes a positive constant depending on c1 and c2 and which may be different
at different places. Since

c̃(1/n) log(c̃(1/n)(−
β
α ) + c) ≈ −c̃(β/α)(1/n) log(1/n)

we finally get
λB

2 ≤ −c̃(β/α)(1/n) log(1/n).

On the other hand, for the reverse inequality, we have (see proof of lemma 1. in [1] page
228 and formula (14) in [1] page 221)

λB
2 ≥ 2γ2

jk(γ2
jk + τ2

j )
τ2
j

log
(

1− πj

πj

√
γ2

jk + τ2
j

γjk

)

but |γ2
jk − 1/n| ≤ 1/(2n) consequently one has

λB
2 ≥ −c̃(β/α)(1/n)(log(1/n))

which completes the proof.

Proof of Theorem 1.
Let us place on the event Ωδ

n defined by (18) with δ = 1/(2n).
By the usual decomposition of the MISE into a variance and a bias term we get

E‖f̂ − f‖22 ≤ 2
[
E‖

∑

j≤Jα

∑

k

(β̃jk − βjk)ψj,k(G)‖22 + ‖
∑

j>Jα

∑

k

βjkψj,k(G)‖22
]

≤ 2(V + B)

with
V = E‖

∑

j≤Jα

∑

k

(β̃jk − βjk)ψj,k(G)‖22

B = ‖
∑

j>Jα

∑

k

βjkψj,k(G)‖22.

We first deal with the term V . We have

‖
∑

j≤Jα

∑

k

(β̃jk − βjk)ψj,k(G)‖22 ≤ Jα

∑

j≤Jα

‖
∑

k

(β̃jk − βjk)ψj,k(G)‖22.
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We want to show that

‖
∑

k

(β̃jk − βjk)ψj,k(G)‖22 ≤ C
∑

k

(β̃jk − βjk)2.

For this purpose we have

‖
∑

k

(β̃jk − βjk)ψj,k(G)‖22 =
∫
|
∑

k

(β̃jk − βjk)ψjk(G(x))|2dx

=
∫
|

∑

k

(β̃jk − βjk)ψjk(x)|2 1
g(G−1(x))

dx

= ‖
∑

k

(β̃jk − βjk)ψj,k‖2L2(ω)

where ω(x) = 1/(g(G−1))(x).
Now using inequality (44) p. 1075 in [19] we have

‖
∑

k

(β̃jk − βjk)ψj,k‖2L2(ω) ≤ C2j
∑

k

|β̃jk − βjk|2ω(Ij,k)

where Ij,k denotes the interval [ k
2j , k+1

2j ] and ω(Ijk) =
∫

Ijk
ω(x)dx. But the design density

g is bounded below by m and upperbounded by M . Hence we get

2−j/M ≤ ω(Ij,k) ≤ 2−j/m

and consequently

‖
∑

k

(β̃jk − βjk)ψj,k‖2L2(ω) ≤ C
∑

k

(β̃jk − βjk)2.

We decompose now V into three terms

V ≤ CJαE
∑

j≤Jα

∑

k

[(β̃jk − β
′
jk)2 + (β

′
jk − β

′′
jk)2 + (β

′′
jk − βjk)2]

where
β
′
jk = bj β̂jkI{|β̂jk| ≥ κλB}

with κ a positive constant and

bj =
τ2
j

τ2
j + γ2

jk

β
′′
jk = bjβjk.

As a consequence we have
V ≤ CJα(A1 + A2 + A3).

We are now going to upperbound each term A1, A2 and A3. We start with A1

A1 =
∑

j≤Jα

∑

k

E[(β̃jk − β
′
jk)2].
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As precised in the beginning of section 2.2 p 6, β̃jk = 0 for |β̂jk| < λB . As well, β
′
jk = 0

for |β̂jk| < κλB and β̃jk − β
′
jk → 0 monotonically as β̂jk →∞. Hence

max
β̂jk

|β̃jk − β
′
jk| = bjλB

which implies
A1 ≤ C

∑

j<Jα

∑

k

E(b2
jλ

2
B).

We have λB ≈
√

log n
n and bj ≤ 1 for j ≤ Jα hence we get

A1 ≤ C
∑

j≤Jα

2j−1∑

k=0

log(n)
n

so

A1 ≤ C
log(n)

n

∑

j≤Jα

2j (23)

≤ C
log(n)

n

(
1
n

)−1/α

(24)

finally

A1 = O(
log(n)(

1
n

)1−1/α
)

Let us now consider the second term A2

A2 =
∑

j≤Jα

2j−1∑

k=0

E(β
′
jk − β

′′
jk)2

=
∑

j≤Jα

2j−1∑

k=0

E(bj β̂jkI{|β̂jk| ≥ κλB} − bjβjk)2

We have that bj ≤ 1, consequently it follows

A2 =
∑

j≤Jα

2j−1∑

k=0

E((β̂jk − βjk)2I{|β̂jk| ≥ κλB}) + E
∑

j≤Jα

2j−1∑

k=0

β2
jkI{|β̂jk| < κλB}

= A
′
2 + A

′′
2

We have

A
′
2 ≤

∑

j≤Jα

2j−1∑

k=0

E(β̂jk − βjk)2
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Using inequality (64) in [19] p. 1086 we have

E(β̂jk − βjk)2 ≤ C
1 + ‖f‖2∞

n
(25)

hence
A
′
2 = O((1/n)1−1/α).

We now bound the term A
′′
2 .

A
′′
2 = E

∑

j≤Jα

2j−1∑

k=0

β2
jkI{|β̂jk| < κλB}(I{|βjk| < 2κλB}+ I{|βjk| > 2κλB})

≤ E
∑

j≤Jα

2j−1∑

k=0

β2
jkI{|βjk| < 2κλB}+

∑

j≤Jα

2j−1∑

k=0

β2
jkP(|β̂jk − βjk| > κλB)

= T3 + T4 (26)

We have

T3 ≤ C
∑

j≤Jα

λ2
B2j ≤ C

log(n)
n

n1/α = C log(n)n−1+1/α.

Let us focus on T4, we have

β̂jk − βjk = 1/n

n∑

i=1

ψj,k(G(Xi))(f(Xi) + εi)− Eψj,k(G(X))f(X)

Hence
P(|β̂jk − βjk| > κ

√
log(n)/n) ≤ P1 + P2

where

P1 = P(|1/n

n∑

i=1

ψj,k(G(Xi))(f(Xi))− Eψj,k(G(X))f(X)| > κ/2
√

(log(n)/n)) (27)

and

P2 = P(|1/n

n∑

i=1

ψj,k(G(Xi))εi| > κ/2
√

(log(n)/n)) (28)

Kerkyacharian and Picard in [19] in order to prove inequality (65) in [19] showed p. 1088
that

P1 ≤ 2 exp(− 3κ2 log(n)
4‖f‖∞(3 + κ)

) (29)

if 2j ≤ n/ log(n). As for P2, conditionally on (X1, . . . , Xn) we have

1/n

n∑

i=1

ψj,k(G(Xi))εi ∼ N(0, γ2
jk)
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where γ2
jk has been defined in (4). Using exponential inequality for Gaussian random

variable we have

P2 ≤ E(exp(−κ2 log(n)
8nγ2

jk

))

= Ee
−κ2 log(n)

8nγ2
jk (I(|γ2

jk − 1/n| ≤ 1/2n) + I(|γ2
jk − 1/n| > 1/(2n)))

≤ e−
κ2 log(n)

12 + P(|γ2
jk − 1/n| > 1/(2n)). (30)

Using (19) with ς = 1/2, we have for α > 1

T4 ≤ (2e(−Cn1−1/α) + e−
κ2 log(n)

12 + 2 exp(
−3κ2 log(n)

4‖f‖∞(3 + κ)
))

∑

j≤Jα

2j−1∑

k=0

β2
jk

≤ (2e(−Cn1−1/α) + e−
κ2 log(n)

12 + 2 exp(
−3κ2 log(n)

4‖f‖∞(3 + κ)
))‖f(G−1)‖22

It remains to fix κ large enough so that we get

T4 = O(log(n)n−1+1/α).

So we have for A
′′
2 , with α > 1,

A
′′
2 = O(

log(n)
n1−1/α

)

Finally we get for A2

A2 = O(log(n)(
1
n

)1−1/α).

Let us consider now the term A3

A3 ≤ C
∑

j≤Jα

2j−1∑

k=0

E(β”
jk − βjk)2

= C
∑

j≤Jα

2j−1∑

k=0

β2
jk(1− bj)2 =

∑

j≤Jα

2j−1∑

k=0

(
γ2

jk

τ2
j + γ2

jk

)2β2
jk.

Since |γ2
jk − 1/n| ≤ 1/(2n), we get

A3 ≤
∑

j≤Jα

(
3/(2n)

c12−jα + 1/(2n)

)2 2j−1∑

k=0

β2
jk

but f(G−1) belongs to Bs
2,∞ which entails

2j−1∑

k=0

β2
jk ≤ M2−2js
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hence

A3 ≤ C/n2
∑

j≤Jα

22j(−s+α)

We have

A3 ≤ C/n2(1/n)
−2(−s+α)

α = O(1/n)2s/α.

We are now in position to give an upper bound for the variance term V namely

V ≤ CJα(log(n)(1/n)1−1/α + (1/n)2s/α).

It remains to bound the bias term B. In [19] p.1083 using inequality (44) the authors
have proved that for any l we get

‖
∑

j≥l

∑

k

βjkψj,k(G)‖2 ≤
∑

j≥l

‖
∑

k

βjkψj,k(G)‖2 ≤ C
∑

j≥l

2j/2

( ∑

k

|βjk|2ω(Ij,k)
)1/2

.

(31)
Applying (31) with in our case of bounded design density, ω(Ij,k) ≤ 2−j/m and l = Jα,
it follows

‖
∑

j≥Jα

∑

k

βjkψj,k(G)‖2 ≤ C
∑

j≥Jα

( ∑

k

|βjk|2
)1/2

≤ C
∑

j≥Jα

2−js ≤ C2−Jαs

hence

B = ‖
∑

j>Jα

2j−1∑

k=0

βjkψj,k(G(x))‖22 ≤ C2−2Jαs = C(1/n)2s/α

which completes the proof of Theorem 1.

Lemma 4. Let wjk a sequence of random weights lying in [0, 1]. We assume that there
exist positive constants c, m and K such that for any ε > 0,

β̌n = (wjkβ̂jk)jk

is a shrinkage rule verifying for any n,

wjk(n) = 0, a.e. ∀ j ≥ Jn with 2Jn ∼ n/ log(n) := t2n, ∀ k (32)

|β̂jk| ≤ mtn ⇒ wjk ≤ ctn, ∀ j ≤ Jn, ∀ k, (33)

(1− wjk(n)) ≤ K(
tn

|β̂jk|
+ tn) a.e. ∀ j ≤ Jn, ∀ k. (34)

and let
f̌ =

∑

j<Jn

∑

k

wjkβ̂jkψjk(G(x))

Then
sup

f(G−1)∈Bs
2,∞(R)

E‖f̌ − f‖22 ≤ (log(n)/n)2s/(2s+1).
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Proof of Lemma 4.

E‖f̌ − f‖22 ≤ 2C(Jn

∑

j≤Jn

∑

k

E(β̌jk − βjk)2 + ‖
∑

j>Jn

∑

k

β2
jkψjk(G(x))‖22)

≤ V1 + B1.

We first consider the term V1

V1 ≤ 2JnE
∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)2 + (1− wjk)2β2

jk)I{|β̂jk| ≤ mtn}

+ JnE
∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)2 + (1− wjk)2β2

jk)I{|β̂jk| > mtn}

= V
′
1 + V ”

1

V
′
1 = Jn(T5 + T6)

T5 = E
∑

j≤Jn

∑

k

w2
jk(β̂jk − βjk)2I{|β̂jk| ≤ mtn}

but according to (25) we have for 2j ≤ log(n)/n

E(β̂jk − βjk)2 ≤ C
1 + ‖f‖2∞

n

hence using (33) it follows
T5 ≤ Ct2n2Jn1/n.

As for T6

T6 = E
∑

j≤Jn

∑

k

(1− wjk)2β2
jkI{|β̂jk| ≤ mtn}

≤ E
∑

j≤Jn

∑

k

(1− wjk)2β2
jkI{|β̂jk| ≤ mtn}[I{|βjk| ≤ 2mtn}+ I{|βjk > 2mtn|}].

By (15) we get

T6 ≤ 2(mtn)2s/(2s+1)‖f‖2W2/(1+2s)
+

∑
j≤Jn

∑
k β2

jkP(|β̂jk − βjk| > mtn).

We are going to bound P(|β̂jk − βjk| > mtn). We have

P(|β̂jk − βjk| ≥ m
√

log(n)/n) ≤ P3 + P4

where

P3 = P(|1/n

n∑

i=1

ψj,k(G(Xi))(f(Xi)− Eψj,k(G(X))f(X)| ≥ m/2
√

log(n)/n) (35)

and

P4 = P(|1/n

n∑

i=1

ψj,k(G(Xi))εi| > m/2
√

(log(n)/n)). (36)

27



Kerkyacharian and Picard in [19] in order to prove inequality (65) in [19] showed p. 1088
that

P3 ≤ 2 exp(− 3m2 log(n)
4‖f‖∞(3 + m)

) (37)

if 2j ≤ n/ log(n). As for P4, conditionally on (X1, . . . , Xn) we have

1/n

n∑

i=1

ψj,k(G(Xi))εi ∼ N(0, γ2
jk)

where γ2
jk has been defined in (4).

P4 ≤ E(exp(−m2 log(n)
8nγ2

jk

))

= Ee
−m2 log(n)

8nγ2
jk

))
(I(|γ2

jk − 1/n| ≤ ς/n) + I(|γ2
jk − 1/n| > ς/n))

≤ e−
m2 log(n)
8(ς+1) + P(|γ2

jk − 1/n| > ς/n). (38)

Using (20) to bound P(|γ2
jk − 1/n| > ς/n) we get

P(|β̂jk − βjk| > mtn) ≤ 2e−ς2 log(n)/(C‖ψ‖44+ς‖ψ‖2∞) + e−
m2 log(n)
8(ς+1) + 2e(− 3m2 log(n)

4‖f‖∞(3+m)

thus

P(|β̂jk − βjk| > mtn) ≤ 2n
−ς2

C‖ψ‖44+ς‖ψ‖2∞ + n
−m2

8(ς+1) + 2n
−3m2

4‖f‖∞(3+m) (39)

which entails by fixing m and ς large enough

T6 ≤ 2(mtn)4s/(2s+1)‖f‖2W2/(1+2s)
+ t2n

∑

j≤Jn

∑

k

β2
jk

≤ 2(mtn)4s/(2s+1)‖f‖2W2/(1+2s)
+ ‖f(G−1)‖22t2n.

Let us look at the term V ”
1

V ”
1 = E

∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)2 + (1− wjk)2β2

jk)I{|β̂jk| > mtn}

V ”
1 = E

∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)2 + (1− wjk)2β2

jk)I{|β̂jk| > mtn}[I{|βjk| ≤ mtn/2}+ I{|βjk > mtn/2|}]

= T7 + T8

for the term T7, we use the Cauchy Scharwz inequality

T7 ≤
∑

j≤Jn

∑

k

(E(β̂jk − βjk)4)1/2(P(|β̂jk − βjk| > mtn/2))1/2

+
∑

j≤Jn

∑

k

β2
jkI{|β̂jk| > mtn}I{|βjk| ≤ mtn/2}.
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Furthermore, using inequality (64) p. 1086 in [19] we get for 2j ≤ n/ log(n)

E(β̂jk − βjk)4 ≤ C
1 + ‖f‖4∞

n2
(40)

and by (39)

P(|β̂jk − βjk| > mtn/2) ≤ 2n
−ς2

C‖ψ‖44+ς‖ψ‖2∞ + n
−m2

32(ς+1) + 2n
−3m2

16‖f‖∞(3+m)

from which follows by fixing again m and ς large enough

T7 ≤ C/n.2Jn(n
−ς2

C‖ψ‖44+ς‖ψ‖2∞ + n
−m2

32(ς+1) + 2n
−3m2

16‖f‖∞(3+m) )1/2 +
∑

j≤Jn

∑

k

β2
jkI{|βjk| ≤ mtn/2}

≤ t2n + ((m/2)tn)4s/(1+2s)‖f‖2Ws/(2s+1)
.

For the term T8

T8 = E
∑

j≤Jn

∑

k

(w2
jk(β̂jk − βjk)2 + (1− wjk)2β2

jk)I{|β̂jk| > mtn}I{|βjk > mtn/2|}

≤ 4m−2/(2s+1)

(1− 2−2/(1+2s))
‖f‖2W2/(1+2s)

(tn)4s/(1+2s)

+ E
∑

j≤Jn

∑

k

(1− wjk)2β2
jkI{|β̂jk| > mtn}I{|βjk > mtn/2|}[I{|β̂jk| ≥ |βjk/2|}+ I{|β̂jk| < |βjk/2|}].

Hereafter we decompose

E
∑

j≤Jn

∑

k

(1− wjk)2β2
jk)I{|β̂jk| > mtn}I{|βjk > mtn/2|}[I{|β̂jk| ≥ |βjk/2|}+ I{|β̂jk| < |βjk/2|}]

= T ′8 + T ”
8

T ”
8 ≤

∑

j≤Jn

∑

k

β2
jkP(|β̂jk − βjk| > mtn/4)

using (39) we get for m and ς large enough

T ”
8 ≤ (2n

−ς2

C‖ψ‖44+ς‖ψ‖2∞ + n
−m2

128(ς+1) + 2n
−3m2

64‖f‖∞(3+m) )
∑

j≤Jn

∑

k

β2
jk ≤ t2n

as for T
′
8

T
′
8 = E

∑

j≤Jn

∑

k

(1− wjk)2β2
jkI{|β̂jk| > mtn}I{|βjk| > mtn/2}I{|β̂jk| ≥ |βjk|/2}
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using (34) we get

T
′
8 ≤ E

∑

j≤Jn

∑

k

K2β2
jk(

tn

|β̂jk|
+ tn)2I{|β̂jk| ≥ |βjk|/2}I{|βjk| > mtn/2}

≤ K2
∑

j≤Jn

∑

k

β2
jk(

2tn
|βjk| + tn)2I{|βjk| > mtn/2}

≤ 2K2
∑

j≤Jn

∑

k

β2
jk(

4t2n
|βjk|2 + t2n)I{|βjk| > mtn/2}

= 8K2t2n
∑

j≤Jn

∑

k

I{|βjk| > mtn/2}+ 2K2t2n‖f(G−1)‖22

using (15) it follows

T
′
8 ≤ 8K2t2n(

mtn
2

)
−2/(1+2s) 22−2/(1+2s)

1− 2−2/(1+2s)
‖f‖2W2/(1+2s)

+ 2K2t2n‖f(G−1)‖22

≤ 32K2 m−2/(1+2s)

1− 2−2/(1+2s)
t4s/(1+2s)
n + 2K2t2n‖f(G−1)‖22.

It remains to bound the bias term B1. To this purpose we use the fact that f ∈ Bs
2,∞

B−1 = ‖
∑

j>Jn

2j−1∑

k=0

βjkψj,k(G(x))‖22 ≤ C2−2Jns = Ct2s
n ≤ Ct4s/(2s+1)

n

which completes the proof.

Proof of Theorem 2.

In order to prove the Theorem 2., we have to prove that the Bayesian estimators
(5) based on Gaussian priors with large variance (11) and (12) satisfy the conditions of
Lemma 2.
We will not get into details of the proof because this latter is identical to the proof of
Theorem 3. in [4], with the sole exception that here, we will place ourselves on the event
Ωδ

n with δ = ς/n, ς some positive constant. Indeed, as precised above in section 2.2, a
key observation is that instead of having a deterministic noise ε = 1/

√
n like in [4], here

we have to deal with a stochastic noise γ2
jk which expression is given by (4).
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