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The number of Hecke eigenvalues of same signs

Introduction

Let k 2 be an even integer and N 1 be squarefree. Among all holomorphic cusp forms of weight k for the congruence subgroup Γ 0 (N), there are finitely many of them whose Fourier coefficients in the expansion at the cusp ∞,

f (z) = ∞ n=1 λ f (n)n (k-1)/2 e 2πinz
(ℑmz > 0), are the Hecke eigenvalues. Up to scalar multiples, these forms are the only simultaneous eigenfunctions of all Hecke operators. We call them the primitive forms, and write H * k (N) for the set of all primitive forms of weight k for Γ 0 (N). One central problem in modular form theory is to study the Hecke eigenvalues λ f (n). (We omit the factor n (k-1)/2 to avoid its uneven amplifying effect.) Classically it is known that the arithmetical function λ f (n) is real multiplicative, and verifies Deligne's inequality (See [START_REF] Deligne | La conjecture de Weil, I, II[END_REF] and [START_REF] Iwaniec | Analytic number theory[END_REF].) The distribution of the Hecke eigenvalues λ f (n) is delicate. The Lang-Trotter conjecture concerns the frequency of λ f (p) taking a value in the admissible range where p runs over primes. This conjecture is still open but there are progress made on itself or the pertinent questions, for instance, [START_REF] Elkies | Distribution of supersingular primes, Journées Arithmétiques[END_REF], [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF], [START_REF] Murty | Modular forms and the Chebotarev density theorem[END_REF], [START_REF] Murty | Modular forms and the Chebotarev density theorem, II[END_REF], [START_REF] Balog | The Chebotarev density theorem in short intervals and some questions of Serre[END_REF], [START_REF] Cojocaru | The square sieve and the Lang-Trotter conjecture[END_REF], [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF], etc. In this regard, various techniques and tools are applied, such as ℓ-adic representations, Chebotarev density theorem, sieve-theoretic arguments, Rankin-Selberg L-functions and the method of B-free numbers. In [START_REF] Kowalski | Small gaps in coefficients of L-functions and B-free numbers in short intervals[END_REF], Kowalski, Robert & Wu investigated the nonvanishing problem and gave the sharpest upper estimate to-date on the gaps between consecutive nonzero Hecke eigenvalues. Another wide belief is Sato-Tate's conjecture, asserting that λ f (p)'s are equidistributed on [-2, 2] with respect to the Sato-Tate measure.

In this paper, we are concerned with the Hecke eigenvalues of the same sign. Kohnen, Lau & Shparlinski [14, Theorem 1] proved 17 for x x 0 (f ). † Very recently Wu [START_REF] Wu | Power sums of Hecke eigenvalues and application[END_REF]Corollary] improved this result by reducing the exponent 17 to 1 -1/ √ 3, as a simple application of his estimates on power sums of Hecke eigenvalues. The exponent 1 -1/ √ 3 can be improved to 2 -16/(3π) if one assumes Sato-Tate's conjecture.

(1.3) N ± f (x) := n x, (n,N )=1 λ f (n)≷ 0 1 ≫ f x (log x)
Our first result is to remove the logarithmic factor by the B-free number method, which is the best possible in order of magnitude.

Theorem 1. Let f ∈ H * k (N).
Then there is a constant x 0 such that the inequality (1.4)

N ± f (x) ≫ f x holds for all x x 0 .
Remarks. 1. It is clear from the proof that our method gives the stronger result

n x, (n,N )=1 n squarefree, λ f (n)≷ 0 1 ≫ f x for every x x 0 (f ).
2. The method is robust and applies to, for example, modular forms of halfintegral weight. We return to this problem in another occasion.

By coupling (1.3) with Alkan & Zaharescu's result in [1, Theorem 1], it is shown in [14, Theorem 2] (see also [START_REF] Kohnen | Sign changes of Fourier coefficients and eigenvalues of cusp forms[END_REF]Theorem 3.4]) that there are absolute constants η < 1 and A > 0 such that for any f ∈ H * k (N) the inequality (1.5) N ± f (x + x η ) -N ± f (x) > 0 holds for x (kN) A , but no explicit value of η is evaluated. Apparently it is interesting and important to know how small η can be, in order for a better understanding of the local behaviour. A direct consequence of (1.5) is that λ f (n) has a sign-change in a short interval [x, x+x η ] for all sufficiently large x. The sign-change problem was explored in [START_REF] Iwaniec | The first sign change of Hecke eigenvalue[END_REF], [START_REF] Kohnen | On the number of sign changes of Hecke eigenvalues of newforms[END_REF], [START_REF] Wu | Power sums of Hecke eigenvalues and application[END_REF] on different aspects. Here we prove that there are plenty of eigenvalues of the same signs in intervals of length about x 1/2 . More precisely, we have the following.

Theorem 2. Let f ∈ H * k (N).
There is an absolute constant C > 0 such that for any ε > 0 and all sufficiently large x N 2 x 0 (k), we have The result in Theorem 2 is uniform in the level N, and its method of proof is based on Heath-Brown & Tsang [START_REF] Heath-Brown | Sign changes of E(T ), ∆(x), and P (x)[END_REF]. The exponent of Ψ(N) in C N can be easily reduced to any number bigger than 3/2, which however may not be essential as Ψ(N) is already very small -log Ψ(N) = o( √ log N). The range of x N 2 x 0 (k) can also be refined to x N 1+ε k A for some constant A > 0, but we save our effort.

(1.6) N ± f (x + C N x 1/2 ) -N ± f (x) ≫ ε (Nx) 1/4-ε , where C N := CN 1/2 Ψ(N) 3 , Ψ(N) := d|N d -1/
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Proof of Theorem 1

Let p ′ be the least prime such that p ′ ∤ N and λ f (p ′ ) < 0. ‡ Introduce the set

B = {p : λ f (p) = 0} ∪ {p : p | N} ∪ {p ′ } ∪ {p 2 : p ∤ p ′ N and λ f (p) = 0} = {b i } i 1 (with increasing order).
By virtue of Serre's estimate [18, (181)]:

|{p ≤ x : λ f (p) = 0}| ≪ f,δ x (log x) 1+δ
for x ≥ 2 and any δ < 1 2 , we infer that

i 1 1/b i < ∞ and (b i , b j ) = 1 (i = j).
Let A := {a i } i 1 (with increasing order) be the sequence of all B-free numbers, i.e. the integers indivisible by any element in B. According to [START_REF] Erdős | On the difference of consecutive terms of sequences, defined by divisibility properties[END_REF], A is of positive density

(2.1) lim x→∞ |A ∩ [1, x]| x = ∞ i=1 1 - 1 b i > 0.
From the definition of B and the multiplicativity of λ f (n), we have λ f (a) = 0 for all a ∈ A . Then we partition

A = A + ∪ A -,
where

A ± := a i ∈ A : λ f (a i ) ≷ 0 .
Without control on the sizes of A ± , we construct a set from A + ∪ A -such that the sign of λ f (a) is switched on the counterpart. Consider

N ± := A ± ∪ {a i p ′ : a i ∈ A ∓ }. ‡
According to [START_REF] Iwaniec | The first sign change of Hecke eigenvalue[END_REF], we have p ′ ≪ (k 2 N ) 29/60 .

Clearly λ f (a) ≷ 0 and (a, N) = 1 for all a ∈ N ± and

N ± f (x) N ± ∩ [1, x] A ∩ [1, x/p ′ ]
for all x 1. The desired result follows with the inequality (2.1).

Proof of Theorem 2

The method of proof is based on the investigation of

S * f (x) := n x, (n,N )=1 λ f (n).
Since the L-function associated to f is belonged to the Selberg class and of degree 2, we apply the standard complex analysis to derive truncated Voronoi formulas for

S * f (x). Lemma 3.1. Let f ∈ H * k (N).
Then for any A > 0 and ε > 0, we have

(3.1) S * f (x) = η f π √ 2 (Nx) 1/4 d|N (-1) ω(d) λ f (d) d 1/4 n M λ f (n) n 3/4 cos 4π nx dN - π 4 + O N 1/2 1 + x M 1/2 + N x 1/4 (Nx) ε uniformly for 1 M x A and x N 1+ε
, where η f = ±1 depends on f and the implied O-constant depends on A, ε and k only. The function ω(d) counts the number of all distinct prime factors of d.

Remark. The case N = 1 and A = 1 of (3.1) is covered in [12, Theorem 1.1] with h = k = 1 therein. Our proof follows closely Section 3.2 of [START_REF] Ivić | The Riemann zeta-function. The theory of the Riemann zeta-function with applications[END_REF], and we first evaluate the case without the constraint (n, N) = 1: for any A > 0 and ε > 0, we have uniformly in 1 M x A , (3.2)

S f (x) := n x λ f (n) = η f (Nx) 1/4 π √ 2 n M λ f (n) n 3/4 cos 4π nx N - π 4 + O N 1/2 1 + x M 1/2 + N x 1/4 (Nx) ε .
Proof. As usual, denote by µ(N) the Möbius function. (3.1) follows from (3.2) because

S * f (x) = d|N µ(d) n x/d λ f (dn) = d|N (-1) ω(d) λ f (d) n x/d λ f (n) (3.3)
by the multiplicativity of λ f (n) and the first equality in (1.2). Note that x/d x ε/(1+ε) when x N 1+ε and d|N, we can keep the same range of M for all inner sums over n by selecting a suitable A. Inserting (3.2) into (3.3), the main term of (3.1) comes up immediately. The effect of summing the O-terms over d|N is negligible in light of the second formula in (1.2), and hence the result.

To prove (3.2), we consider M ∈ N without loss of generality. As usual write

L(s, f ) := n 1 λ f (n)n -s
(ℜe s > 1).

Let κ := 1 + ε and T > 1 be a parameter, chosen as

T 2 = 4π 2 (M + 1 2 )x N . (3.4)
By the truncated Perron formula (see [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Corollary II.2.4] with the choice of σ a = 1, α = 2 and B(n

) = C ε n ε ), we have (3.5) S f (x) = 1 2πi κ+iT κ-iT L(s, f ) x s s ds + O N 1/2 x M 1/2 + 1 (Nx) ε .
We shift the line of integration horizontally to ℜe s = -ε, the main term gives

(3.6) 1 2πi κ+iT κ-iT L(s, f ) x s s ds = L(0, f ) + 1 2πi L L(s, f ) x s s ds,
where L is the contour joining the points κ ± iT and -ε ± iT . Using the convexity bound

L(σ + it, f ) ≪ √ N (k + |t|) max{0,1-σ}+ε (-ε σ κ),
the integrals over the horizontal segments and the term L(0, f ) can be absorbed in O (NT x) ε (N 1/2 + T -1 x) . The O-constant depends on k and ε, and in the sequel, such a dependence in implied constants will be tacitly allowed.

To handle the integral over the vertical segment

L v := [-ε -iT, -ε + iT ], we invoke the functional equation √ N 2π s Γ s + k -1 2 L(s, f ) = i k η f √ N 2π 1-s Γ 1 -s + k -1 2 L(1 -s, f )
where [10, p.375] with an obvious change of notation). Then we deduce that

η f := µ(N)λ f (N) √ N ∈ {±1} (see
(3.7) 1 2πi Lv L(s, f ) x s s ds = i k η f n 1 λ f (n) n I Lv (nx),
where

I Lv (y) := 1 2πi Lv 4π 2 N s-1/2 Γ(1 -s + (k -1)/2) Γ(s + (k -1)/2)
y s s ds.

The quotient of the two gamma factors is |t| 1-2σ e -2i(t log |t|-t)+isgn(t)π(k-1)/2 {1 + O(t -1 )} for bounded σ and any |t| 1, where the implied constant depends on σ and k. Together with the second mean value theorem for integrals (see [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF], Theorem I.0.3), we obtain

(3.8) I Lv (nx) ≪ N 1/2 N nx ε T 1 t 2ε e -ig(t) dt + T 2ε ≪ N 1/2 NT 2 nx ε b a e -ig(t) dt + 1
for some 1 a b T , where g(t) := t log Nt 2 /(4π 2 nx) -2t. In view of (3.4), we have

g ′ (t) = -log(4π 2 nx/(Nt 2 )) < 0 and |g ′ (t)| | log(n/(M + 1 2
))| for n M + 1 and 1 t T . Using (1.1) and [20, Theorem I.6.2], we infer that (3.9)

n>M λ f (n) n I Lv (nx) ≪ N 1/2 NT 2 x ε n>M d(n) n 1+ε log n M + 1 2 -1 + 1 ≪ N 1/2 NT 2 x ε M <n 2M d(n)(M + 1 2 ) n 1+ε |n -M -1 2 | + 1 M ε/2 ≪ N 1/2 NT 2 √ M x ε ≪ N 1/2 (Nx) ε .
For n M, we extend the segment of integration L v to an infinite line L * v in order to apply Lemma 1 in [START_REF] Chandrasekharan | The approximate functional equation for a class of zeta-functions[END_REF]. Write

L ± v := [ 1 2 + ε ± iT, 1 2 + ε ± i∞), L ± h := [-ε ± iT, 1 2 + ε ± iT ] and define L *
v to be the positively oriented contour consisting of L v , L ± v and L ± h . The contribution over the horizontal segments L ± h is

I L ± h (nx) ≪ 1/2-ε -ε 4π 2 N σ-1/2 T 1-2σ (nx) σ T dσ ≪ N 1/2 1/2-ε -ε nx NT 2 σ dσ ≪ N 1/2 (Nx) ε .
As in (3.8), for n M we get that

I L ± v (nx) ≪ N 1/2 nx N 1/2+ε ∞ T t -1-2ε e -ig(t) dt + 1 T 1+2ε ≪ N 1/2 nx NT 2 1/2+ε log M + 1 2 n -1 + 1 ≪ N 1/2 log M + 1 2 n -1 + 1 . So (3.10) n M λ f (n) n I L ± v (nx) + I L ± h (nx) ≪ n M d(n) n I L ± v (nx) + I L ± h (nx) ≪ N 1/2 (Nx) ε .
Now all the poles of the integrand in 

I L * v (y) = √ N 2π 1 2πi L * v Γ(1 -s + (k -1)/2)Γ(s) Γ(s + (k -1)/2)Γ(1 + s)
I L * v (y) = √ N 2π I 0 4π 2 y N , with I 0 (t) := 1 2πi Lε Γ(s + (k -1)/2)Γ(1 -s) Γ(1 -s + (k -1)/2)Γ(2 -s) t 1-s ds.
Here L ε consists of the line s = 1 2 -ε + iτ with |τ | T , together with three sides of the rectangle whose vertices are 1 2

-ε -iT , 1 + ε -iT , 1 + ε -iT and 1 2 -ε + iT . Clearly our I 0 is a particular case of I ρ defined in [3, Lemma 1], corresponding to the choice of parameters ρ = 0, δ = A = 1, ω = 1, h = 2, k 0 = -(2k + 1)/4. It hence follows that (3.11) I L * v (nx) = i k (nNx) 1/4 π √ 2 cos 4π nx N - π 4 + O N 3/4+ε (nx) 1/4 ,
The value of e ′ 0 in Lemma 1 of [START_REF] Chandrasekharan | The approximate functional equation for a class of zeta-functions[END_REF] is 1/ √ π by direct computation. We conclude Following Theorem 1 of [START_REF] Heath-Brown | Sign changes of E(T ), ∆(x), and P (x)[END_REF], we have the next lemma.

(3.12) n M λ f (n) n I Lv (nx) = i k (Nx) 1/4 π √ 2 n M λ f (n) n 3/4 cos 4π nx N - π 4 + O N 1/2 N x 1/4 + 1 (Nx) ε , from (3 
Lemma 3.2. Let f ∈ H * k (N).
There exist positive absolute constants C, c 1 , c 2 such that for all sufficiently large X N 2 X 0 (k), we can find

x 1 , x 2 ∈ [X, X + C N X 1/2 ] for which S * f (x 1 ) > c 1 (NX) 1/4 and S * f (x 2 ) < -c 2 (NX) 1/4 ,
where C N := CN 1/2 Ψ(N) 3 and X 0 (k) is a constant depending only on k. The same result also holds for S f (x).

Y

.-K. LAU & J. WU Proof. Define K τ (u) := (1 -|u|)(1 + τ cos(4παu))
, where τ = 1 or -1 and α is a (large) parameter, both chosen at our disposal. Consider the following integral

r β = r β (α, τ, t) := 1 -1 K τ (u) cos 4π(t + αu) β - π 4 du,
where t ∈ N and β > 0. Because

w(ξ) := 1 -1 (1 -|u|)e i2πξu du = sin πξ πξ 2 = 1 if ξ = 0, O min(1, ξ -2 ) if ξ = 0,
we can write, with the notation

α β := 2α √ β and α ± β := 2α( √ β ± 1), (3.13) 
r β = 1 -1 (1 -|u|) 1 + τ e i4παu + e -i4παu 2 ℜe e i{4π(t+αu) √ β-π/4} du = ℜe e i(4πt √ β-π/4) 1 -1 (1 -|u|) e i2πα β u + τ 2 e i2πα + β u + τ 2 e i2πα - β u du = w α β + τ 2 w α + β + τ 2 w α - β cos 4πt β - π 4 = δ β=1 τ 2 √ 2 + O min 1, 1 α 2 β + δ β =1 min 1, 1 (α - β ) 2
, where the O-constant is absolute,

δ β=1 := 1 if β = 1 0 otherwise and δ β =1 := 1 -δ β=1 .
The last error term in (3.13) appears only when β = 1. For all X N 2 X 0 (k) (whose value will be specified below), we write T = (X/N) 1/2 and t = [T ] + 1 ∈ N, and consider the convolution

J τ = 1 -1 F f (t + αu)K τ (u) du,
where

F f (t + αu) := π √ 2 η f S * f (N(t + αu) 2 ) N(t + αu) .
By Lemma 3.1 with M = NT 2 = X, we deduce that

F f (t + αu) = d|N (-1) ω(d) λ f (d) d 1/4 n M λ f (n) n 3/4 cos 4π(t + αu) n d - π 4 + O k 1 T 1/4 , and 
J τ = d|N (-1) ω(d) λ f (d) d 1/4 n M λ f (n) n 3/4 r n/d + O k 1 T 1/4 (3.14) by (1.2).
Next we estimate the contribution of the O-term in (3.13) to J τ . Using (1.2) and (1.1) again, its contribution to J τ is

≪ d|N 1 d 3/4 n M d(n) n 3/4 R ′ d,n (α) + n M n =d d(n) n 3/4 R ′′ d,n (α) , (3.15) where R ′ d,n (α) := min 1, d α 2 n , R ′′ d,n (α) := min 1, d α 2 | √ n - √ d| 2 .
Consider the second sum in the curly braces. We separate n into

n α -d, α -d < n < α + d or α + d n
where α ± := (1-α -1/2 ) ∓2 , and R ′′ d,n (α) is 1/α, 1 or d/(αn) accordingly. Therefore,

n M n =d d(n) n 3/4 R ′′ d,n (α) 1 α n α -d d(n) n 3/4 + α -d<n<α + d n =d d(n) n 3/4 + d α n>α + d d(n) n 7/4 .
Obviously the first and last terms on the right-hand side are ≪ α -1 d 1/4 log(2d). Note that n ≍ d in the second sum. So, by using Shiu's Theorem 2 in [START_REF] Shiu | A Brun-Titchmarsh theorem for multiplicative functions[END_REF] it follows

α -d<n<α + d n =d d(n) n 3/4 ≪ d -3/4 α -d<n<α + d n =d d(n) ≪ α -1/2 d 1/4 log(2d) if d > α. Otherwise (i.e. d α), pulling out d(n) ≪ n ε ≪ d ε ≪ α ε , we have α -d<n<α + d n =d d(n)n -3/4 ≪ α ε d -3/4 α -d<n<α + d n =d 1 ≪ α ε d -3/4 α -1/2 d ≪ α -1/3 d 1/4 log(2d).
(We can assume that (α + -α -)d α -1/2 d c ′ for a small constant c ′ , otherwise the last sum is empty.) Hence

n M n =d d(n) n 3/4 R ′′ d,n (α) ≪ α -1/3 d 1/4 log(2d).
The first sum in the bracket of (3.15) can be treated in the same fashion (even more easily). Thus, (3.15) is bound by

≪ α -1/3 d|N log(2d) d 1/2 =: α -1/3 Ψ(N).
We conclude from (3.14) with (3.13) and (1.2) that

J τ = τ 2 √ 2 d|N (-1) ω(d) d 2 + O Ψ(N) α 1/3 + O k 1 T 1/4 ,
where the implied constant is absolute in the first O-term, but depends on k in the second. Noticing that

d|N (-1) ω(d) d 2 = p|N 1 - 1 p 2 6 π 2
and T NX 0 (k), we take α = CΨ(N) 3 with a large absolute constant C and a large X 0 (k) so that both O-terms O(α -1/3 Ψ(N)) and O k (T -1/4 ) are cos(π/4)/π 2 = 1/(π 2 √

2). Therefore

J -1 < -1/(π 2 √ 2) and J 1 > 1/(π 2 √ 2).
With the nonnegativity of K τ (u) and the estimate

1 -(2πα) -2 1 -1 K τ (u) du 2 (τ = ±1),
we have 2F f (t + αη + ) 1/(π 2 √ 2) and 1 -(2πα) -2 F f (t + αη -) -1/(π 2 √ 2)

for some η + , η -∈ [-1, 1]. Let C N = CN 1/2 Ψ(N) 3 . As X -3C N √ X N(t + αη ± ) 2 X + 3C N √ X,
our assertion follows from the definition of F f and replacing X -3C N √ X by X.

Now we are ready to prove Theorem 2. We exploit the consecutive sign changes of S * f (x). Let x N 2 X 0 (k) where X 0 (k) takes the value as in Lemma 3.2. We apply Lemma 3.2 to the intervals [x, x+C N x 1/2 ] and [y, y +C N y 1/2 ] where y = x+C N x 1/2 . Over each of the intervals, S * f (x) attains in magnitude (Nx) 1/4 in both positive and negative directions. Hence, we can find three points x < x 1 < x 2 < x 3 < x + 3C N x 1/2 such that S * f (x i ) (i = 1, 2, 3) takes alternate signs and their absolute values are ≫ (Nx) 

λ f (n) < -c ′ (Nx) 1/4
for some constant c ′ > 0 and b ≪ x, then we have

c ′ (Nx) 1/4 < a<n<b, (n,N )=1 λ f (n)<0 -λ f (n) ≪ x ε a<n<b, (n,N )=1 λ f (n)<0
1.

This completes the proof of Theorem 2.

(1. 1 )

 1 |λ f (n)| d(n) for all n 1, where d(n) is the divisor function. Furthermore we have (1.2) λ f (p ν ) = λ f (p) ν and λ f (p) = ε f (p)/ √ p for all primes p | N and integers ν 1, where ε f (p) ∈ {±1}.

  right of the contour L * v . After a change of variable s into 1 -s, we see that

  .10) and(3.11), and finally the asymptotic formula (3.2) by (3.5)-(3.7), (3.9) and (3.12).