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Abstract

Arc-annotated sequences are useful for representing
structural information of RNAs and have been ex-
tensively used for comparing RNA structures in both
terms of sequence and structural similarities. Among
the many paradigms referring to arc-annotated se-
quences and RNA structures comparison (see (Blin
et al. 2008) for more details), the most important one
is the general edit distance. The problem of comput-
ing an edit distance between two non-crossing arc-
annotated sequences was introduced in (Evans 1999).
The introduced model uses edit operations that in-
volve either single letters or pairs of letters (never
considered separately) and is solvable in polynomial-
time (Zhang & Shasha 1989).

To account for other possible RNA structural evo-
lutionary events, new edit operations, allowing to con-
sider either silmutaneously or separately letters of a
pair were introduced in (Jiang et al. 2002); unfor-
tunately at the cost of computational tractability.
It has been proved that comparing two RNA sec-
ondary structures using a full set of biologically rel-
evant edit operations is NP-complete. Nevertheless,
in (Guignon et al. 2005), the authors have used a
strong combinatorial restriction in order to compare
two RNA stem-loops with a full set of biologically rel-
evant edit operations; which have allowed them to de-
sign a polynomial-time and space algorithm for com-
paring general secondary RNA structures.

In this paper we will prove theoretically that com-
paring two RNA structures using a full set of biologi-
cally relevant edit operations cannot be done without
strong combinatorial restrictions.

Keywords: RNA structures, Longest Arc-Preserving
Subsequence (LAPCS), NP-Hardness, Stem-loops

1 Introduction

In computational biology, comparison of RNA
molecules has recently attracted a lot of interest due
to the rapidly increasing amount of known RNA
molecules, especially non-coding RNAs. Very of-
ten, arc-annotated sequences, originally introduced in
(Evans 1999), are used to represent RNA structures.
An arc-annotated sequence is a sequence over a given
alphabet together with additional structural informa-
tion specified by arcs connecting pairs of positions.
The arcs determine the way the sequence folds into a
three-dimensional space.
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The problem of computing an edit distance be-
tween two arc-annotated sequences was introduced
in (Evans 1999) with a model that used only three
edit operations (deletion, insertion and substitution)
either on single letters (letters in the sequence with
no incident arc) or pairs of letters (letters connected
by an arc). In this model, the two letters of an
arc are never considered separately, and hence the
problem of computing the edit distance between two
arc-annotated sequences becomes equivalent (when
no pair of arcs are crossing) to the tree edit dis-
tance problem, that can be solved in polynomial-time
(Zhang & Shasha 1989).

To account for other possible RNA structural evo-
lutionary events, new edit operations, such as cre-
ation, deletion or modification of arcs between pairs
of letters, were introduced in (Jiang et al. 2002) at
the cost of computational tractability. Indeed, it
has been shown in (Blin, Fertin, Rusu & Sinoquet
2007) that in case of non-crossing arcs, the prob-
lem of computing the edit distance between two arc-
annotated sequences under this model is NP-hard.
Playing the game of applying constraints either on
the legal edit operations or on the allowed alignments,
several papers have shed new light on the border-
line between tractability and intractability (Guignon
et al. 2005, Blin et al. 2008). Of particular impor-
tance, in (Guignon et al. 2005), the authors intro-
duced the notion of conservative edit distance and
mapping between two RNA stem-loops in order to de-
sign a polynomial-time algorithm for comparing gen-
eral secondary RNA structures using the full set of
biological edit operations introduced in (Jiang et al.
2002). This algorithm is based on a decomposition in
stem-loop-like substructures that are pairwised com-
pared and used to compare complete RNA secondary
structures. As mentionned in (Guignon et al. 2005),
whereas in the very restrictive case of conservative
distance and mapping, the computation of the gen-
eral edit distance is polynomial-time solvable, it is not
known if the general, i.e., not conservative, edit dis-
tance between two stem-loops can be also computed
in polynomial-time.

In this paper, we will show that this strong combi-
natorial restriction was necessary for the problem to
become polynomial since it is NP-hard in the general
case. Despite the fact that this result may be consid-
ered as purely theoretical, it proves that comparing
two RNA structures using a full set of biologically rel-
evant edit operations cannot be done without strong
combinatorial restrictions.

2 Preliminaries

Given a finite alphabet Σ, an arc-annotated sequence
is formally defined by a pair (S, P ), where S is a string
of Σ∗ and P is a set of arcs connecting pairs of letters
of S. In reference to RNA structures, letters are called



bases. Bases with no incident arc are called single
bases. In an arc-annotated sequence, two arcs (i1, j1)
and (i2, j2) are crossing, if i1 < i2 < j1 < j2 or i2 <
i1 < j2 < j1. An arc (i1, j1) is embedded into another
arc (i2, j2) if i2 < i1 < j1 < j2. Evans (Evans 1999)
(see (Guignon et al. 2005) for extensions) introduced
five different levels of arc structure: Unlimited – no
restriction at all; Crossing – there is no base incident
to more than one arc; Nested – there is no base inci-
dent to more than one arc and no two arcs are cross-
ing; Stem – there is no base incident to more than
one arc and given any two arcs, one is embedded into
the other; Plain – there is no arc. There is an obvi-
ous inclusion relation between those levels: Plain ⊂
Stem ⊂ Nested ⊂ Crossing ⊂ Unlimited. An
arc-annotated sequence (S1, P1) is said to occur in
another arc-annotated sequence (S2, P2) if one can
obtain the former from the latter by repeatedly delet-
ing bases (deleting a base that is incident to an arc
results in the deletion of the arc).

Among the many paradigms referring to arc-
annotated sequences (see (Blin et al. 2008) for more
details) we focus in this article on the Longest Arc-
Preserving Common Subsequence (Lapcs for
short) (Evans 1999, Jiang et al. 2004, Lin et al. 2002)
and the general edit distance (Edit for short) (Jiang
et al. 2002, Blin, Fertin, Herry & Vialette 2007).
Indeed, as shown in (Blin et al. 2008), those two
paradigms are quite related since the Lapcs problem
is a special case of Edit when considering the com-
plete set of edit operations defined in (Jiang et al.
2002). Therefore, the hardness results for Lapcs
stands for Edit.

Formally, the Longest Arc-Preserving Com-
mon Subsequence problem is defined as fol-
lows: given two arc-annotated sequences (S1, P1)
and (S2, P2), find the longest – in terms of se-
quence length – common arc-annotated subsequence
that occurs in both (S1, P1) and (S2, P2). It has
been shown in (Jiang et al. 2002) that the Lapcs
problem is NP-hard even for Nested structures,
i.e., Lapcs(Nested, Nested). Still focussing on
Nested structures, Alber et al. (Alber et al. 2004)
proved that the Lapcs(Nested, Nested) problem
is solvable in O(3k |Σ|k kn) time, where n is the
maximum length of the two sequences and k is the
length of the common subsequence searched for. The
O(3k |Σ|k kn) time parameterized algorithm by Alber
et al. is by brute-force enumeration: (i) Generate
all possible sequences of length k with all possible
Nested arc annotations, and (ii) For each of these
arc-annotated candidate sequences, check whether or
not it occurs as a pattern in both S1 and S2. At
the heart of this approach is the fact that it can
be decided in O(n k) time whether or not this se-
quence occurs as an arc-preserving common subse-
quence (Gramm et al. 2006). It is easily see that
the above algorithm reduces to O(23k−1 km) time for
Lapcs(Stem, Stem). Indeed, there exist |Σ|k se-
quences of length k and hence, for a given sequence
of length k, there exist

(

k
i

)

different arc-annotations

with i arcs. Therefore, there exist
∑⌊k/2⌋

i=0

(

k
2i

)

= 2k−1

arc-annotations of a given sequence of length k.
Here, we focus on the only remaining open prob-

lems concerning Lapcs and Edit over stem-loops by
showing, with a unique proof, their hardness. More
precisely, we prove that Lapcs(Stem, Stem) - which
may be considered as a very restricted problem and
thus not interesting - is NP-hard in order to infer
the NP-hardness of Edit(Stem, Stem) - which is for
sure, according to (Guignon et al. 2005), an interest-
ing problem that can be used in a very simple way to
compare complete RNA secondary structures. This

results also prove that in any future work on compar-
ing RNA structures with a full set of edit operations
it will be necessary to introduce strong combinatorial
restrictions in order to get an exact polynomial-time
algorithm since even with the simpliest model, the
general edit distance problem is still NP-complete.

3 Comparing RNA Stem-Loops is NP-
complete

In this section, we prove that Lapcs over stem-loops
(Lapcs(Stem,Stem)) is NP-complete (in Theorem
1); therefore answering an open question of (Guignon
et al. 2005). This last result induces the NP-hardness
of Edit over stem-loops.

Theorem 1. Lapcs(Stem,Stem) is NP-complete.

Corollary 1. Comparing RNA structures with a full
set of biologically relevant edit operations cannot be
done without introducing strong combinatorial restric-
tions.

In the following, we consider the decision version of
the problem which corresponds to deciding if there ex-
ists an arc-preserving common subsequence of length
greater or equal to a given parameter k′.

It is easy to see that the Lapcs problem is in NP.
In order to prove its NP− hardness, we define a re-
duction from the NP-complete 3SAT problem (Garey
& Johnson 1979) which is defined as follows: Given
a collection Cq = {c1, c2, . . . , cq} of q clauses, where
each clause consists of a set of 3 literals (representing
the disjunction of those literals) over a finite set of n
boolean variables Vn = {x1, x2, . . . , xn}, is there an
assignment of truth values to each variable of Vn s.t.
at least one of the literals in each clause is true?

Let (Cq, Vn) be any instance of the 3SAT problem
s.t. Cq = {c1, c2, . . . , cq} and Vn = {x1, x2, . . . , xn}.

For convenience, let L
j
i denote the jth literal of the

ith clause (i.e. ci) of Cq. In the following, given a
sequence S over an alphabet Σ, let χ(i, c, S) denote
the ith occurrence of the letter c in S.

We build two arc-annotated sequences (S1, P1) and
(S2, P2) as follows. An illustration of a full example
is given in Figures 1 and 2, where n = 4 and q = 3.
For readability reasons, the arc-annotated sequences
resulting from the construction have been split into
several parts and a schematic overview of the overall
placement of each part is provided.

Let S1 = C1
q WqC

1
q−1 . . . C1
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1
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1
MV1P

1
1 V2

P 1
2 . . . P 1
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2 . . . P 2
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q such that for all 1 ≤ i ≤

q, 1 ≤ k ≤ n,
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i QiR
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i QiX

1
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2 . . . X1
nQiR
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i QiR

1
i with

X1
k = xksjxk if xk = L

j
i or xk = L

j
i ; X1

k = xkxk
otherwise;
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1
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2
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+1 . . . X2

1

QiR
1
i X

2
1 . . . X2

n such that for 1 ≤ j ≤ 3,

χ(j, X2
k , C2

i ) = xkxksj (resp. sjxkxk) if xk = L
j
i

(resp. xk = L
j
i ); χ(j, X2

k , C2
i ) = xkxk otherwise;

• P 2
i = X2

n . . . X2
1R1

q+iQq+iX
2
n . . . X2

n

2
+1R

2
q+i

X2
n

2

. . . X2
1Qq+iR

3
q+iX

2
n . . . X2

1 with X2
k = xkxk.



Moreover, let S1
M = x1x1x2x2 . . . xnxn and S2

M =
x1x1x2x2 . . . xnxn. Notice that, by construction,
there is only one occurrence of each {s1, s2, s3} in C2

i .
For all 1 ≤ i ≤ q, let Qi (resp. Qq+i) be a seg-

ment of n + 1 symbols yi (resp. yq+i). Moreover,
for all 1 ≤ i ≤ q, let Wi (resp. Vi) be a segment of
20(max{q, n}2) symbols wi (resp. vi). Let us now
define P1 and P2.

For all 1 ≤ i ≤ q−1, (1) add an arc in P1 between
χ(1, xk, C1

i ) (resp. χ(1, xk, C1
i )) and χ(1, xk, P 1

i+1)

(resp. χ(1, xk, P 1
i+1)), ∀1 ≤ k ≤ n (see Figure 1.d

and 2.b); (2) add an arc in P2 between χ(j, xk, C2
i )

(resp. χ(j, xk, C2
i )) and χ((4 − j), xk, P 2

i ) (resp.
χ((4 − j), xk, P 2

i )), ∀1 ≤ k ≤ n (see Figure 1.c, 2.a

and 2.c); (3) add an arc in P2 between χ(1, R
j
i , C

2
i )

and χ(1, R
j
q+i, P

2
i ), ∀1 ≤ j ≤ 3 (see Figure 1.c, 2.a

and 2.c).
Clearly, this construction can be achieved in

polynomial-time, and yields to sequences (S1, P1) and
(S2, P2) that are both of type Stem. We now give an
intuitive description of the different elements of this
construction.

Each clause ci ∈ Cq is represented by a pair
(C1

i , C2
i ) of sequences. The sequence C2

i is composed
of three subsequences representing a selection mech-
anism of one of the three literals of ci. The pair
(S1

M , S2
M ) of sequences is a control mechanism that

will guarantee that a variable xk cannot be true and
false simultaneously. Finally, for each clause ci ∈ Cq,
the pair (P 1

i , P 2
i ) of sequences is a propagation mech-

anism which aim is to propagate the selection of the
assignment (i.e. true or false) of any literal xk all over
Cq. Notice that all the previous intuitive notions will
be detailed and clarified afterwards.

In the rest of this article, we will refer to any such
construction as a snail-construction. In order to com-
plete the instance of the Lapcs(Stem,Stem) prob-
lem, we define the parameter k′ = 40q(max{q, n}2)+
6qn + 8q + n which corresponds to the desired length
of the solution. In the following, let (S1, P1) and
(S2, P2) denote the arc-annotated sequences obtained
by a snail-construction. We will denote Sd the set of
symbols deleted in a solution of Lapcs problem on
(S1, P1) and (S2, P2) (i.e. the symbols that do not
belong to the common subsequence).

We start the proof that the reduction from 3SAT
to Lapcs(Stem,Stem) is correct by giving some
properties about any optimal solution.

Lemma 1. In any optimal solution of Lapcs problem
on (S1, P1) and (S2, P2), at least one symbol incident
to any arc would be deleted. Moreover, all the symbols
of Vi and Wi, for 1 ≤ i ≤ q, will not be deleted.

Proof. By contradiction, let us suppose that there
exist at least one arc s.t. the two symbols inci-
dent to this last are not deleted in a solution of
Lapcs problem on (S1, P1) and (S2, P2). Then, by
construction, it induces that at least one complete
sequence Vj or Wj , for a given 1 ≤ j ≤ q, has
been deleted. Since they have the same length,
we will consider w.l.o.g. afterwards that Vi has
been deleted. Therefore, since S1 is, by construc-
tion, smaller than S2 the length of this optimal so-
lution is at most |S1| − |Vj | =

∑q
i=1

(|C1
i | + |P 1

i | +
|Vi| + |Wi|) + |S1

M | − |Vj | =
∑q

i=1
((6n + 11) + (6n +

7) + (20(max{q, n}2)) + (20(max{q, n}2))) + 2n −
(20(max{q, n}2)) = q[12n + 18 + 40(max{q, n}2)] +
2n − (20(max{q, n}2)). Then, in order for this
solution to be optimal, one should have q[12n +
18 + 40(max{q, n}2)] + 2n − (20(max{q, n}2)) ≥

40q(max{q, n}2)+6qn+8q+n. This can be reduced
to 6qn + 10q− 20(max{q, n}2) + n ≥ 0. But, one can
easily check that for any n ≥ 3 (which is always the
case in 3SAT instances), this is not true; a contradic-
tion.

Lemma 2. Any optimal solution of Lapcs
problem on (S1, P1) and (S2, P2) is of length
40q(max{q, n}2) + 6qn + 8q + n.

Proof. By construction, in S1 there is (1) ∀1 ≤
i ≤ n, 2q + 1 occurrences of xi (resp. xi);
(2) ∀1 ≤ i ≤ q, 4 occurrences of Qi (resp.
Qq+i); (3) ∀1 ≤ i ≤ q, 1 occurrence of each
{R1

i , R
2
q+i, R

3
i , R

1
q+i, R

3
q+i, Wi, Vi, s1, s2, s3}; (4) ∀1 ≤

i ≤ q, 2 occurrences of R2
i .

Whereas, in S2, there is (1) ∀1 ≤ i ≤
n, 6q + 1 occurrences of xi (resp. xi); (2)
∀1 ≤ i ≤ q, 2 occurrences of Qi (resp.
Qq+i); (3) ∀1 ≤ i ≤ q, 1 occurrence of each
{R1

i , R
2
i , R

3
i , R

1
q+i, R

2
q+i, R

3
q+i, Wi, Vi, s1, s2, s3}.

Therefore, in any optimal solution there may be
only (1) ∀1 ≤ i ≤ n, 2q + 1 occurrences of xi
(resp. xi); (2) ∀1 ≤ i ≤ q, 2 occurrences of Qi
(resp. Qq+i); (3) ∀1 ≤ i ≤ q, 1 occurrence of each
{R1

i , R
2
i , R

3
i , R

1
q+i, R

2
q+i, R

3
q+i, Wi, Vi, s1, s2, s3}.

More precisely, by Lemma 1, and since, by con-
struction, there is an arc in P2 between χ(1, R

j
i , C

2
i )

and χ(1, R
j
q+i, P

2
i ), ∀j ∈ {1, 2, 3}, in any opti-

mal solution, ∀1 ≤ i ≤ q, only half of the
{R1

i , R
2
i , R

3
i , R

1
q+i, R

2
q+i, R

3
q+i} may be conserved.

Moreover, any xi (resp. xi) of S1 except in C1
q , is

linked by an arc to another xi (resp. xi), therefore
by Lemma 1, in any optimal solution, ∀1 ≤ i ≤ q− 1,
only half of the occurrences of xi (resp. xi) may be
conserved.

Finally, in any optimal solution, only half of the
occurrences of {xi, xi} and one over {s1, s2, s3} in C1

q

and S1
M may be conserved. Indeed, by construction,

if this is not the case in C1
q (resp. S1

M ), it implies that
at least one complete sequence Qq (resp. V1 or W1)
is totally deleted – which is not optimal since it is of
length n + 1 (resp. 20(max{q, n}2)).

On the whole, the maximal total length of any
solution is thus equal to 40q(max{q, n}2)+6qn+8q+
n. Moreover, this solution is composed of (1) ∀1 ≤ i ≤
n, 2q+1 occurrences of either xi or xi, (2) ∀1 ≤ i ≤ q,
2 occurrences of Qi and Qq+i, (3) ∀1 ≤ i ≤ q, 1
occurrence of each {Wi, Vi} and either s1, s2 or s3

and (4) ∀1 ≤ i ≤ q, R
j1
i , R

j2
i , R

j3
q+i s.t. {j1, j2, j3} =

{1, 2, 3}.

Lemma 3. In any optimal solution of Lapcs prob-
lem on (S1, P1) and (S2, P2), if χ(1, xk, S1

M ) (resp.
χ(1, xk, S1

M )) for a given 1 ≤ k ≤ n is deleted then,
∀1 ≤ j ≤ q, χ(1, xk, C1

j ) (resp. χ(1, xk, C1
j )) is

deleted.

Proof. By construction, ∀1 ≤ k ≤ n only one of
{xk, xk} may be conserved between S1

M and S2
M since

χ(1, xk, S1
M ) < χ(1, xk, S1

M ) whereas χ(1, xk, S2
M ) <

χ(1, xk, S2
M ). By Lemma 1, at least one symbol in-

cident to any arc is deleted. Therefore, ∀1 ≤ k ≤ n
only one of {xk, xk} may be conserved between C1

1

and C2
1 .

Let us suppose that for a given 1 ≤ k ≤ n,
χ(1, xk, S1

M ) is deleted. According to the proof of
Lemma 2, in any optimal solution, ∀1 ≤ k ≤ n exactly



Figure 1: Considering Cq = (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x4)∧ (x2 ∨x3 ∨x4). For readability, all the arcs have not
been drawn, consecutive arcs are representing by a unique arc with lines for endpoints. Symbols over a grey
background may be deleted to obtain an optimal LAPCS. a) A schematic view of the overall arrangement of
the components of the two a.a. sequences. b) Description of S1

M , S2
M , P 1

1 , P 2
1 and the corresponding arcs in

P1. c) Description of C1
1 , C2

1 , P 1
1 , P 2

1 and the corresponding arcs in P2. d) Description of C1
1 , C2

1 , P 1
2 , P 2

2 and
the corresponding arcs in P1.



Figure 2: Considering Cq = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4). For readability all the arcs have
not been drawn, consecutive arcs are representing by a unique arc with lines for endpoints. Symbols over
a grey background may be deleted to obtain an optimal LAPCS. a) Description of C1

2 , C2
2 , P 1

2 , P 2
2 and the

corresponding arcs in P2. c) Description of C1
2 , C2

2 , P 1
3 , P 2

3 and the corresponding arcs in P1. d) Description
of C1

3 , C2
3 , P 1

3 , P 2
3 and the corresponding arcs in P2.



one of {xk, xk} has to be deleted. Then χ(1, xk, P 1
1 )

is deleted whereas χ(1, xk, P 1
1 ) is conserved.

By construction, in P 2
1 , since according to the

proof of Lemma 2, both occurrences of Qq+1 and

R
j1
1 , R

j2
1 , R

j3
q+1 s.t. {j1, j2, j3} = {1, 2, 3} have

to be conserved, either (1) {R1
1, R

2
1, R

3
q+1}, (2)

{R1
1, R

3
1, R

2
q+1} or (3) {R2

1, R
3
1, R

1
q+1} are conserved.

Let us first consider that {R1
1, R

2
1, R

3
q+1} are con-

served. Then one can check that the only solution
is to conserve χ(2, R2

1, C
1
1 ) since otherwise at least

half of the xk’s would not be conserved. Conse-
quently, the only solution is to conserve, ∀1 ≤ k ≤ n,
the first (resp. last) occurrence of any xk or xk

in C2
1 (resp. P 2

1 ) – i.e. the occurrences appear-
ing before χ(1, Q1, C

2
1 ) (resp. after χ(2, Qq+1, P

2
1 )).

Since by construction, there is an arc between
χ(1, xk, C2

1 ) (resp. χ(1, xk, C2
1 )) and χ(3, xk, P 2

1 )
(resp. χ(3, xk, P 2

1 )), in order for χ(1, xk, P 1
1 ) to be

conserved, one has to conserved χ(3, xk, P 2
1 ). Thus,

by Lemma 1, χ(1, xk, C2
1 ) has to be deleted and, ac-

cording to the proof of Lemma 2, χ(1, xk, C2
1 ) has to

be conserved.
Let us now consider that {R1

1, R
3
1, R

2
q+1} are con-

served. By a similar reasoning, one can check
that the only solution is to conserve, ∀1 ≤ k ≤
n, the second occurrence of any xk or xk in C2

1

(resp. P 2
1 ) – i.e. the occurrences appearing between

χ(1, Q1, C
2
1 ) and χ(2, Q1, C

2
1 ) (resp. χ(1, Qq+1, P

2
1 )

and χ(2, Qq+1, P
2
1 )). Since by construction, there

is an arc between χ(2, xk, C2
1 ) (resp. χ(2, xk, C2

1 ))
and χ(2, xk, P 2

1 ) (resp. χ(2, xk, P 2
1 )), in order to

χ(1, xk, P 1
1 ) to be conserved, one has to conserved

χ(2, xk, P 2
1 ). Thus, by Lemma 1, χ(2, xk, C2

1 ) has to
be deleted and, according to the proof of Lemma 2,
χ(2, xk, C2

1 ) has to be conserved.
Finally, let us consider that {R2

1, R
3
1, R

1
q+1} are

conserved. Once again, by a similar reasoning,
one can check that the only solution is to conserve
χ(1, R2

1, C
1
1 ) since otherwise at least half of the xk’s

would not be conserved. Consequently, the only solu-
tion is to conserve, ∀1 ≤ k ≤ n, the last (resp. first)
occurrence of any xk or xk in C2

1 (resp. P 2
1 ) – i.e.

the occurrences appearing after χ(2, Q1, C
2
1 ) (resp.

before χ(1, Qq+1, P
2
1 )). Since by construction, there

is an arc between χ(3, xk, C2
1 ) (resp. χ(3, xk, C2

1 ))
and χ(1, xk, P 2

1 ) (resp. χ(1, xk, P 2
1 )), in order to

χ(1, xk, P 1
1 ) to be conserved, one has to conserved

χ(1, xk, P 2
1 ). Thus, by Lemma 1, χ(3, xk, C2

1 ) has to
be deleted and, according to the proof of Lemma 2,
χ(3, xk, C2

1 ) has to be conserved.
Therefore, in the three cases, if for a given 1 ≤ k ≤

n, χ(1, xk, S1
M ) is conserved then so does χ(1, xk, C1

1 ).
It is easy to see that, by a similar reasoning, if for a
given 1 ≤ k ≤ n, χ(1, xk, S1

M ) is conserved then so
does χ(1, xk, C1

1 ).
With a similar reasoning, by reccurence, since,

∀1 ≤ i ≤ q, 1 ≤ k ≤ n, there is an arc in P1 between
χ(1, xk, C1

i ) (resp. χ(1, xk, C1
i )) and χ(1, xk, P 1

i+1)

(resp. χ(1, xk, P 1
i+1)), if χ(1, xk, C1

i ) is conserved then

χ(1, xk, P 1
i+1) is deleted. And therefore, with similar

arguments, χ(1, xk, C1
i+1) is conserved. Once more, it

is easy to see that this result still holds if χ(1, xk, C1
i )

is conserved.

Theorem 2. Given an instance of the problem 3SAT
with n variables and q clauses, there exists a satisfy-
ing truth assignment iff the Lapcs of (S1, P1) and

(S2, P2) is of length k′ = 40q(max{q, n}2) + 6qn +
8q + n.

Proof. (⇒) An optimal solution for Cq = (x1 ∨ x2 ∨
x3)∧(x1∨x2∨x4)∧(x2∨x3∨x4) – i.e. x1 = x3 = true
and x2 = x4 = false – is illustrated in Figures 1 and
2 where any symbol over a grey background have to
be deleted. Suppose we have a solution of 3SAT, that
is an assignment of each variable of Vn satisfying Cq.
Let us first list all the symbols to delete in S1.

For all 1 ≤ k ≤ n, if xk = false then
delete, ∀1 ≤ j ≤ q, {χ(1, xk, C1

j ), χ(1, xk, P 1
j )}

and χ(1, xk, S1
M ); otherwise delete, ∀1 ≤ j ≤ q,

{χ(1, xk, C1
j ), χ(1, xk, P 1

j )} and χ(1, xk, S1
M ).

For each L
j
i satisfying ci with the biggest index j

with 1 ≤ i ≤ q,
if (1) j = 1 then delete {χ(1, R3

i , C
1
i ), χ(1, Qi, C

1
i ),

χ(1, R2
i , C

1
i ), χ(2, Qi, C

1
i ), χ(1, s2, C

1
i ), χ(1, s3, C

1
i ),

χ(1, R2
q+i, P

1
i ), χ(1, R1

q+i, P
1
i ), χ(3, Qq+i, P

1
i ),

χ(4, Qq+i, P
1
i )} (cf Figure 1.a);

if (2) j = 2 then delete {χ(1, R2
i , C

1
i ), χ(2, Qi, C

1
i ),

χ(1, s1, C
1
i ), χ(1, s3, C

1
i ), χ(3, Qi, C

1
i ), χ(2, R2

i , C
1
i ),

χ(2, Qq+i, P
1
i ), χ(1, R3

q+i, P
1
i ), χ(1, R1

q+i, P
1
i ),

χ(3, Qq+i, P
1
i )} (cf Figure 2.a);

if (3) j = 3 then delete {χ(1, s1, C
1
i ), χ(1, s2, C

1
i ),

χ(3, Qi, C
1
i ), χ(2, R2

i , C
1
i ), χ(4, Qi, C

1
i ), χ(1, R1

i , C
1
i ),

χ(1, Qq+i, P
1
i ), χ(2, Qq+i, P

1
i ), χ(1, R3

q+i, P
1
i ),

χ(1, R2
q+i, P

1
i )} (cf Figure 2.c);

Let us now list all the symbols in S2 to be deleted.
For all 1 ≤ k ≤ n, if xk = false then delete

χ(1, xk, S2
M ); otherwise delete χ(1, xk, S2

M ).

For each L
j
i satisfying ci with the biggest index j

with 1 ≤ i ≤ q,
if (1) j = 1 then delete ∀1 ≤ k ≤ n {χ(1, R3

i , C
2
i ),

χ(1, s2, C
2
i ), χ(2, xk, C2

i ), χ(2, xk, C2
i ), χ(1, s3, C

2
i ),

χ(3, xk, C2
i ), χ(3, xk, C2

i ), χ(1, xk, P 2
i ), χ(1, xk, P 2

i ),
χ(1, R1

q+i, P
2
i ), χ(1, R2

q+i, P
2
i ), χ(2, xk, P 2

i ),

χ(2, xk, P 2
i )}. Moreover, if xk = false with

1 ≤ k ≤ n then delete, {χ(1, xk, C2
i ), χ(3, xk, P 2

i )};
otherwise delete
{χ(1, xk, C2

i ), χ(3, xk, P 2
i )} (cf Figure 1.a);

if (2) j = 2 then delete ∀1 ≤ k ≤ n {χ(1, R2
i , C

2
i ),

χ(1, s1, C
2
i ), χ(1, xk, C2

i ), χ(1, xk, C2
i ), χ(1, s3, C

2
i ),

χ(3, xk, C2
i ), χ(3, xk, C2

i ), χ(1, xk, P 2
i ), χ(1, xk, P 2

i ),
χ(1, R1

q+i, P
2
i ), χ(1, R3

q+i, P
2
i ), χ(3, xk, P 2

i ),

χ(3, xk, P 2
i )}. Moreover, if xk = false with

1 ≤ k ≤ n then delete, {χ(2, xk, C2
i ), χ(2, xk, P 2

i )};
otherwise delete
{χ(2, xk, C2

i ), χ(2, xk, P 2
i )} (cf Figure 2.a);

if (3) j = 3 then delete ∀1 ≤ k ≤ n {χ(1, R1
i , C

2
i ),

χ(1, s1, C
2
i ), χ(1, xk, C2

i ), χ(1, xk, C2
i ), χ(1, s2, C

2
i ),

χ(2, xk, C2
i ), χ(2, xk, C2

i ), χ(2, xk, P 2
i ), χ(2, xk, P 2

i ),
χ(1, R2

q+i, P
2
i ), χ(1, R3

q+i, P
2
i ), χ(3, xk, P 2

i ),

χ(3, xk, P 2
i )}. Moreover, if xk = false with

1 ≤ k ≤ n then delete, {χ(3, xk, C2
i ), χ(1, xk, P 2

i )};
otherwise delete
{χ(3, xk, C2

i ), χ(1, xk, P 2
i )} (cf Figure 2.c);

By construction, the natural order of the symbols
of S1 and S2 allows the corresponding set of undeleted
symbols to be conserved in a common arc-preserving
common subsequence between (S1, P1) and (S2, P2).
Let us now prove that the length of this last is k′.
One can easily check that this solution is composed
of ∀1 ≤ k ≤ n, (1) 2q + 1 occurrences of either xk
or xk, (2) ∀1 ≤ i ≤ q, 2 occurrences of Qi and Qq+i,
(3) ∀1 ≤ i ≤ q, 1 occurrence of each {Wi, Vi} and



either s1, s2 or s3 and (4) ∀1 ≤ i ≤ q, R
j1
i , R

j2
i , R

j3
q+i

s.t. {j1, j2, j3} = {1, 2, 3}. Thus, the length of the
solution is 40q(max{q, n}2) + 6qn + 8q + n.

(⇐) Suppose we have an optimal solution – i.e. a
set of symbols Sd to delete – for Lapcs of (S1, P1)
and (S2, P2). Let us define the truth assignment of

Vn s.t., ∀1 ≤ i ≤ q, if χ(1, sj, C
1
i ) 6∈ Sd then L

j
i is

true. Let us prove that it is a solution of 3SAT.
By construction, if L

j
i = xk (resp. xk) then in C1

i ,
sj appears between xk and xk whereas in C2

j it ap-

pears after xk (resp. before xk). Thus, if χ(1, sj, C
1
i )

is not deleted then xk (resp. xk) in C1
i is deleted if

L
j
i = xk (resp. xk). Consequently, according to the

proof of Lemma 3, if χ(1, sj , C
1
i ) is not deleted then

xk (resp. xk) in all C1
i′ , with 1 ≤ i′ ≤ q is deleted

if L
j
i = xk (resp. xk). Therefore, we can ensure

that one cannot obtain L
j
i and L

j′

i′ being true whereas

L
j
i = L

j′

i′ (that is a variable cannot be simultaneously
true and false). By Lemma 2, we can ensure that for
any 1 ≤ i ≤ q exactly one of {s1, s2, s3} is conserved
in C1

i . Therefore, for any clause ci at least one of its
literal is set to true. This ensures that our solution is
a solution of 3SAT.

4 Future work

From a computational biology point of view, espe-
cially for comparing stems, one may, however, be
mostly interested in the case k (length of the com-
mon subsequence searched) might not be assumed to
small compared to n. A first approach is provided in
(Alber et al. 2004) where it is proved that, given two
sequences of length at most n and nested arc struc-
ture, an arc-preserving common subsequence can be
determined (if it exists) in O(3.31k1+k2 n) time; ob-
tained by deleting (together with corresponding arcs)
k1 letters from the first and k2 letters from the second
sequence. Improving the running time of the param-
eterization in case of stem arc structures appears to
be a promising line of research.
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