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Elastoplastic behavior identification for heterogeneous
loadings and materials

F. Latourte, A. Chrysochoos, S. Pagano, B. Wattrisse

Abstract

Image processing techniques give access to full field measurements of different thermome-
chanical data (strain, strain-rate [1], temperature [2], ...). These techniques have become
more and more useful for obtaining a fine and local description of material properties. As
they allow to measure complete thermal and mechanical fields, they can be used to identify
several parameters of the constitutive equations during a single deformation process using
specifically designed heterogeneous tests [3].

In [4], surface strain fields obtained by Digital Image Correlation were used to identify the
distribution of elastic parameters and stress fields by minimizing a given energy functional.

In this paper, the previous method is improved by a relevant choice for stress approxi-
mation, and then extended to a wider class of elastoplastic materials. Its reliability is then
checked through applications on simulated data obtained under small perturbations and plane
stress assumptions. In particular, the robustness of the method with respect to measurement
noise is studied on the basis on numerical data. An experimental application to heterogeneous
material identification is, finally, proposed.

1 Introduction

During standard mechanical tests (simple tension, simple shear), the response of the specimen
gauge part is generally associated with the material response. Nevertheless, the unavoidable
defects of experimental set-up, of sample geometry or of the material may result in a heterogeneous
response of the gauge part. In order to take this matter of fact into account, mechanical tests are
now often coupled with full field measurement techniques (displacement, strain, temperature,. . .)
that better reflect the local behavior of the material.

The work presented hereafter aims at capitalizing on the richness of data provided by these
techniques to locally identify the material properties during mechanical tests. The identification
of material properties from field measurements is a particularly active research area that has
lead to the development of various approaches, with some of the most widespread being : the
Finite Element Model Updating method [5], the Virtual Field method [6], or the Equilibrium Gap
Method [7].

A variational method due to Kohn et al. [8], initially developed for the identification of electrical
conductivities was extended to the identification of both elastic parameters and stress distribution
by writing a functional expressing the constitutive equation gap [4]. In this paper, we generalize
this latter approach to the case of elasto-plastic materials with linear kinematic hardening in the
context of a small perturbations hypothesis and plane stress assumption for quasi-static loadings.
The displacement fields are provided by the Digital Image Correlation (D.I.C.) method detailed
in [1].

In a first part, we present the theoretical backgrounds and the numerical implementation of
the identification procedure. In the second part, the performances of the method are tested on
the basis of numerical data corresponding to a tensile test performed on a bi-material sample. We
will particularly focus on its ability to catch the material interfaces and check its robustness with
respect to measurement noise. Finally, we discuss the results of an identification of a kinematic
elastoplastic model carried out on experimental data obtained in a similar situation.



2 Identification procedure

The material behavior is locally identified from in plane displacement distributions obtained by
D.I.C. In the most general case, these surface measurements do not allow to identify material
properties on a whole volume. For that reason, we restrict our attention to thin flat samples for
which the plane stress assumption remains realistic. For each deformation increment, the local
measurements of three in-plane strain components allow us to locally determine three material
parameters at the most. Here, we introduce the framework chosen to state and solve the identifi-
cation problem associated with an elastoplastic behavior with positive hardening under the small
perturbation hypothesis.
This model is expressed as follows [9]:

o = Ae—¢gp) (1)
fle.X) = (6—=X)ir—00<0 (2)
& = g Q
X = Zke, (4)

where A, is the elasticity tensor, o the stress, € the strain, €, the plastic strain, v the plastic
multiplier, f is the yield function, oy the yield stress, X the backstress and k& the hardening
modulus. (+);; stands for the von Mises norm.

2.1 Theoretical backgrounds

For a sequence of successive loadsteps, the in-plane displacement field u* is measured on a given
region of interest ) of a specimen. The overall forces R; are given on some parts I'; of the boundary
of Q and the stress-free parts I'; are such that I'; UT'; = 0Q and I'; N I'; = @. The density of the
volume force f is here considered to be equal to zero.

Starting from an experimental set of images, it seems particularly promising to use two different
descriptions of the mechanical problem, one based on the total displacement field u*, which is re-
ferred to here as "standard formulation" and another one referred to as "incremental formulation",
based on an incremental displacement field Au* between two images:

Standard formulation Incremental formulation

dive=0 in{ (5) div Ac =0 in Q (8)

o = Ae(u’) inQ (6) Ao = A’ ¢(Au*) inQ 9)
R, = fl“i o-nds ) AR, = fr Ao -n ds (10)
o-n=0 only Aoc-n=0 onl}

where A® and A? stand for the secant and tangent stiffness tensor respectively, o and Ao rep-
resent the stress field and the incremental stress field respectively, and e(u*) and e(Au*) are the
strain related to the measured displacement and to the incremental one, respectively. An additive
decomposition of the strain tensor into an elastic and a plastic part is assumed in the following.
For a linear kinematic model, the tensors A* and A? can be expressed directly as a function of the
material parameters and of the loading history (cf. section 2.2.3). A couple (A®, o) is a solution
to the standard identification problem if it satisfies the equilibrium equation (5), the constitutive
equation (6) and the global equilibrium (7). Respectively, a couple (A?, Ag) is a solution to the
incremental identification problem if it satisfies equations (8, 9, 10), where AR, represents the
reaction increment on the boundary T;.



2.1.1 Defining a constitutive equation gap functional

Our elastoplastic identification problem is to characterize the mechanical behavior within the
domain. Inside the elastic domain, the behavior can be described by an elastic stiffness matrix B,
obtained either by the "standard" or the "incremental formulation". Indeed, from a theoretical
point of view B, = B = B!, where B¢ is the elastic secant tensor and B! the elastic tangent
tensor.

Once plasticity occurs, the history-dependent behavior can be described either by a plastic
tangent matrix B;, or by a plastic secant matrix B; both depending on the plastic parameters
associated with the model chosen. As will be shown later, the "standard formulation" is used to
obtain Bf or Bf while the "incremental formulation" allows to identify either B! or B}, or to
check the presence of elastic unloadings.

We associate the constitutive equation gap functional F to the "standard formulation" and
the functional G to the "incremental formulation":

F(r,BY) = %/Q(T CBie(u)T B (r— B e(u)) dO (11)
G(AT,B!) = %/ (Ar—B':e(Au’)) B (AT — B! ig(Au))d2  (12)
Q

The two stress fields 7 and A7 belong respectively to spaces Yqgm and A gm:

Yadm = {7 regular and symmetric satisfying the eqs. (5) and (7)} (13)
AYoam = {AT regular and symmetric satisfying the egs. (8) and (10)} (14)
Under the plane-stress assumption and using engineering notations, let £ be the admissible

elastic stiffness tensor space and, in the case of positive hardening, &, the admissible plastic stiffness
tensor space:

& = {Bce (EOO(Q))gyX,f’L ; B;; piecewise linear, B, non negative definite} (15)
& = {B, € (£>(Q)*?;B;; piecewise linear, B, non negative definite } (16)

2.1.2 Stating a minimization problem

The following properties of the functional F, demonstrated in [4] are the key of the extended
identification procedure:

(i) F(r,B%) > 0, V(T,B) € Zagm ¥ &
(i) 7(r,B;)

0 <(6) is true with o = 7 and A% = B¢
(iii) The functional F is convex on Xgdm X &e

These properties also hold true for the functional G(Ao, B!) with (Ao, B) € (AXudm, &e). They
also apply to the plastic secant functional (F (o, B;) with (o, B;) € (Xaam,&p)) and to the plastic
tangent functional (G(Ac, Bl) with (Ao, Bl) € (AXadm,&p)). For each secant or tangent behav-
ior, the identification problem is thus equivalent to a minimization of the corresponding functional.
Based on these properties, an adapted numerical strategy is developed in the next paragraph.

2.2 Numerical implementation

The first step of the numerical minimization of the functionals F and G is to build a finite element
method allowing an appropriate description of displacement, stress, and material properties in
the Q domain. Using a finite element formulation, it becomes easy to compute the integrals
defining the functionals F and G. Equations (13) and (14) show that 7 and A7 do not depend
on displacement and, consequently, three specific finite element formulations can be adopted for
stress, displacement, and material properties fields. Using independent stress and displacement
elements constitutes a particularity of this approach compared with the classical finite element
methods applied to direct problems.



2.2.1 Finite Element Description
Stress interpolation

The stress field solution has to satisfy the local equilibrium (eq. 5 or eq. 8). To enforce this
constraint, a first method consists in using Lagrange multipliers. The two major drawbacks of
this method both are : the size of the system largely increases while its conditioning deteriorates.

To decrease the number of Lagrange multipliers and to render the stress computation more
straightforward, we choose a stress formulation based on naturally equilibrated Airy functions
[10]. On each stress element, the Airy potential takes the polynomial form :

3 3
y) =YY ayz'y (17)

i=0 j=0

In accordance with this choice, the 3 stress components are :

3 3
Tae(@,y) =0, = 3> (i — Daga'y (18)
=0
3

Tyy(T,9) =0, = i(i — Vaz' 2y (19)
i=2 j=0
3 3
Tay(m,y) =—¢,, ==Y ijagz' "ty ™! (20)
=1 j=1

(21)

Displacement interpolation

Once stress interpolation is chosen, interpolation of the displacements must be defined. We have
chosen the Q29 element, constituted of 9 displacement nodes, and associated with a quadratic
strain generating, via the constitutive equation, a quadratic stress Be(u*) close to the stress =
given by the Airy potentials. This element constitutes a good compromise between complexity of
formulation and richness of strain description.

Material coefficients interpolation

Finally, the material properties are considered to be constant within each element. Nevertheless,
we have the possibility to define sets of elements with equal material properties. This possibility
is particularly interesting when several extended homogeneous material zones coexists in (2.

Naturally, the stress, the displacement, and the material elements have the same geometrical
support. For the moment, our meshing procedure is dealing with simple geometries, where elements
are rectangular, but an extension to more general meshes is envisaged.

The functionals F and G can then be computed and minimized using these finite element
descriptions. The convexity of these functionals makes the use of a relaxation method particularly
relevant. This method consists in minimizing successively the functionals over their first and
second variables respectively. It requires measured displacement fields, measured reactions, and an
a priori information relative to the stress-free boundaries available. Naturally, stress minimization
and material minimization are performed alternatively until convergence occurs. Convergence is
checked by comparing both the material parameters and the stress between the two last iterations.
The convex properties of the functionals ensure the existence of a solution for each of the two
minimization problems.



2.2.2 First minimization : computation of the stress field

For both elastic and plastic loadings, the same method is used to compute stress or stress incre-
ment, in order to simplify the stress computation procedure (¢f. "stress minimization" in Figure
1).

In all situations, minimizing F or G over the stress is equivalent to solving the KU = F' system,
where U is the nodal Airy potential vector containing the values (¢, g—‘;’, g—‘;, gjg’y) at each node,
K is the Hessian of F or G over U and F is the gradient of F or G over U computed at the
point U = 0. The constraints corresponding to observations at the boundary (eq. 7 or 10) are
superimposed to this system using Lagrange multipliers.

For fine meshes, the KU = F linear system is large and often badly conditioned (due to the
Lagrange multipliers used to impose a global equilibrium), which justifies the use of a conjugate
gradient algorithm.

2.2.3 Second minimization : computation of the material properties distributions

In our strategy, the elastic properties are determined once and for all during the first loading steps,
then the plastic parameters are computed considering the subsequent loading steps. The next two
paragraphs focus on the computation of the elastic and plastic material coefficients.

Elastic material properties computation

At the most, three local material coefficients can be determined. We choose to identify cubic
or isotropic elastic models here. The elastic tensor B, can be computed indiscriminately by the
standard or the incremental formulation. The minimization of F or G over B, is explicit and
leads directly to the two or three elastic coefficients of the chosen model (¢f. Figure 1). The
following description only deals with the "standard formulation", but can be directly adapted to
the incremental one.

The minimization algorithm is presented in Figure 1. It requires an initial value By of the
elastic matrix. As there is no influence of the initial guess on the obtained solution, due to the
convex properties of F, By is chosen arbitrarily. Naturally, bad initial guesses may extend the
computational time.

The step called "elastic material characterization" corresponds to the local estimation of the
elastic matrix B.. Note that two situations may occur in this latter step, depending on the mean
equivalent strain ||e|| on the considered element :

e if ||| is too small compared with the maximal equivalent strain €,,,, on the whole 2
domain (i.e. % < 6. where 0. is a threshold criterion on the strain), we consider that the
deformation energy is too small to allow a robust identification of the material properties.
Then, a substitution procedure is applied where the elastic matrix of the considered element
is replaced by the homogenized B, on a chosen subdomain of . It is important to note
that even if the elastic properties of the substituted zones do not perfectly match the real
ones, the corresponding error does not affect the stress computation because these zones are

almost unstrained, and their weight in the overall deformation energy is therefore very small.

e If the local deformation is sufficient ( ||€|\‘ > ) then the elastic matrix B, is computed by

E?‘nal
minimizing F (7, B.) with respect to B..
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Figure 1: Algorithm used to compute the elastic properties

Plastic material properties computation

Concerning anelastic behavior, we restrict our attention to an elastoplastic model with isotropic
kinematic hardening associated with a von Mises criterion. Two plastic parameters are identified
locally: the kinematic hardening modulus k£ and the yield stress og.

Oy L ntl
. — 1
n-1 ,/I [Bp]n+]
Br\ /,’
e T /\ BS
/By,
& N
€

Figure 2: Simple diagram (o, €) corresponding to the elastoplastic model.

Denoting A~y the plastic multiplier increment, we express the elastoplastic secant tensor Aj
and the tangent tensor Al at the step n according to [11]:

. Ay, (00) -
As = A7l —»VV p 22
Ak = A ) )
t _ s o Nn ® Nn

where NN, is a vector linked to the normal to the load surface, 3, is a scalar characterizing the
hardening, and P is a mapping matrix. Their definition is given in the following equations:



2 2 En Py
N, M), PG 25)

(TP [As] P,

Ay = %(@%—1) (26)

where
§n = é(a - Xp-1)
n - 1—|—%A’}/k n n—1
X, = — (x4 Avke
T xZagk O TR
o = (on—Xn 1) Ploy,—Xn 1)
1 2 -1 0
0 0 6

For the first plastic step (i.e. step n in Figure 2 ) it is common to write a secant formulation
of the plastic problem.

Remark 1 The three equations obtained by computing the gradient of F over Aj are dependent
and do not allow to identify both k and oo on a single loading step.

Consequently, an iterative algorithm involving two successive plastic loading steps denoted n
and n + 1 have been carried out. Since all the minimization steps are now detailed, the next
paragraph will focus on the description of the specific elastoplastic algorithm.

2.2.4 Resolution algorithm

As mentioned previously, the reference elastic tensor, noted B, is obtained on the first loading

step. Then, on each following loading step, noted n, a procedure named "comparison procedure",
presented in Figure 3, aims at comparing a local tangent elastic tensor [BY] ~with the reference
elastic tensor BL. [B!] is obtained by minimizing G(7,,[B!] ) on the load increment n using

the following input data : the reaction increment [AR;] and the incremental displacement field
[Au*], . This procedure is only applied to the most strained elements for which l?—ﬂ > .. For

the less strained elements, it is assumed that no local plasticity occurs and [B!]
reference elastic tensor BY.

,» is equal to the

measurements | [ ; H B! n—B;
[8R),, [av7, [ LG Gy () %> 5, 7
YES °
= test ﬂ25 ? R _ No| YES
on each element =" No | €lastic ]
loading or elastoplastic
unloading algorithm

Figure 3: Initialization of the plastic computation



The elements where the comparison procedure detects any changes in the local stiffness tensor

B!| —B”

(i.e. % > dp) are assumed to be plastic, and an elastoplastic algorithm (¢f. Figure 4)
allows to identify separately the two plastic parameters k and oy. Moreover, this procedure allows

to discriminate the elastically unloaded zones of the specimen from the plastically loaded ones

that can be observed under certain conditions (Liiders bands, necking, ...).
determination of k
lastic initializati || measurements
astic initiatization | ©n=t i t
’ el (G 8t Bl) 7] AR, (AU,
Go = (TrH)n T
Alnin(g(ATIH[Bp[]n)) determination of o, | measurements
T,k . ;
1 mln(T(Tn’ [Bps]n)) [Ri]n [u ]11
T %o
measurements >
convergence:
[ARi]n ’ [AU*]” NO YES
(k, op)

Figure 4: elastoplastic algorithm

In the first step of the elastoplastic algorithm presented in Figure 4, named "plastic initializa-
tion", we assume that oy = (7,—1) 17 where ();; stands for the von Mises norm. Thus, we compute
an approximative hardening modulus k by minimizing G(A7,, [B}] ), where [B}] stands for the
plastic tangent modulus at the step n, depending on k. This minimization requires measures of the
reaction increment [AR;], and the incremental displacement field [Au*], . The goal of this initial-
ization procedure is to obtain an approximation of the backstress X,, at step n needed in the first
step of the iterative algorithm named "determination of k", the second step being "determination
of ag".

e "determination of k" : we minimize G(ATy41, [BY] s1)» Where [B;,]nJrl stands for the
plastic tangent modulus at the step n+ 1, depending on k. This minimization requires some
measurements inputs (the reaction increment [AR;],  ,, the incremental displacement field
[Au*], . ), and the backstress X,, previously computed.

e "determination of oo" : this consists in minimizing F(7,, [B] ), where [Bs] . stands for the

plastic secant modulus at the step n, depending on oy. This minimization also requires some

measurements inputs (the reaction [R;],, the displacement field [u*], ), and the previously

estimated value of k.

3 Applications

In this part, both numerical and experimental results are presented. In a first instance, the method
is tested on the basis on simulated data given by the resolution of a direct problem. Note that the
meshes used for direct computation and identification are always different, the finest being always
the one used for the direct finite element computation, in order to minimize errors on the direct
problem over errors due to the identification method.

In order to characterize the spatial resolution of the method, we decided to work on a composite
specimen made of two different materials. As the solution to inverse problems are known to be
very sensitive to small perturbations on the input data [12], we illustrate the robustness of this
method by studying its sensitivity study to a superimposed noise on this composite specimen.

Finally, results obtained experimentally on a similar configuration are presented.



3.1 Numerical identification on a bi-material composed sample

§ ’7 60 mm 4‘ K oot
il o
§ S v (= oo
e e, Kiw, -
\ (a) numerical simulation ; (b) [l on Qs

Figure 5: Description of the test (a) and equivalent plastic strain plotted with the mesh of the
identification method (b).

A tensile test on a bi-material sample is simulated for the loading conditions shown in Figure
5a. This simulation by a 2D F.E.M. uses 90 x 60 Q1 elements. The loaded barrel is made of
two material zones. The € zone is purely elastic and the Q5 zone, less stiff, is elastoplastic with
linear kinematic hardening. This test is highly penalizing due to strong strain gradients in the
vicinity of the interface. The objective here is to test the performance of our method in presence of
material heterogeneities. Identification has been performed for an ideal configuration, where the
boundary between material domains €2 and €25 is coincident with the meshing of the identification
procedure.

3.1.1 Noise sensitivity in elasticity

The robustness of the method is, in a first step, tested for the elastic identification. The mesh of
the identification method uses 20 x 20 material zones corresponding to 41 x 41 displacement nodes.
A Gaussian white noise is added to the assumed-to-be-exact displacements obtained by the direct
F.E.M. computation. Denoting (e1,€2,€3) = (€za,Eyy, Exy), We define a noise ratio rypeise on the
strain:

Supq,

€i (u;kv,oisy) — & (u:ef)‘

Tnoise = ir—rﬁaxg( (27)
- Supgq

eilut,)|

where ¢; stands for the i** component of the strain. The strain component may be derived either
from the displacement uj, , issued by direct F.E.M. computation, or by noisy displacement uy,;,, -
The sensivity study has been performed for a r,,:se ratio varying from 0 to 50%. The maximum
ratio rpoise is associated with a peak-to-peak noise amplitude of 4 x 10~ on strain measurement,
which is two times higher than the experimental resolution on strain measurement [1]. The evolu-
tions of the absolute error on the identification of the parameters E et v using an isotropic elastic
model are progressive (¢f. Figure 6). The maximal error is worth 20 GPa for Young’s modulus,
which gives a relative error inferior to 20%. For the Poisson ratio, the maximal error is worth 0,07
i.e. a 24% relative error.
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Figure 6: Absolute errors associated with the local determination of material parameters: maximal
gap (1), mean error + standard deviation (2), mean error (3) , mean error - standard deviation
(4), minimal gap (5)

Figure 7 represents a 3D-surface of the identified Young modulus for the maximal noise ratio

Tnoise = D0%, it is noticeable that the boundary is perfectly located and this step-like surface
reflects perfectly the real hehavior of the barrel even if small nertubations can be observed.

GPa

200+

150+

T L
T e 7 2
z=

100+

Figure 7: Young modulus identified from noisy data with 7p0ise = 50%

3.1.2 Plastic parameter distributions

First, we present some results obtained from displacements directly given by simulation without
superimposing any noise. The material parameters are, again, identified on 20 x 20 material zones.
The barrel does not plastify uniformly over €2 : the 2; domain remains elastic and the plasticity
heterogeneously develops over Qs (cf. Figure 5b). The values of criteria d. and dp are 5% for both.
Using these criteria, plasticity is only identified on the elements located within the Qs domain.
Consequently, and as the interface between the material zones is coincident with the meshing of
the identification method, the interface between 2; and €2, is perfectly attained.

Figure 8 illustrates o, tensile stress distributions at the end of the first plastic step. The
stress presented in Figure 8a is obtained by solving the direct problem, whereas the one given in
Figure 8b has been identified by the inverse method. We notice a good similarity between the
distributions, and the orders of magnitude for this stress component. In particular, the stress
gradients are correctly transcribed in the neighborhood of the interface.

10
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Figure 8: Comparison for the first plastic step (step n = 2) between the tensile stress component
given by the direct computation and the same component given by the identification method.

Figure 9 illustrates the distribution of the identified plastic parameters. We clearly observe that
the identification error on the two parameters is not randomly distributed. It is more important
in the elements where plastic strain is small and where the strain gradients are important.

On the hardening modulus %, the maximum error observed is 23%, corresponding to 2.3 GPa
that is comparable with the error obtained on Young’s modulus identification when no noise is
added on the data (c¢f. Figure 6a). The maximum error on o is 14% (¢f. Figure 9b).

The presence of strain gradients is an important source of errors of identification. As the mesh
used for identification is coarser than the one used for the direct computation, it does not render
the stress distribution properly in the vicinity of the interface.

Another error source may result from direct computation, which may be less accurate in the
case of non-linear problems.

'

(a) error on k in % (b) error on gy in %

Figure 9: Relative errors in determining the plastic parameters plotted on 5 only (elements in
the 1 domain are not represented because they are not identified as plastic).

11



3.1.3 Noise sensitivity in plasticity
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Figure 10: Relative errors in determining the plastic parameters identified from noisy data
(Tnoise = 25%)

A noise sensitivity study similar to the one performed in the elastic case has been performed for
the simulation already presented in Figure 5. On each loading step, a Gaussian white noise is
added to the simulated displacement increment. To facilitate a comparison with the elastic study,
we adopt the following definition of the noise ratio r,4;se:

ei(Au),,,) — si(Aur,)|

:Loisy)

si(duy,,)|

Supq

Tnoise = ir—nlax?)( (28)
B Supqo

On each loading step (elastic step, and plastic n and n+1 steps) we add a displacement field related
to similar 7,0;se ratio ranging from 0 to 50%. Thus, the plastic identification starts from an elastic
set of parameters identified with noisy data. The corresponding error on the elastic parameters
used as inputs in the plastic identification is given in Figure 6. In Figure 10, we observe that the
error distribution on the identified parameters shows a similar pattern as the one corresponding to
"perfect" data. To isolate the influence of superimposed noise from this systematic bias, we have
chosen to represent (cf. Figure 11) the differences between the values identified using noisy and
"perfect" data. The error associated with superimposed noise is randomly distributed (its mean
value remains close to zero) and the standard deviation increases linearly with noise amplitude,
as observed in the elastic case.

GPa MPa
Ap - O e
.
kd —-2
2 N 20
-4
of ek
0 .
_2 -
() -40 ()
0 25 50 Trgise (70) 0 25 50 Toise (70)
(a) hardening modulus & (b) yield stress og

Figure 11: Errors relative to the local determination of material parameters: maximal gap (1),
mean error + standard deviation (2), mean error (3) , mean error - standard deviation (4), minimal

gap (5).
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3.2 Experimental identification
3.2.1 Description of the specimen and its material properties

The experiment presented in this part was chosen to reproduce the previous numerical simulation.
The sample is a thin flat dog-bone specimen machined in a 2.5 mm thick plate of DP60 steel. The
bimaterial behavior is artificially recreated by a thickness variation : the thickness of the zone
where z € [—28 mm, 0] was symmetrically reduced to 0.8 mm (c¢f. Figure 12).

In the identification procedure, thickness is supposed to be constant on the whole specimen
(i-e. 0.8 mm). Thus we expect to identify the reference properties in the thin zone, and properties
of a stiffer material in the thicker zone.

Figure 12: Shape of the specimen (dimensions in mm)

The Q identified zone consists of a square (20 mm x 20 mm) centered on the specimen meshed
by 10 x 10 square elements. We assume the existence of a plane stress state, neglecting the out-
of-plane effects induced by the thickness discontinuity. Any triaxial effects in the vicinity of the
discontinuity would naturally affect the identified parameters.

A preliminary tensile test on a specimen of the same steel, the same geometry but with a
constant, thickness of 2.5 mm has been performed to obtain the reference elastoplastic properties
of the material. The stress-strain diagram corresponding to this test is presented in Figure 13.
The first linear part of the diagram allows to identify the elastic parameters (E = 207 GPa,
v = 0.27). From this diagram, we obtain the following parameters of the elastoplastic model :
k =5 GPa, 09 = 370 MPa. On this material, the first stages off the hardening are rather non-
linear, and the values of the plastic parameters associated with a linear kinematic hardening will
be very dependent with respect to the strain levels for which the identification is performed. For
that reason, we have located, in Figure 13, the three strain levels used to determine the reference
plastic parameters.

The local identification method is carried out on the bimaterial sample for three strain levels.
These levels are obtained by matching the maximal local strain on the identified domain with the
isolated strain level on the diagram of the homogeneous tensile test.
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Figure 13: Stress-strain diagram of a simple tensile test on DP60 steel

The displacement measurement given by D.I.C. is filtered using calibrated splines and its
efficiency is presented in Figure 14. It illustrates the tensile component of the displacement U,
associated with the first strain level.
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(a) U, given by D.I.C (b) U, filtered (c) filtering residual

Figure 14: Filtering of the U, displacement field obtained by D.I.C.

A "filtering" histogram plotted in Figure 14c is related to the filtering residual defined as the
difference between the measured and filtered displacements, computed for the first strain level.
A "reference" Gaussian histogram is plotted with a scattered line, it is obtained from the mean
error and standard deviation of the "filtering" histogram. The two curves almost coincide one
with another, moreover the "filtering" histogram is centered around zero, which corresponds to a
negligible systematic filtering error. The standard deviation is worth 1.2 x 1072 mm, i.e. 6% of
the displacement amplitude. The signal/noise ratio increases for the following strain levels. This
strongly suggests that identification will be more accurate for the plastic parameters.

3.2.2 identification results

The identified elastic parameter distribution is presented in Figure 15. The interface between the
thick and the thin part is plotted with a vertical scattered line dividing the identification domain
Q into two equal subdomains. The mesh of the identification procedure was adjusted to match the
interface perfectly. Let Q; be the left part of 2 corresponding to the thin part of the specimen,
and Qo the right, thick part of Q.

Evidently Q5 is weakly deformed, thus the values identified on the four last columns of the
mesh are substituted, following the procedure presented in section 2.2.3. We choose to substitute
these values by the homogeneous elastic coefficients in 2.
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Figure 15: Identified elastic properties

Concerning Young’s modulus, the values obtained on 2; are centered around 150 GPa, which
is lower than the reference value obtained in the homogeneous tensile test. This is not surprising
given that, for this first step which we assume to be elastic, the average deformation on {21 is nearly
two times the one used to obtain the reference elastic parameters. In this zone, the dispersion
is small, and the modulus increases near the interface. This first identified column in €5 has
been identified locally. The mean value of this column is worth 290 GPa, which is between values
expected for 7 (206 GPa) and values expected for Qs (643 GPa, depending on variations in
thickness of our specimen). The mean value of F identified for 5 is nearly 450 GPa, which is
coherent with the thickness ratio between the two subdomains.

Concerning the Poisson ratio v, the results are rather scattered. Nevertheless the average
identified value on the €; domain (0.3) is consistent with the reference value (0.27). On the four
last columns of )5, the substitution value is worth 0.11, but this error is due to contraction strain
component, which is rather low on the stiff part of the specimen.
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Figure 16: Identified components of the total stress o, at the second loading step

The stress distributions presented in Figure 16 are obtained for the plastic step n = 2, and
correspond to the second strain level. The maximum tensile strain on the fields computed for this
step is situated around 2%. The stress fields obtained in this experimental study are very similar
to those given by numerical simulation. In particular, the contraction o, and shear stress o, are
perfectly located on the interface, and the profiles of the two stress components are realistic. The
high concentrations of the tensile components o, are located on the two ends of the interface,
and similar to the field identified by simulation (¢f. Figure 8).

Owing to the particular interpolation of the stresses, o, and o, are discontinuous with
respect to the y and x axes, respectively. The main discontinuities appear when the variation in
material properties from one element to another is high.
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Figure 17: Identified plastic properties

The plastic properties distributions are presented in Figure 17. Here, the shape of the of the
interface between the plastic zone and the elastic one is consistent with the mesh used in the
identification procedure, and the interface is perfectly localized. Identification of the yield stress
oo gives very satisfying results centered around a mean value of 340 MPa which is 8% inferior to
the reference one. The field obtained is nearly symmetric with respect to the (Ox) axis, due to
the symmetry of the stress field.

This identified hardening modulus k is higher than the reference value near the interface, where
its mean value is worth 8 GPa. This may be due to the spatial filtering which tends to homogenize
the identified properties. The few elements where the obtained k is very low are the elements
where the stress is very close to the yield stress (¢f. Figure 16). In this case the plastic strain
energy is too weak to allow an accurate identification of the plastic properties. Everywhere else,
the modulus k is rather homogeneous and its mean value is worth 4 GPa corresponding to the
reference one.

Already, the results of this identification are encouraging. In this experiment where strain fields
are heterogeneous and where plasticity heterogeneously develops, the contrast on the material
properties between two zones of different apparent stiffness has been well identified. Moreover,
the quality of the identification method is enforced by the agreement between local properties
identified from the bi-thickness sample and homogeneous properties obtained in the reference
tensile test.

4 Conclusion

A variational method used to identify mechanical properties experimentally was presented in this
article. The material properties identified are elastoplastic with a linear kinematic hardening.
This identification uses plane displacements given by D.I.C, and the richness and the accuracy of
the measurement allow to identify a fine discretized distribution of elastic and plastic parameters.
Before applying the method to experimental data, our identification procedure has been verified
on the basis of a numerical simulation. To confirm the meaning of this numerical study, a Gaussian
white noise was superimposed to the proposed here numerical data.

Both the numerical and the experimental results are very promising, and the method proposed
here is readily extensible to isotropic hardening and other plastic models thermomechanically
consistent are under the way. The experimental results could be substantially improved by using
a temporal filter, which is particularly appropriate in the case of spatial heterogeneities. The
method is currently applied to other experimental data, in various configurations.
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