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Elastoplasti
 behavior identi�
ation for heterogeneousloadings and materialsF. Latourte, A. Chryso
hoos, S. Pagano, B. WattrisseAbstra
tImage pro
essing te
hniques give a

ess to full �eld measurements of di�erent thermome-
hani
al data (strain, strain-rate [1℄, temperature [2℄, . . . ). These te
hniques have be
omemore and more useful for obtaining a �ne and lo
al des
ription of material properties. Asthey allow to measure 
omplete thermal and me
hani
al �elds, they 
an be used to identifyseveral parameters of the 
onstitutive equations during a single deformation pro
ess usingspe
i�
ally designed heterogeneous tests [3℄.In [4℄, surfa
e strain �elds obtained by Digital Image Correlation were used to identify thedistribution of elasti
 parameters and stress �elds by minimizing a given energy fun
tional.In this paper, the previous method is improved by a relevant 
hoi
e for stress approxi-mation, and then extended to a wider 
lass of elastoplasti
 materials. Its reliability is then
he
ked through appli
ations on simulated data obtained under small perturbations and planestress assumptions. In parti
ular, the robustness of the method with respe
t to measurementnoise is studied on the basis on numeri
al data. An experimental appli
ation to heterogeneousmaterial identi�
ation is, �nally, proposed.1 Introdu
tionDuring standard me
hani
al tests (simple tension, simple shear), the response of the spe
imengauge part is generally asso
iated with the material response. Nevertheless, the unavoidabledefe
ts of experimental set-up, of sample geometry or of the material may result in a heterogeneousresponse of the gauge part. In order to take this matter of fa
t into a

ount, me
hani
al tests arenow often 
oupled with full �eld measurement te
hniques (displa
ement, strain, temperature,. . . )that better re�e
t the lo
al behavior of the material.The work presented hereafter aims at 
apitalizing on the ri
hness of data provided by thesete
hniques to lo
ally identify the material properties during me
hani
al tests. The identi�
ationof material properties from �eld measurements is a parti
ularly a
tive resear
h area that haslead to the development of various approa
hes, with some of the most widespread being : theFinite Element Model Updating method [5℄, the Virtual Field method [6℄, or the Equilibrium GapMethod [7℄.A variational method due to Kohn et al. [8℄, initially developed for the identi�
ation of ele
tri
al
ondu
tivities was extended to the identi�
ation of both elasti
 parameters and stress distributionby writing a fun
tional expressing the 
onstitutive equation gap [4℄. In this paper, we generalizethis latter approa
h to the 
ase of elasto-plasti
 materials with linear kinemati
 hardening in the
ontext of a small perturbations hypothesis and plane stress assumption for quasi-stati
 loadings.The displa
ement �elds are provided by the Digital Image Correlation (D.I.C.) method detailedin [1℄.In a �rst part, we present the theoreti
al ba
kgrounds and the numeri
al implementation ofthe identi�
ation pro
edure. In the se
ond part, the performan
es of the method are tested onthe basis of numeri
al data 
orresponding to a tensile test performed on a bi-material sample. Wewill parti
ularly fo
us on its ability to 
at
h the material interfa
es and 
he
k its robustness withrespe
t to measurement noise. Finally, we dis
uss the results of an identi�
ation of a kinemati
elastoplasti
 model 
arried out on experimental data obtained in a similar situation.1



2 Identi�
ation pro
edureThe material behavior is lo
ally identi�ed from in plane displa
ement distributions obtained byD.I.C. In the most general 
ase, these surfa
e measurements do not allow to identify materialproperties on a whole volume. For that reason, we restri
t our attention to thin �at samples forwhi
h the plane stress assumption remains realisti
. For ea
h deformation in
rement, the lo
almeasurements of three in-plane strain 
omponents allow us to lo
ally determine three materialparameters at the most. Here, we introdu
e the framework 
hosen to state and solve the identi�-
ation problem asso
iated with an elastoplasti
 behavior with positive hardening under the smallperturbation hypothesis.This model is expressed as follows [9℄:
σ = Ae(ε − εp) (1)

f(σ,X) = (σ − X)II − σ0 ≤ 0 (2)
ε̇p = γ̇

∂f

∂σ

(3)
Ẋ =

2

3
kε̇p (4)where Ae is the elasti
ity tensor, σ the stress, ε the strain, εp the plasti
 strain, γ the plasti
multiplier, f is the yield fun
tion, σ0 the yield stress, X the ba
kstress and k the hardeningmodulus. (·)II stands for the von Mises norm.2.1 Theoreti
al ba
kgroundsFor a sequen
e of su

essive loadsteps, the in-plane displa
ement �eld u

∗ is measured on a givenregion of interest Ω of a spe
imen. The overall for
esRi are given on some parts Γi of the boundaryof Ω and the stress-free parts Γj are su
h that Γi ∪ Γj = ∂Ω and Γi ∩ Γj = ⊘. The density of thevolume for
e f is here 
onsidered to be equal to zero.Starting from an experimental set of images, it seems parti
ularly promising to use two di�erentdes
riptions of the me
hani
al problem, one based on the total displa
ement �eld u
∗, whi
h is re-ferred to here as "standard formulation" and another one referred to as "in
remental formulation",based on an in
remental displa
ement �eld ∆u

∗ between two images:Standard formulation
div σ = 0 in Ω (5)
σ = A

s
ε(u∗) in Ω (6)

{

Ri =
∫

Γi
σ · n ds

σ · n = 0 on Γj

(7) In
remental formulation
div ∆σ = 0 in Ω (8)
∆σ = A

t
ε(∆u

∗) in Ω (9)
{

∆Ri =
∫

Γi
∆σ · n ds

∆σ · n = 0 on Γj

(10)where A
s and A

t stand for the se
ant and tangent sti�ness tensor respe
tively, σ and ∆σ rep-resent the stress �eld and the in
remental stress �eld respe
tively, and ε(u∗) and ε(∆u
∗) are thestrain related to the measured displa
ement and to the in
remental one, respe
tively. An additivede
omposition of the strain tensor into an elasti
 and a plasti
 part is assumed in the following.For a linear kinemati
 model, the tensors A

s and A
t 
an be expressed dire
tly as a fun
tion of thematerial parameters and of the loading history (
f. se
tion 2.2.3). A 
ouple (As, σ) is a solutionto the standard identi�
ation problem if it satis�es the equilibrium equation (5), the 
onstitutiveequation (6) and the global equilibrium (7). Respe
tively, a 
ouple (At, ∆σ) is a solution to thein
remental identi�
ation problem if it satis�es equations (8, 9, 10), where ∆Ri represents therea
tion in
rement on the boundary Γi.
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2.1.1 De�ning a 
onstitutive equation gap fun
tionalOur elastoplasti
 identi�
ation problem is to 
hara
terize the me
hani
al behavior within the Ωdomain. Inside the elasti
 domain, the behavior 
an be des
ribed by an elasti
 sti�ness matrix Be,obtained either by the "standard" or the "in
remental formulation". Indeed, from a theoreti
alpoint of view Be = B
s
e = B

t
e, where B

s
e is the elasti
 se
ant tensor and B

t
e the elasti
 tangenttensor.On
e plasti
ity o

urs, the history-dependent behavior 
an be des
ribed either by a plasti
tangent matrix B

t
p or by a plasti
 se
ant matrix B

s
p both depending on the plasti
 parametersasso
iated with the model 
hosen. As will be shown later, the "standard formulation" is used toobtain B

s
e or B

s
p while the "in
remental formulation" allows to identify either B

t
e or B

t
p, or to
he
k the presen
e of elasti
 unloadings.We asso
iate the 
onstitutive equation gap fun
tional F to the "standard formulation" andthe fun
tional G to the "in
remental formulation":

F(τ ,Bs) =
1

2

∫

Ω

(τ − B
s : ε(u∗))T : Bs−1 : (τ − B

s : ε(u∗)) dΩ (11)
G(∆τ ,Bt) =

1

2

∫

Ω

(

∆τ − B
t : ε(∆u

∗)
)T

: Bt−1
:
(

∆τ − B
t : ε(∆u

∗)
)

dΩ (12)The two stress �elds τ and ∆τ belong respe
tively to spa
es Σadm and ∆Σadm:
Σadm = {τ regular and symmetri
 satisfying the eqs. (5) and (7)} (13)

∆Σadm = {∆τ regular and symmetri
 satisfying the eqs. (8) and (10)} (14)Under the plane-stress assumption and using engineering notations, let ξe be the admissibleelasti
 sti�ness tensor spa
e and, in the 
ase of positive hardening, ξp the admissible plasti
 sti�nesstensor spa
e:
ξe =

{

Be ∈ (L∞(Ω))3×3
sym ; Bij pie
ewise linear,Be non negative de�nite} (15)

ξp =
{

Bp ∈ (L∞(Ω))3×3 ; Bij pie
ewise linear,Bp non negative de�nite} (16)2.1.2 Stating a minimization problemThe following properties of the fun
tional F , demonstrated in [4℄ are the key of the extendedidenti�
ation pro
edure:(i) F(τ ,Bs
e) ≥ 0, ∀(τ ,Bs

e) ∈ Σadm × ξe(ii) F(τ ,Bs
e) = 0 ⇔(6) is true with σ = τ and A

s
e = B

s
e(iii) The fun
tional F is 
onvex on Σadm × ξeThese properties also hold true for the fun
tional G(∆σ,Bt
e) with (∆σ,Bt

e) ∈ (∆Σadm, ξe). Theyalso apply to the plasti
 se
ant fun
tional (F(σ,Bs
p) with (σ,Bs

p) ∈ (Σadm, ξp)) and to the plasti
tangent fun
tional (G(∆σ,Bt
p) with (∆σ,Bt

p) ∈ (∆Σadm, ξp)). For ea
h se
ant or tangent behav-ior, the identi�
ation problem is thus equivalent to a minimization of the 
orresponding fun
tional.Based on these properties, an adapted numeri
al strategy is developed in the next paragraph.2.2 Numeri
al implementationThe �rst step of the numeri
al minimization of the fun
tionals F and G is to build a �nite elementmethod allowing an appropriate des
ription of displa
ement, stress, and material properties inthe Ω domain. Using a �nite element formulation, it be
omes easy to 
ompute the integralsde�ning the fun
tionals F and G. Equations (13) and (14) show that τ and ∆τ do not dependon displa
ement and, 
onsequently, three spe
i�
 �nite element formulations 
an be adopted forstress, displa
ement, and material properties �elds. Using independent stress and displa
ementelements 
onstitutes a parti
ularity of this approa
h 
ompared with the 
lassi
al �nite elementmethods applied to dire
t problems. 3



2.2.1 Finite Element Des
riptionStress interpolationThe stress �eld solution has to satisfy the lo
al equilibrium (eq. 5 or eq. 8). To enfor
e this
onstraint, a �rst method 
onsists in using Lagrange multipliers. The two major drawba
ks ofthis method both are : the size of the system largely in
reases while its 
onditioning deteriorates.To de
rease the number of Lagrange multipliers and to render the stress 
omputation morestraightforward, we 
hoose a stress formulation based on naturally equilibrated Airy fun
tions[10℄. On ea
h stress element, the Airy potential takes the polynomial form :
ϕ(x, y) =

3
∑

i=0

3
∑

j=0

aijx
iyj (17)In a

ordan
e with this 
hoi
e, the 3 stress 
omponents are :

τ xx(x, y) = ϕ
,yy

=
3
∑

i=0

3
∑

j=2

j(j − 1)aijx
iyj−2 (18)

τ yy(x, y) = ϕ
,xx

=

3
∑

i=2

3
∑

j=0

i(i − 1)aijx
i−2yj (19)

τ xy(x, y) = −ϕ
,xy

= −

3
∑

i=1

3
∑

j=1

ijaijx
i−1yj−1 (20)(21)Displa
ement interpolationOn
e stress interpolation is 
hosen, interpolation of the displa
ements must be de�ned. We have
hosen the Q29 element, 
onstituted of 9 displa
ement nodes, and asso
iated with a quadrati
strain generating, via the 
onstitutive equation, a quadrati
 stress Bε(u∗) 
lose to the stress τgiven by the Airy potentials. This element 
onstitutes a good 
ompromise between 
omplexity offormulation and ri
hness of strain des
ription.Material 
oe�
ients interpolationFinally, the material properties are 
onsidered to be 
onstant within ea
h element. Nevertheless,we have the possibility to de�ne sets of elements with equal material properties. This possibilityis parti
ularly interesting when several extended homogeneous material zones 
oexists in Ω.Naturally, the stress, the displa
ement, and the material elements have the same geometri
alsupport. For the moment, our meshing pro
edure is dealing with simple geometries, where elementsare re
tangular, but an extension to more general meshes is envisaged.The fun
tionals F and G 
an then be 
omputed and minimized using these �nite elementdes
riptions. The 
onvexity of these fun
tionals makes the use of a relaxation method parti
ularlyrelevant. This method 
onsists in minimizing su

essively the fun
tionals over their �rst andse
ond variables respe
tively. It requires measured displa
ement �elds, measured rea
tions, and ana priori information relative to the stress-free boundaries available. Naturally, stress minimizationand material minimization are performed alternatively until 
onvergen
e o

urs. Convergen
e is
he
ked by 
omparing both the material parameters and the stress between the two last iterations.The 
onvex properties of the fun
tionals ensure the existen
e of a solution for ea
h of the twominimization problems.
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2.2.2 First minimization : 
omputation of the stress �eldFor both elasti
 and plasti
 loadings, the same method is used to 
ompute stress or stress in
re-ment, in order to simplify the stress 
omputation pro
edure (
f. "stress minimization" in Figure1). In all situations, minimizing F or G over the stress is equivalent to solving the KU = F system,where U is the nodal Airy potential ve
tor 
ontaining the values (ϕ, ∂ϕ
∂x

, ∂ϕ
∂y

, ∂2ϕ
∂x∂y

) at ea
h node,
K is the Hessian of F or G over U and F is the gradient of F or G over U 
omputed at thepoint U = 0. The 
onstraints 
orresponding to observations at the boundary (eq. 7 or 10) aresuperimposed to this system using Lagrange multipliers.For �ne meshes, the KU = F linear system is large and often badly 
onditioned (due to theLagrange multipliers used to impose a global equilibrium), whi
h justi�es the use of a 
onjugategradient algorithm.2.2.3 Se
ond minimization : 
omputation of the material properties distributionsIn our strategy, the elasti
 properties are determined on
e and for all during the �rst loading steps,then the plasti
 parameters are 
omputed 
onsidering the subsequent loading steps. The next twoparagraphs fo
us on the 
omputation of the elasti
 and plasti
 material 
oe�
ients.Elasti
 material properties 
omputationAt the most, three lo
al material 
oe�
ients 
an be determined. We 
hoose to identify 
ubi
or isotropi
 elasti
 models here. The elasti
 tensor Be 
an be 
omputed indis
riminately by thestandard or the in
remental formulation. The minimization of F or G over Be is expli
it andleads dire
tly to the two or three elasti
 
oe�
ients of the 
hosen model (
f. Figure 1). Thefollowing des
ription only deals with the "standard formulation", but 
an be dire
tly adapted tothe in
remental one.The minimization algorithm is presented in Figure 1. It requires an initial value B0 of theelasti
 matrix. As there is no in�uen
e of the initial guess on the obtained solution, due to the
onvex properties of F , B0 is 
hosen arbitrarily. Naturally, bad initial guesses may extend the
omputational time.The step 
alled "elasti
 material 
hara
terization" 
orresponds to the lo
al estimation of theelasti
 matrix Be. Note that two situations may o

ur in this latter step, depending on the meanequivalent strain ‖ε‖ on the 
onsidered element :

• if ‖ε‖ is too small 
ompared with the maximal equivalent strain εmax on the whole Ωdomain (i.e. ‖ε‖
εmax

< δǫ where δǫ is a threshold 
riterion on the strain), we 
onsider that thedeformation energy is too small to allow a robust identi�
ation of the material properties.Then, a substitution pro
edure is applied where the elasti
 matrix of the 
onsidered elementis repla
ed by the homogenized Be on a 
hosen subdomain of Ω. It is important to notethat even if the elasti
 properties of the substituted zones do not perfe
tly mat
h the realones, the 
orresponding error does not a�e
t the stress 
omputation be
ause these zones arealmost unstrained, and their weight in the overall deformation energy is therefore very small.
• If the lo
al deformation is su�
ient ( ‖ε‖

εmax
≥ δǫ) then the elasti
 matrix Be is 
omputed byminimizing F(τ ,Be) with respe
t to Be.
5



Be=B0

initial guess B0

max

Be= Argmin(F( , • ))Substitution procedure

elastic material characterization

convergence?

YES
NO

, E, ,G

Be

stress minimization : = Argmin(F( • , Be))

measurements

u*, Ri

max

Figure 1: Algorithm used to 
ompute the elasti
 propertiesPlasti
 material properties 
omputationCon
erning anelasti
 behavior, we restri
t our attention to an elastoplasti
 model with isotropi
kinemati
 hardening asso
iated with a von Mises 
riterion. Two plasti
 parameters are identi�edlo
ally: the kinemati
 hardening modulus k and the yield stress σ0.
0

n-1

n n+1

Be

[Bp]n

[Bp]n+1

t

s

r

Figure 2: Simple diagram (σ, ε) 
orresponding to the elastoplasti
 model.Denoting ∆γ the plasti
 multiplier in
rement, we express the elastoplasti
 se
ant tensor A
s
pand the tangent tensor A

t
p at the step n a

ording to [11℄:
[

A
s
p

]

n
=

[

A
−1
e −

∆γn(σ0)

1 + 2

3
k∆γn(σ0)

P

]−1 (22)
[

A
t
p

]

n
=

[

A
s
p

]

n
−

Nn ⊗ Nn

1 + βn

(23)where Nn is a ve
tor linked to the normal to the load surfa
e, βn is a s
alar 
hara
terizing thehardening, and P is a mapping matrix. Their de�nition is given in the following equations:
6



βn =
2

3
k

(

1 +
2

3
∆γk

)

ξT
n Pξn

ξT
n P

[

As
p

]

n
Pξn

(24)
Nn =

[

A
s
p

]

n
Pξn

√

ξT
n P

[

As
p

]

n
Pξn

(25)
∆γ =

3

2k

(

√

3

2

α

σ0

− 1

) (26)where
ξn =

1

1 + 2

3
∆γk

(σn − Xn−1)

Xn =
1

1 + 2

3
∆γk

(

Xn−1 +
2

3
∆γkσn

)

α2 = (σn − Xn−1)
T

P (σn − Xn−1)

P =
1

3





2 −1 0
−1 2 0
0 0 6



For the �rst plasti
 step (i.e. step n in Figure 2 ) it is 
ommon to write a se
ant formulationof the plasti
 problem.Remark 1 The three equations obtained by 
omputing the gradient of F over A
s
p are dependentand do not allow to identify both k and σ0 on a single loading step.Consequently, an iterative algorithm involving two su

essive plasti
 loading steps denoted nand n + 1 have been 
arried out. Sin
e all the minimization steps are now detailed, the nextparagraph will fo
us on the des
ription of the spe
i�
 elastoplasti
 algorithm.2.2.4 Resolution algorithmAs mentioned previously, the referen
e elasti
 tensor, noted B

r
e, is obtained on the �rst loadingstep. Then, on ea
h following loading step, noted n, a pro
edure named "
omparison pro
edure",presented in Figure 3, aims at 
omparing a lo
al tangent elasti
 tensor [Bt

e]n with the referen
eelasti
 tensor B
r
e. [Bt

e]n is obtained by minimizing G(τn, [Bt
e]n) on the load in
rement n usingthe following input data : the rea
tion in
rement [∆Ri]n and the in
remental displa
ement �eld

[∆u
∗]n. This pro
edure is only applied to the most strained elements for whi
h ‖∆ε‖

∆εmax
≥ δǫ. Forthe less strained elements, it is assumed that no lo
al plasti
ity o

urs and [Bt

e]n is equal to thereferen
e elasti
 tensor B
r
e.

measurements

[ Ri]n , [ u*]n

max

min(G ( n, [Be
t]n)

?

YES

NO

?

t r

e e
n

Br

e

B B

B

YESNO

elastic

loading or 

unloading

elastoplastic

algorithm

test

on each elementFigure 3: Initialization of the plasti
 
omputation7



The elements where the 
omparison pro
edure dete
ts any 
hanges in the lo
al sti�ness tensor(i.e. ‖[Bt
e]n−B

r
e‖

‖Br
e‖

≥ δB) are assumed to be plasti
, and an elastoplasti
 algorithm (
f. Figure 4)allows to identify separately the two plasti
 parameters k and σ0. Moreover, this pro
edure allowsto dis
riminate the elasti
ally unloaded zones of the spe
imen from the plasti
ally loaded onesthat 
an be observed under 
ertain 
onditions (Lüders bands, ne
king, . . . ).
plastic initialization

0 1n II

k 0)

convergence?

YES
NO

n= n

n+1 , k

n , 0

n , k
min(G ( n,[Bp

t]n))

determination of k

determination of 0

min(G ( n+1, [Bp
t]n+1)

min(F( n, [Bp
s]n))

measurements

[ Ri]n+1 , [ u*]n+1

measurements

[Ri]n , [u*]n

measurements

[ Ri]n , [ u*]nFigure 4: elastoplasti
 algorithmIn the �rst step of the elastoplasti
 algorithm presented in Figure 4, named "plasti
 initializa-tion", we assume that σ0 = (τn−1)II where (·)II stands for the von Mises norm. Thus, we 
omputean approximative hardening modulus k by minimizing G(∆τn,
[

B
t
p

]

n
), where [Bt

p

]

n
stands for theplasti
 tangent modulus at the step n, depending on k. This minimization requires measures of therea
tion in
rement [∆Ri]n and the in
remental displa
ement �eld [∆u

∗]n. The goal of this initial-ization pro
edure is to obtain an approximation of the ba
kstress Xn at step n needed in the �rststep of the iterative algorithm named "determination of k", the se
ond step being "determinationof σ0".
• "determination of k" : we minimize G(∆τn+1,

[

B
t
p

]

n+1
), where [Bt

p

]

n+1
stands for theplasti
 tangent modulus at the step n+1, depending on k. This minimization requires somemeasurements inputs (the rea
tion in
rement [∆Ri]n+1

, the in
remental displa
ement �eld
[∆u

∗]n+1
), and the ba
kstress Xn previously 
omputed.

• "determination of σ0" : this 
onsists in minimizing F(τn,
[

B
s
p

]

n
), where [Bs

p

]

n
stands for theplasti
 se
ant modulus at the step n, depending on σ0. This minimization also requires somemeasurements inputs (the rea
tion [Ri]n, the displa
ement �eld [u∗]n), and the previouslyestimated value of k.3 Appli
ationsIn this part, both numeri
al and experimental results are presented. In a �rst instan
e, the methodis tested on the basis on simulated data given by the resolution of a dire
t problem. Note that themeshes used for dire
t 
omputation and identi�
ation are always di�erent, the �nest being alwaysthe one used for the dire
t �nite element 
omputation, in order to minimize errors on the dire
tproblem over errors due to the identi�
ation method.In order to 
hara
terize the spatial resolution of the method, we de
ided to work on a 
ompositespe
imen made of two di�erent materials. As the solution to inverse problems are known to bevery sensitive to small perturbations on the input data [12℄, we illustrate the robustness of thismethod by studying its sensitivity study to a superimposed noise on this 
omposite spe
imen.Finally, results obtained experimentally on a similar 
on�guration are presented.
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3.1 Numeri
al identi�
ation on a bi-material 
omposed sample
E =200 Gpa

=0.3
1

1n

E =100 Gpa

= 0.3

= 300 MPa

k = 10 Gpa

2

2

0

n

s

W1 W2

U

4,96"

2
,4

9
"

60 mm

2
0

 m
m

y
x(a) numeri
al simulation 0.006

0.008

0.01

0.012

0.014

0.016

0.018

(b) ‖ǫp‖ on Ω2Figure 5: Des
ription of the test (a) and equivalent plasti
 strain plotted with the mesh of theidenti�
ation method (b).A tensile test on a bi-material sample is simulated for the loading 
onditions shown in Figure5a. This simulation by a 2D F.E.M. uses 90 × 60 Q1 elements. The loaded barrel is made oftwo material zones. The Ω1 zone is purely elasti
 and the Ω2 zone, less sti�, is elastoplasti
 withlinear kinemati
 hardening. This test is highly penalizing due to strong strain gradients in thevi
inity of the interfa
e. The obje
tive here is to test the performan
e of our method in presen
e ofmaterial heterogeneities. Identi�
ation has been performed for an ideal 
on�guration, where theboundary between material domains Ω1 and Ω2 is 
oin
ident with the meshing of the identi�
ationpro
edure.3.1.1 Noise sensitivity in elasti
ityThe robustness of the method is, in a �rst step, tested for the elasti
 identi�
ation. The mesh ofthe identi�
ation method uses 20×20 material zones 
orresponding to 41×41 displa
ement nodes.A Gaussian white noise is added to the assumed-to-be-exa
t displa
ements obtained by the dire
tF.E.M. 
omputation. Denoting (ε1, ε2, ε3) = (εxx, εyy, εxy), we de�ne a noise ratio rnoise on thestrain:
rnoise = max

i=1···3
(
supΩ

∣

∣

∣
εi(u

∗
noisy) − εi(u

∗
ref )

∣

∣

∣

supΩ

∣

∣

∣
εi(u∗

ref )
∣

∣

∣

) (27)where εi stands for the ith 
omponent of the strain. The strain 
omponent may be derived eitherfrom the displa
ement u
∗
ref issued by dire
t F.E.M. 
omputation, or by noisy displa
ement u

∗
noisy .The sensivity study has been performed for a rnoise ratio varying from 0 to 50%. The maximumratio rnoise is asso
iated with a peak-to-peak noise amplitude of 4× 10−4 on strain measurement,whi
h is two times higher than the experimental resolution on strain measurement [1℄. The evolu-tions of the absolute error on the identi�
ation of the parameters E et ν using an isotropi
 elasti
model are progressive (
f. Figure 6). The maximal error is worth 20 GPa for Young's modulus,whi
h gives a relative error inferior to 20%. For the Poisson ratio, the maximal error is worth 0, 07i.e. a 24% relative error.
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(b) Poisson ratio νFigure 6: Absolute errors asso
iated with the lo
al determination of material parameters: maximalgap (1), mean error + standard deviation (2), mean error (3) , mean error - standard deviation(4), minimal gap (5)Figure 7 represents a 3D-surfa
e of the identi�ed Young modulus for the maximal noise ratio
rnoise = 50%, it is noti
eable that the boundary is perfe
tly lo
ated and this step-like surfa
ere�e
ts perfe
tly the real behavior of the barrel even if small pertubations 
an be observed.

100
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Y axis
X axis

GPa

Figure 7: Young modulus identi�ed from noisy data with rnoise = 50%3.1.2 Plasti
 parameter distributionsFirst, we present some results obtained from displa
ements dire
tly given by simulation withoutsuperimposing any noise. The material parameters are, again, identi�ed on 20×20 material zones.The barrel does not plastify uniformly over Ω : the Ω1 domain remains elasti
 and the plasti
ityheterogeneously develops over Ω2 (
f. Figure 5b). The values of 
riteria δǫ and δB are 5% for both.Using these 
riteria, plasti
ity is only identi�ed on the elements lo
ated within the Ω2 domain.Consequently, and as the interfa
e between the material zones is 
oin
ident with the meshing ofthe identi�
ation method, the interfa
e between Ω1 and Ω2 is perfe
tly attained.Figure 8 illustrates σxx tensile stress distributions at the end of the �rst plasti
 step. Thestress presented in Figure 8a is obtained by solving the dire
t problem, whereas the one given inFigure 8b has been identi�ed by the inverse method. We noti
e a good similarity between thedistributions, and the orders of magnitude for this stress 
omponent. In parti
ular, the stressgradients are 
orre
tly trans
ribed in the neighborhood of the interfa
e.10
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2(b) identi�ed stress (MPa)Figure 8: Comparison for the �rst plasti
 step (step n = 2) between the tensile stress 
omponentgiven by the dire
t 
omputation and the same 
omponent given by the identi�
ation method.Figure 9 illustrates the distribution of the identi�ed plasti
 parameters. We 
learly observe thatthe identi�
ation error on the two parameters is not randomly distributed. It is more importantin the elements where plasti
 strain is small and where the strain gradients are important.On the hardening modulus k, the maximum error observed is 23%, 
orresponding to 2.3 GPathat is 
omparable with the error obtained on Young's modulus identi�
ation when no noise isadded on the data (
f. Figure 6a). The maximum error on σ0 is 14% (
f. Figure 9b).The presen
e of strain gradients is an important sour
e of errors of identi�
ation. As the meshused for identi�
ation is 
oarser than the one used for the dire
t 
omputation, it does not renderthe stress distribution properly in the vi
inity of the interfa
e.Another error sour
e may result from dire
t 
omputation, whi
h may be less a

urate in the
ase of non-linear problems.
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1 2 (b) error on σ0 in %Figure 9: Relative errors in determining the plasti
 parameters plotted on Ω2 only (elements inthe Ω1 domain are not represented be
ause they are not identi�ed as plasti
).
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3.1.3 Noise sensitivity in plasti
ity
5

10

15

20

25

1 2(a) error on k in % 2.5

5

7.5

10

12.5

1 2(b) error on σ0 in %Figure 10: Relative errors in determining the plasti
 parameters identi�ed from noisy data(rnoise = 25%)A noise sensitivity study similar to the one performed in the elasti
 
ase has been performed forthe simulation already presented in Figure 5. On ea
h loading step, a Gaussian white noise isadded to the simulated displa
ement in
rement. To fa
ilitate a 
omparison with the elasti
 study,we adopt the following de�nition of the noise ratio rnoise:
rnoise = max

i=1···3
(
supΩ

∣

∣

∣
εi(∆u

∗
noisy) − εi(∆u

∗
ref )

∣

∣

∣

supΩ

∣

∣

∣
εi(∆u∗

ref )
∣

∣

∣

). (28)On ea
h loading step (elasti
 step, and plasti
 n and n+1 steps) we add a displa
ement �eld relatedto similar rnoise ratio ranging from 0 to 50%. Thus, the plasti
 identi�
ation starts from an elasti
set of parameters identi�ed with noisy data. The 
orresponding error on the elasti
 parametersused as inputs in the plasti
 identi�
ation is given in Figure 6. In Figure 10, we observe that theerror distribution on the identi�ed parameters shows a similar pattern as the one 
orresponding to"perfe
t" data. To isolate the in�uen
e of superimposed noise from this systemati
 bias, we have
hosen to represent (
f. Figure 11) the di�eren
es between the values identi�ed using noisy and"perfe
t" data. The error asso
iated with superimposed noise is randomly distributed (its meanvalue remains 
lose to zero) and the standard deviation in
reases linearly with noise amplitude,as observed in the elasti
 
ase.
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(b) yield stress σ0Figure 11: Errors relative to the lo
al determination of material parameters: maximal gap (1),mean error + standard deviation (2), mean error (3) , mean error - standard deviation (4), minimalgap (5). 12



3.2 Experimental identi�
ation3.2.1 Des
ription of the spe
imen and its material propertiesThe experiment presented in this part was 
hosen to reprodu
e the previous numeri
al simulation.The sample is a thin �at dog-bone spe
imen ma
hined in a 2.5 mm thi
k plate of DP60 steel. Thebimaterial behavior is arti�
ially re
reated by a thi
kness variation : the thi
kness of the zonewhere x ∈ [−28 mm, 0] was symmetri
ally redu
ed to 0.8 mm (
f. Figure 12).In the identi�
ation pro
edure, thi
kness is supposed to be 
onstant on the whole spe
imen(i.e. 0.8 mm). Thus we expe
t to identify the referen
e properties in the thin zone, and propertiesof a sti�er material in the thi
ker zone.
x

y

Figure 12: Shape of the spe
imen (dimensions in mm)The Ω identi�ed zone 
onsists of a square (20 mm× 20 mm) 
entered on the spe
imen meshedby 10 × 10 square elements. We assume the existen
e of a plane stress state, negle
ting the out-of-plane e�e
ts indu
ed by the thi
kness dis
ontinuity. Any triaxial e�e
ts in the vi
inity of thedis
ontinuity would naturally a�e
t the identi�ed parameters.A preliminary tensile test on a spe
imen of the same steel, the same geometry but with a
onstant thi
kness of 2.5 mm has been performed to obtain the referen
e elastoplasti
 propertiesof the material. The stress-strain diagram 
orresponding to this test is presented in Figure 13.The �rst linear part of the diagram allows to identify the elasti
 parameters (E = 207 GPa,
ν = 0.27). From this diagram, we obtain the following parameters of the elastoplasti
 model :
k = 5 GPa, σ0 = 370 MPa. On this material, the �rst stages o� the hardening are rather non-linear, and the values of the plasti
 parameters asso
iated with a linear kinemati
 hardening willbe very dependent with respe
t to the strain levels for whi
h the identi�
ation is performed. Forthat reason, we have lo
ated, in Figure 13, the three strain levels used to determine the referen
eplasti
 parameters.The lo
al identi�
ation method is 
arried out on the bimaterial sample for three strain levels.These levels are obtained by mat
hing the maximal lo
al strain on the identi�ed domain with theisolated strain level on the diagram of the homogeneous tensile test.
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3rd setFigure 13: Stress-strain diagram of a simple tensile test on DP60 steelThe displa
ement measurement given by D.I.C. is �ltered using 
alibrated splines and itse�
ien
y is presented in Figure 14. It illustrates the tensile 
omponent of the displa
ement Uxasso
iated with the �rst strain level.
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(
) �ltering residualFigure 14: Filtering of the Ux displa
ement �eld obtained by D.I.C.A "�ltering" histogram plotted in Figure 14
 is related to the �ltering residual de�ned as thedi�eren
e between the measured and �ltered displa
ements, 
omputed for the �rst strain level.A "referen
e" Gaussian histogram is plotted with a s
attered line, it is obtained from the meanerror and standard deviation of the "�ltering" histogram. The two 
urves almost 
oin
ide onewith another, moreover the "�ltering" histogram is 
entered around zero, whi
h 
orresponds to anegligible systemati
 �ltering error. The standard deviation is worth 1.2 × 10−3 mm, i.e. 6% ofthe displa
ement amplitude. The signal/noise ratio in
reases for the following strain levels. Thisstrongly suggests that identi�
ation will be more a

urate for the plasti
 parameters.3.2.2 identi�
ation resultsThe identi�ed elasti
 parameter distribution is presented in Figure 15. The interfa
e between thethi
k and the thin part is plotted with a verti
al s
attered line dividing the identi�
ation domain
Ω into two equal subdomains. The mesh of the identi�
ation pro
edure was adjusted to mat
h theinterfa
e perfe
tly. Let Ω1 be the left part of Ω 
orresponding to the thin part of the spe
imen,and Ω2 the right, thi
k part of Ω.Evidently Ω2 is weakly deformed, thus the values identi�ed on the four last 
olumns of themesh are substituted, following the pro
edure presented in se
tion 2.2.3. We 
hoose to substitutethese values by the homogeneous elasti
 
oe�
ients in Ω2.
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(b) poisson ratio νFigure 15: Identi�ed elasti
 propertiesCon
erning Young's modulus, the values obtained on Ω1 are 
entered around 150 GPa, whi
his lower than the referen
e value obtained in the homogeneous tensile test. This is not surprisinggiven that, for this �rst step whi
h we assume to be elasti
, the average deformation on Ω1 is nearlytwo times the one used to obtain the referen
e elasti
 parameters. In this zone, the dispersionis small, and the modulus in
reases near the interfa
e. This �rst identi�ed 
olumn in Ω2 hasbeen identi�ed lo
ally. The mean value of this 
olumn is worth 290 GPa, whi
h is between valuesexpe
ted for Ω1 (206 GPa) and values expe
ted for Ω2 (643 GPa, depending on variations inthi
kness of our spe
imen). The mean value of E identi�ed for Ω2 is nearly 450 GPa, whi
h is
oherent with the thi
kness ratio between the two subdomains.Con
erning the Poisson ratio ν, the results are rather s
attered. Nevertheless the averageidenti�ed value on the Ω1 domain (0.3) is 
onsistent with the referen
e value (0.27). On the fourlast 
olumns of Ω2, the substitution value is worth 0.11, but this error is due to 
ontra
tion strain
omponent, whi
h is rather low on the sti� part of the spe
imen.
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(
) shear stress σxyFigure 16: Identi�ed 
omponents of the total stress σn at the se
ond loading stepThe stress distributions presented in Figure 16 are obtained for the plasti
 step n = 2, and
orrespond to the se
ond strain level. The maximum tensile strain on the �elds 
omputed for thisstep is situated around 2%. The stress �elds obtained in this experimental study are very similarto those given by numeri
al simulation. In parti
ular, the 
ontra
tion σyy and shear stress σxy areperfe
tly lo
ated on the interfa
e, and the pro�les of the two stress 
omponents are realisti
. Thehigh 
on
entrations of the tensile 
omponents σxx are lo
ated on the two ends of the interfa
e,and similar to the �eld identi�ed by simulation (
f. Figure 8).Owing to the parti
ular interpolation of the stresses, σxx and σyy are dis
ontinuous withrespe
t to the y and x axes, respe
tively. The main dis
ontinuities appear when the variation inmaterial properties from one element to another is high.15



X axis

Y
 a

x
is

GPa

2

4

6

8

10

elastic

(a) hardening modulus k

MPa

X axis

Y
 a

x
is

320

330

340

350

360

elastic

(b) yield stress σ0Figure 17: Identi�ed plasti
 propertiesThe plasti
 properties distributions are presented in Figure 17. Here, the shape of the of theinterfa
e between the plasti
 zone and the elasti
 one is 
onsistent with the mesh used in theidenti�
ation pro
edure, and the interfa
e is perfe
tly lo
alized. Identi�
ation of the yield stress
σ0 gives very satisfying results 
entered around a mean value of 340 MPa whi
h is 8% inferior tothe referen
e one. The �eld obtained is nearly symmetri
 with respe
t to the (Ox) axis, due tothe symmetry of the stress �eld.This identi�ed hardening modulus k is higher than the referen
e value near the interfa
e, whereits mean value is worth 8 GPa. This may be due to the spatial �ltering whi
h tends to homogenizethe identi�ed properties. The few elements where the obtained k is very low are the elementswhere the stress is very 
lose to the yield stress (
f. Figure 16). In this 
ase the plasti
 strainenergy is too weak to allow an a

urate identi�
ation of the plasti
 properties. Everywhere else,the modulus k is rather homogeneous and its mean value is worth 4 GPa 
orresponding to thereferen
e one.Already, the results of this identi�
ation are en
ouraging. In this experiment where strain �eldsare heterogeneous and where plasti
ity heterogeneously develops, the 
ontrast on the materialproperties between two zones of di�erent apparent sti�ness has been well identi�ed. Moreover,the quality of the identi�
ation method is enfor
ed by the agreement between lo
al propertiesidenti�ed from the bi-thi
kness sample and homogeneous properties obtained in the referen
etensile test.4 Con
lusionA variational method used to identify me
hani
al properties experimentally was presented in thisarti
le. The material properties identi�ed are elastoplasti
 with a linear kinemati
 hardening.This identi�
ation uses plane displa
ements given by D.I.C, and the ri
hness and the a

ura
y ofthe measurement allow to identify a �ne dis
retized distribution of elasti
 and plasti
 parameters.Before applying the method to experimental data, our identi�
ation pro
edure has been veri�edon the basis of a numeri
al simulation. To 
on�rm the meaning of this numeri
al study, a Gaussianwhite noise was superimposed to the proposed here numeri
al data.Both the numeri
al and the experimental results are very promising, and the method proposedhere is readily extensible to isotropi
 hardening and other plasti
 models thermome
hani
ally
onsistent are under the way. The experimental results 
ould be substantially improved by usinga temporal �lter, whi
h is parti
ularly appropriate in the 
ase of spatial heterogeneities. Themethod is 
urrently applied to other experimental data, in various 
on�gurations.Referen
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