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Self-contact and fictitious domain using a difference convex
approach

S. Pagano∗and P. Alart

Laboratoire de Mécanique et Génie Civil,
Université Montpellier II - CNRS UMR 5508

Place Eugene Bataillon, 34095 Montpellier Cedex, France

SUMMARY

A numerical approach of contact or self-contact of thin structures is performed using a relaxed
orientation-preserving condition inserted in the difference of convex function framework. This method
is analyzed on academic examples and cellular media. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. Self contact and fictitious domain

Contact is generally formalized as a local condition between points or surfaces previously
identified as opposite entities. This is a classic approach in finite element modelling and
provides specific joint or contact elements [14]. It is easy to implement in the context of
small perturbations whose joint elements do not to need redefining during the process. In finite
deformation the implementation is more technical; it needs to modify the mesh of joint elements
at certain steps of an incremental process. In the case of hyperelasticity with frictionless
contact, an incremental procedure is nevertheless necessary to identify the potential contact
elements (unless one defines the boundary as the potential contact surface – it is obviously
unwieldy). To avoid having to identify contact elements, global criteria can be used that are
restricted to characterizing self-contact to determine the finite deformation of a single connex
domain. Self-contact is related to the injectivity property, whose local version is called the
orientation-preserving condition and involves the determinant of the gradient of deformation
Ψ over a domain Ωf ,

det∇Ψ(x) > 0, (1)

almost everywhere in Ωf . However the minimizing solution of the associated minimization
problem is globally injective if a global condition is also assured (i.e. in addition to (1)). For a
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2 S. PAGANO

pure displacement problem, i.e. with a prescribed displacement field on the whole boundary,
it is necessary to assume the existence of globally injective mapping satisfying the imposed
displacement over the whole boundary (cf. [5], theorems 1 and 4).

An enlightening counter-example given by Ball [5] shows that the global condition cannot
be omitted. Let the mapping φ of the unit disc Ωf in R

2 be defined in polar coordinates (r, θ)
by,

φ : (r, θ) → (
1√
2
r, 2θ)

It is easy to check that det∇φ(x) = 1 if x 6= 0, but φ is not locally invertible at the origin.
For traction-displacement problems Ciarlet [7] proposes another global injectivity condition

to the admissible deformations. But this condition is also a mathematical model of self-contact
without friction for a smooth energy minimizer. The admissible deformations Ψ have to satisfy
the following additional global condition over the whole domain,

∫

Ωf

det∇Ψdx ≤ vol Ψ(Ωf ). (2)

Without this global assumption, the interpenetration cannot be numerically ruled out as shown
in the following example. Consider for instance the mapping

φ : x ∈ Ω ⊂ R
3 → (x1cos

x2

l
, x1sin

x2

l
, x3),

where Ω is a rectangular rod of length 2θl parallel to the vector e2 as shown in Figure 1.
Then det∇φ(x) = x1/l for all x ∈ Ω, yet for θ ≥ π the mapping is not injective since
φ(x1, πl, x3) = φ(x1,−πl, x3). For θ = π the injectivity is lost on the boundary, while for
θ > π, interpenetration has occurred. In this case,

∫

Ωf

det∇Ψdx = θ(d2
2 − d2

1),

and
vol Ψ(Ωf ) = π(d2

2 − d2
1). (3)

The condition (3) is not satisfied for θ > π.
Unfortunately these global conditions are not easy to handle in numerical treatment. Even

the local orientation-preserving condition is not accounted for in finite element codes; it is
only verified a posteriori. Note that a similar constraint has to be numerically treated for
incompressible materials [9]: the determinant of the deformation gradient is equal to one almost
everywhere, and not only positive. In this paper, we propose an alternative numerical strategy
which lacks a firm theoretical background, but is convenient for a friendly implementation.
In some situations interpenetration can be excluded by imposing an extended orientation-
preserving condition to a well-chosen fictitious domain. For example in Figure 2 the fictitious
domain may be limited to the air-gap according to the imposed loading. A cellular material is a
peculiarly well-adapted case for which the choice is very straightforward i.e. the interior of each
cell. This honeycomb structure, viewed as a truss of flexible rods, will be the final application
of this work. The strict inequality (1), which does not allow self-contact, is replaced by a non
negative inequality,

det∇Ψ(x) ≥ 0, (4)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Figure 1. An orientation-preserving φ that is not globally injective.
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Figure 2. Two examples of fictitious domains.

almost everywhere in Ωf . Moreover the bulk energy of the fictitious domain is assumed to be
null. The D.C. approach (for difference of convex functions) has already been applied to reach
local minima of non convex problems in material sciences [12, 11] or in structural mechanics
with post-buckling [2, 3]. It may be viewed as a general non convex solver. However in [2, 3]
the confinement is performed using a contact condition between the deformable body and the
obstacles, which is treated by an additional Newton solver [1]. In the present work the (possibly
self-) contact condition is replaced by the relaxed orientation-preserving constraint (4) that
is strongly non linear but may be formulated using D.C. splitting. De Saxce [8] starts from a
linearization of (4) and derives a classical linear complementary problem (LCP).

Section 2 details a common D.C. formulation for two constraints: the inextensibility
condition of flexible rods similar to the incompressibility for three-dimensional bodies and
the self-contact condition by the way of fictitious domain injectivity (4). Section 3 is devoted
to the development of a D.C. solver coupling self-contact and inextensibility with detailed
implementation aspects. Section 4 provides some numerical simulations applied to cellular
structures.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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4 S. PAGANO

2. Common formulation of two strongly non linear constraints

For a simplified presentation we consider two thin rods of length ℓ whose deformed
configurations take place in a s−t plane and the rectangular fictitious domain Ωf = (0, ℓ)×(0, e)
is included between the two rods (cf. Figure 3). We denote by ΓN and ΓS the upper and lower
boundaries of Ωf . The configuration is described by a vector function y depending on s and t.
We restrict ourselves here to the case of inextensible rods [2, 3]. The inextensibility condition
may be written as an equality constraint of the configuration function for each of the two rods,

h(∂sy(s, 0)) = h(∂sy(s, e)) = 0, (5)

where h(x) = ‖x‖2 − 1.

e

! y

Ω
f
 = (0,!) × (0,e)

Ω
f
 

s

t

Figure 3. Domain Ωf before and after deformation

This assumption leads to consider only the bending term in the expression of bulk energy.
The contact between the two rods (identified to the boundaries ΓN and ΓS) is taken into
account by the relaxed orientation-preserving condition (4) applied to the fictitious domain
Ωf . If the two rods are submitted to loading fields f0 and fe, the potential energy takes the
simplified form,

J(y) =
1

2

∫ ℓ

0

E(s, 0)I(s, 0) ‖∂2
sy(s, 0)‖2ds +

1

2

∫ ℓ

0

E(s, e)I(s, e) ‖∂2
sy(s, e)‖2ds

−
∫ ℓ

0

f0(s).y(s, 0)ds −
∫ ℓ

0

fe(s).y(s, e)ds, (6)

where E is the Young modulus and I is the geometrical inertia of the section (i.e., EI is the
(positive) bending stiffness) which may depend on the abscissa s. Consequently an equilibrium
state may be characterized as a local minimum of the potential energy restricted to the
kinematically admissible configurations:

inf
y∈A∩C∩I

(loc)J(y). (7)

The set of admissible configurations is the intersection of three sets, the first containing the
boundary conditions, the second accounting for the inextensibility condition and the last

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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SELF-CONTACT AND FICTITIOUS DOMAIN 5

imposing the relaxed orientation-preserving condition:

H =
{

y ∈ H1(Ω) ; (y(., 0),y(., e)) ∈ H2(0, ℓ)
}

, (8)

A = {y ∈ H ; plus adequate boundary conditions} , (9)

C = {y ∈ H ; h(∂sy(s, 0)) = 0 and h(∂sy(s, e)) = 0 a.e. s ∈]0, ℓ[} . (10)

I = {y ∈ H ; det(∇y(s, t)) ≥ 0 a.e. (s, t) ∈ Ω} . (11)

Since the objective function J is convex, non convexity is due to the non convexity of the two
sets C and I.

3. D.C. algorithm and implementation aspects

Using the formulae (6) and (7) we introduce an arbitrary admissible configuration ȳ so that
the displacement field v = y − ȳ belongs to the vector sub-space V associated with A. We
then define three affine differential operators DS , DN , D, such that

DSv(s) = (∂sȳ + ∂sv) (s, 0), (12)

DNv(s) = (∂sȳ + ∂sv) (s, e), (13)

Dv(s, t) = (∇ȳ + ∇v) (s, t). (14)

In this way, the relevant potential energy (6) is expressed as a function ϕ(v) of v:

J(y) = ϕ(v) =

∫ ℓ

0

EI(s, 0)

2
‖(∂2

s ȳ + ∂2
sv)(s, 0)‖2ds +

∫ ℓ

0

EI(s, e)

2
‖(∂2

s ȳ + ∂2
sv)(s, e)‖2ds

−
∫ ℓ

0

f0(s).v(s, 0)ds −
∫ ℓ

0

fe(s).v(s, e)ds. (15)

The local minimization problem is then formulated as a constrained problem on the v field,

inf
y∈A∩C∩I

(loc) J(y) ⇐⇒ inf
v∈V,h(DSv)=0,h(DNv)=0,det(Dv)≥0

(loc) ϕ(v). (16)

Starting from (16) and introducing three scalar multiplier fields µS , µN and ν, we define a
saddle-point problem for which the Lagrangian function is not convex with respect to the first
variable v and linear with respect to three Lagrange multipliers,

inf
v∈V

(loc) sup
µS ,µN∈L2(0,ℓ),ν∈L2(Ω)s.t.ν≤0

L(v; µS , µN , ν), (17)

where

L(v; µS , µN , ν) = ϕ(v) +

∫ ℓ

0

µS(s)h(DSv(s)) ds +

∫ ℓ

0

µN (s)h(DNv(s)) ds

+

∫ ℓ

0

∫ e

0

ν(s, t) det(Dv(s, t)) dt ds. (18)

A stationary point (u, λS , λN , γ) of the Lagrangian functional is the solution of the Euler-
Lagrange equations,

0 =
∂L

∂v
(u; λS , λN , γ), (19)

0 =
∂L

∂µS

(u; λS , λN , γ), 0 =
∂L

∂µN

(u; λS , λN , γ), 0 =
∂L

∂ν
(u; λS , λN , γ). (20)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



6 S. PAGANO

To deal with the first equation (19) we introduce the following splitting of the Lagrangian
into the difference of two convex functions [3],

L(v; µS , µN , ν) = Φ1(v; µS , µN , ν) − Φ2(v; µS , µN , ν), (21)

where,

Φ1(v; µS , µN , ν) = ϕ(v) +

∫ ℓ

0

µ+
S (s)h(DSv(s))ds +

∫ ℓ

0

µ+
N (s)h(DNv(s))ds

−
∫ ℓ

0

∫ e

0

ν(s, t)det1(Dv(s, t)) ds dt (22)

Φ2(v; µS , µN , ν) =

∫ ℓ

0

µ−
S (s)h(DSv(s)) ds +

∫ ℓ

0

µ−
N (s)h(DNv(s)) ds

−
∫ ℓ

0

∫ e

0

ν(s, t)det2(Dv(s, t)) ds dt, (23)

= ΦS
2 (DSv; µS) + ΦN

2 (DNv; µN ) + Φ∇
2 (Dv; ν). (24)

The functions µ− and µ+ already used in [3] are defined as follow,

µ+
i = max(0, µi), µ−

i = max(0,−µi), i = N, S.

In a bi-dimensional case, the determinant of a matrix can be split into the difference of two
convex functions det1 and det2,

det(C) = det2(C) − det1(C),

where

det1(C) =
1

2

[

(C12 + C21)
2 + C2

11 + C2
22

]

.

det2(C) =
1

2

[

(C11 + C22)
2 + C2

12 + C2
21

]

,

As previously introduced in [4, 2, 3, 13], it is straightforward to define a type II Lagrangian
depending on seven fields by using the Fenchel transform of the function Φ2 with respect to
the first variable v,

L(v; µS , µN , ν) = Φ1(v; µS , µN , ν) − ΦS
2 (DSv; µS) − ΦN

2 (DNv; µN ) − Φ∇
2 (Dv; ν),

= Φ1(v; µ) − sup
τ S ,τ N ,τ∇

{

∫ ℓ

0

DSv.τS ds +

∫ ℓ

0

DNv.τN ds

+

∫ ℓ

0

∫ e

0

Dv : τ∇ ds dt − ΦS∗
2 (τS ; µS) − ΦN∗

2 (τN ; µN ) − Φ∇∗
2 (τ∇; ν)

}

,

= inf
τ S ,τ N ,τ∇

LII(v, τS , τN , τ∇; µS , µN , ν),

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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SELF-CONTACT AND FICTITIOUS DOMAIN 7

where

LII(v, τ S , τN , τ∇; µS , µN , ν) = Φ1(v; µS , µN , ν) + ΦS∗
2 (τS ; µS) + ΦN∗

2 (τN ; µN )

+Φ∇∗
2 (τ∇; ν) −

∫ ℓ

0

DSv.τSds −
∫ ℓ

0

DNv.τN ds −
∫ ℓ

0

∫ e

0

Dv : τ∇ dt ds. (25)

A “saddle point” type problem may be associated to the first Lagrangian L,

Find (u, σS , σN , σ∇; λS , λN , γ) ∈ H such that

LII(u, σS , σN , σ∇; µS , µN , ν) ≤ LII(v, σS , σN , σ∇; λS , λN , γ)

≤ LII(v, τS , τN , τ∇; λS , λN , γ), ∀(v, τS , τN , τ∇; µS , µN , ν) ∈ H, (26)

where H = V × (L2(0, ℓ))2 × L2(Ω) × (L2(0, ℓ))2 × L2(Ω).

Naturally, we can derive different solution methods from this formulation, based on the
Uzawa algorithm to solve the equations (19,20). Our choice was to fully solve the equation
(19) by a D.C. algorithm before updating the Lagrange multipliers according to the Uzawa
iteration (20), defining the DCalg1 method ( cf. table I ). We modified the updating to account
for the negative condition on γ. The D.C. algorithm, as introduced by Auchmuty [4], consists in
successively minimizing the type II Lagrangian LII with respect to each variable v, τS , τN , τ∇

as specified in the four sub steps a, b, c and d of step 1: indeed, the first two steps deal with the
inextensibility condition and the last two with the orientation-preserving condition. In step 2
we first updated the multipliers associated with the inextensibility condition and finished with
that associated with the orientation-preserving condition.

Table I. DCalg1 algorithm.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

• Initialization of the algorithm with (u0, σ0
S , σ0

N , σ0
∇; λ0

S , λ0
N , γ0),

• (un−1, σn−1
S , σn−1

N , σn−1
∇ ; λn−1

S , λn−1
N , γn−1) known,

determine un, σn
S , σn

N , σn
∇; λn

S , λn
N , γn as follows,

step 1 : Determination of (un, σn
S , σn

N , σn
∇) by the D.C. algorithm on LII(., ., ., .; λ

n−1
S , λn−1

N , γn−1)

a : un,i = arg min LII(., σ
n,i−1
S , σn,i−1

N , σn,i−1
∇ ; λn−1

S , λn−1
N , γn−1)

b : σ
n,i
S ∈ arg min LII(u

n,i, ., σn,i−1
N , σn,i−1

∇ ; λn−1
S , λn−1

N , γn−1)

c : σ
n,i
N ∈ arg min LII(u

n,i, σn,i
S , ., σn,i−1

∇ ; λn−1
S , λn−1

N , γn−1)

d : σ
n,i
∇ ∈ arg min LII(u

n,i, σn,i
S , σn,i

N , .; λn−1
S , λn−1

N , γn−1)

step 2 : Updating of the multiplier :
λn

S = λn−1
S + ρh(DSun)

λn
N = λn−1

N + ρh(DNun)
γn = min(γn−1 + ρ∇ det(Dun), 0).

It is necessary to define the finite elements used for each rod and for the rectangular domain
Ω included between these two rods (cf. Figure 4). Classically, the various rods are discretized
by Hermite finite-elements with four degrees of freedom per node: the two components of

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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8 S. PAGANO

the displacement field and the two components of its gradient with respect to the curvilinear
abscissa. Domain Ω is discretized by specific finite elements: each rectangular element comprises
four edges, with necessarily one edge on ΓS and another on ΓN . For the fictitious domain

Hermite interpolation

Linear

interpolation

Figure 4. Fictitious domain and Gauss points where the multipliers are controlled: orientation-
preserving condition (triangle) and inextensibility (circle).

(contact), the finite elements use a Hermite interpolation in the s direction and a linear one
according to t. The contact elements are thus rectangular with four nodes carrier of generalized
displacements of the two rods. The shape of the lower and upper rods are thus of the curves of
order three. More precisely, the control of the contact must be carried out on three Gauss points
aligned in the direction s located at t = 1/2. In this way, we implemented a ”symmetrical”
description of the contact without privileging either of the two rods. With this method, one
can plan to activate the elements only when the facets are close enough. The three multipliers
associated with the inextensibility condition are updated and controlled in three Gauss points
located on the rods.

As mentioned in [2, 3], the algorithm presented above fails to converge toward postbuckling
shapes. Because the problem of the first step is uncoupled in terms of the vertical and horizontal
components of the displacement, the algorithms tend to reach the trivial solution (u = 0).
In other words, the coupling between components is only performed by the inextensibility
condition. To overcome this difficulty, we consider the iterative scheme, based on the DCalg1
algorithm, where the first step is performed by replacing the type II Lagrangian LII by the new
functional, depending on the previous iteration involving a vanishing term,

LII
n(v, τS , τN , τ∇; µS , µN , ν) = LII(v, τS , τN , τ∇; µS , µN , ν) +

∫ ℓ

0

(v − un).A(v − un)ds,

(27)

where A = a

(

2 1
1 2

)

, a is a strictly positive coefficient, and un is the displacement obtained

at the previous iteration n.

4. Confined buckling

In the first example we considered a flexible rod between two flat obstacles (cf. Figure 5a).
This example was already studied in [3] using a classical formulation of the contact; a Lagrange
multiplier was introduced, identified to the contact reaction and a Generalized Newton method
was used to solve this problem. Here we introduced 18 one dimensional Hermite finite elements
for the rod and 26 two-dimensional fictitious elements between the rod and the two obstacles

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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SELF-CONTACT AND FICTITIOUS DOMAIN 9

(cf. Figure 5). Some confined buckling configurations may be determined according to different

d

ux

d

u x

Figure 5. One flexible rod confined between two obstacles; 26 fictitious elements.
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!2.5
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!1.5

!1

!0.5

0

0.5

1

1.5

2

2.5

a) b)

Figure 6. Two confined buckling shapes (18 finite elements for the rod and 26 fictitious elements): a)
d = 2.5m, grazing contact, b) d = 1.5m, 1 top element contact

values of the distance d. The values of ℓ and EI were : ℓ = 10m, EI = 1000N/m2. The
convergence thresholds were ε1 = 10−7 and ε2 = 10−3; the parameters ρ = 150 for DC
algorithm and a = 1000. Figure 5a, shows a rod with a clamped origin and a simply supported
end and the imposed displacement Ux of the end of the rod is fixed to 2m. In Figure 6 two
confined buckling shapes were plotted corresponding to two values of the gap d, with the
fictitious domains.

Table II. Behaviour of the algorithm (Rod : 36 elements, 3x36 Gauss points; Fictitious : 4 elements,
3*4 Gauss Points)

Curve / d (m) 1) d = 2.5 2) d = 2.1 3) d = 1.7 4) d = 1.5

Nb of iter DCAlg1 (internal loops) 536(8) 414(8) 501(9) 394(9)

Nb of Gauss points: µ = µ+ 49 48 36 28

Nb of Gauss points: ν 1 3 6 3

With d equal to 2.5m only a grazing contact was associated with the first buckling branch.
In this case, 49 inextensibility multipliers and one orientation-preserving multiplier were
activated. Until 1.7m the contact area increased to reach 2 fictitious elements (6 Gauss points).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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10 S. PAGANO
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1
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4

Figure 7. Some confined buckling shapes : a) curve 1 (d = 2.5m, grazing contact), curve 2 (d = 2.1m,
1 top element contact), curve 3 (d = 1.7m, 2 top element contacts), curve 4 (d = 1.5m, 1 top element

contact).

At 1.5m, the rod jumped to a wave-like configuration with a single element point contact (3
Gauss Points). The active inextensibility multipliers decreased from 49 to 28 (cf. Figure 7).
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Flambement assemblage de poutres

a)

d)c)

b)
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Figure 8. Three flexible rods; 22 fictitious elements are considered. Four configurations associated with
different gaps: a) d = 2.4m; b) d = 2m; c) d = 1.6m; d) d = 1m;

The next example no longer considers obstacles but three flexible rods that can enter into
contact with each other (cf. Figure 5b). Numerically the convergence of the algorithm is more
difficult to achieve; different solutions can be obtained by considering different initial solutions

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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SELF-CONTACT AND FICTITIOUS DOMAIN 11

and oscillations between two solutions may appear. To obtain such a solution almost 500
iterates of DCAlg1 are needed. Some confined buckling configurations are plotted according to
different values of the distance d in Figure 8. The contact zones occur in two different positions
and increase when the value of d decreases.

5. Application to cellular media

The behavior of a cellular medium is studied here, resulting from an assembly of rods. In
fact, each unit cell of the network is made up of 6 rigidly connected rods (cf. Figure 9): the
angle between two rods is assumed to be independent of the deformation [3]. Although these
examples are geometrically more complex than the buckling of a single rod, presented in a
previous section, the algorithm needs a regularization parameter a smaller leading to a faster
convergence. Indeed, the complexity of the structure with potential defects naturally leads
towards a global buckling mode with no cycling between different modes. This value of a
was used in all the cellular samples. Recall that in non linear elasticity the homogenization
procedure cannot provide an effective behaviour law for the honeycomb material starting
from one unit cell as the elementary representative volume [10]. However to investigate the
behavior of this structure in certain situations, an increasing number of cells were considered
in a specimen. The aim was to capture the possible configuration paths accounting for eventual
self contact. The studied case was a confined compression test consisting of a specimen pressed
into a box on its upper side. For convenience the boundary conditions were approximated
without taking into account unilateral contact conditions between the structure and the
box. Only 6 Hermite finite elements were used for each rod and 4 fictitious elements were
considered (cf. Figure 9). In this case, the number of iterations of DCAlg1 was lower than in the
previous example; the inextensibility and the orientation-preserving multipliers, introducing
non convexity, increased simultaneously. Furthermore, it is convenient to restrict to 5 the
number of DC iterations (internal loops) without over-penalizing the Uzawa iterations (cf.
Tables II and III).

Table III. Behaviour of the algorithm (Rod : 36 elements, 3x36 Gauss points; Fictitious : 4 elements,
3*4 Gauss Points)

Imposed displacement (m) 4 4.5 4.6 4.7 4.8 4.9

Nb of iter DCAlg1 (internal loops) 214(10) 150(11) 166(22) 51(45) 68(49) 108(50)

Nb of iter DCAlg1 (5 internal loops) 214(5) 152(5) 170(5) 90(5) 108(5) 130(5)

Nb of Gauss points: µ = µ+ 21 33 48 54 53 55

Nb of Gauss points: ν 0 2 2 3 4 4

In the next example, a cellular medium resulting from an assembly of 18 elementary cells was
considered with the same boundary conditions. Only 5 Hermite finite elements and 3 fictitious
elements were used for each rod and for each cell respectively (cf. Figure 10a). Until contact
the configuration remained regular with repetition of the same pattern with a central crushed
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Figure 9. One Cell with 36 elements and 4 fictitious elements are considered.

cell identical to the one presented in the previous simple example (cf. Figure 10b and Figure
11). When contact increases, distortion of the numerical solution appears foreshadowing shear
band. This behavior was confirmed by more complex simulations with and without friction [6].
In a single step, a global displacement Uy of the upper side of the box was imposed (Uy = 6m
corresponding to 26% of the total height) requiring a large number of of DCAlg1 iterations to
attain the buckling mode (cf. Table IV). Starting from this mode, contact did not modify it
fundamentally and fewer iterations were needed to correct the configuration. As previously, the
inextensibility and the orientation-preserving multipliers, introducing non convexity, increased
simultaneously due to the confinement of the global structure (cf. Table IV).

0 5 10 15 20 25
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Figure 10. a) 18 cells with 355 Hermite finite elements and 54 fictitious elements are considered; b)
confined buckling shape for Uy = 8m (39% of the total height).
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Figure 11. Some confined buckling shapes : a) Uy = 9m (39% of the total height); b) Uy = 10m (43%
of the total height); c) Uy = 11m (48% of the total height).

Table IV. Behaviour of the algorithm (Rod : 355 elements, 3x355 Gauss points; Fictitious : 54 elements,
3*54 Gauss Points)

Imposed displacement (m) 6 8 8.5 9 9.5 10 10.5 11

Nb of iter DCAlg1 (5 internal loops) 2000 1097 249 232 233 234 238 358

Nb of Gauss points: µ = µ+ 355 455 458 469 474 485 480 498

Nb of Gauss points: ν 6= 0 0 2 3 3 4 5 5 6

6. Comments

In this paper, we succeed in introducing the numerical treatment of contact and self-contact
without perturbing the structure of a D.C. strategy initially dedicated to the buckling
simulation of thin structures. This result is obtained using a relaxed orientation-preserving
constraint in a fictitious finite element. The D.C. structure of the functional is only assured in
bi-dimensional modeling and the three-dimensional case seems more difficult to achieve. The
convergence of the algorithm is not penalized by the contact treatment; the inextensibility
condition remains the main difficulty. From a practical point of view, in an incremental process
it will probably be necessary to use adaptive remeshing to conserve initial non degenerated
fictitious elements with opposite facets.
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Mécanique, 330:819–824, 2002.

3. P. Alart and P. Pagano. DC solutions of postbuckling problems. J. of Global Optimization, 29:353–370,
2004.

4. G. Auchmuty. Duality algorithms for nonconvex variational principles. Num. Funct. An. and Opt.,
10:211–264, 1989.

5. J.M. Ball. Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Royal Soc.
Edinburgh, 88A:315–328, 1981.

6. M. Barboteu, P. Alart, and S. Pagano. Modélisation de problèmes non linéaires de grande taille : grandes
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