
HAL Id: hal-00347440
https://hal.science/hal-00347440v1

Submitted on 15 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A study of Bernoulli and structured random waveform
models for audio signals

Matthieu Kowalski, Bruno Torrésani

To cite this version:
Matthieu Kowalski, Bruno Torrésani. A study of Bernoulli and structured random waveform models
for audio signals. SPARS 05, Nov 2005, Rennes, France. pp.TS2-1. �hal-00347440�

https://hal.science/hal-00347440v1
https://hal.archives-ouvertes.fr


A STUDY OF BERNOULLI AND STRUCTURED RANDOM WAVEFORM MODELS FOR
AUDIO SIGNALS

M. Kowalski and B. Torŕesani
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ABSTRACT

The empirical pdf of wavelet or MDCT coefficients of audio sig-
nal generally feature a sharp peak at the origin, together with heavy
tails. We show that such features may be reproduced if audio signals
are modelled as sparse series of waveforms, randomly taken from
a union of two significantly different orthonormal bases. In this
context we obtain estimates for the behavior of “observed” coeffi-
cients, and numerical results on audio signals. Unlike more classi-
cal approaches involving optimization algorithms, our approach ap-
proaches thus relies on an explicit model. These allow us to analyze
mathematical properties of such signals and corresponding estima-
tors, and derive simple estimation algorithms.

1. PROBLEM STATEMENT

Recently, audio signal involving decompositions of the form
signal = tonal + transient + residual

have received some attention (see for example [1, 2, 3, 4]), and al-
gorithms for estimating the corresponding components have been
proposed. Such techniques possess a wide range of applications,
including among others audio signal coding and compression (the
hope being that the improvement in the coding of the different com-
ponents can compensate the fact that several components have to be
encoded), denoising (the rationale being that a good representation
for all components will concentrate its energy in a small amount of
data, which would not be true for the noise), transcription,.... Such
signal representations can often be obtained as by-products of some
sparse coding algorithms, in which the models are not specified ex-
plicitely (see for example [5, 6, 7]).

We study here more specific models, based on expansions on
elementary waveform systems. The main idea is to start with an
orthonormal basis (or a frame) of waveforms from which a given
component (tonal, or transient) is supposed to admit sparse expan-
sions. Such assumptions are supported by the following “experi-
mental fact” : both wavelet and MDCT coefficients of audio signals
feature a significant peak near the origin, together with heavy tails.
These pdfs could be modelled, in first approximation, as mixtures
of two pdfs with significantly different variances : small and large
coefficients. The latter may be interpreted in terms oflayersof dif-
ferent nature in the signal. An illustration of this fact can be found in
Fig. 1, in which the pdfs of wavelet and MDCT coefficients of two
audio signals (organ and castanet) are displayed. These pdfs indeed
exhibit the above mentioned behavior, and suggest developing signal
models that would indeed match the behaviors observed inFig. 1.
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Fig. 1. pdf of various representations of two sample signals : cas-
tanet (solid line) and organ (dotted line) : wavelet (left) and MDCT
(right) coefficients.

The models we propose aim at reproducing such a behavior, and
are based on the following ingredients. We work in a finite dimen-
sional setting, and denote byIN = {1, . . . N} a corresponding in-
dex set.

• Waveforms : we consider orthonormal basesU = {u1, ..un}
andΨ = {ψ1, ...ψn} of CN , and thedictionaryconstructed
as the unionU ∪Ψ.

• Significance maps : let Λ and∆ be random subsets of the
index setIN , and for a given realization of∆ (resp. Λ), let
X∆

n (resp. XΛ
n ) denote the corresponding (random) indica-

tor : X∆
n =1 if n ∈ ∆ and 0 otherwise (similarly forΛ).

• Coefficients : to eachδ ∈ ∆ (resp.λ ∈ Λ) is associated a
random variableβδ (resp.αλ). These random variables will
be assumed i.i.d.N (0, σ̃2) (resp.N (0, σ2)), and theα and
β coefficients are also assumed independent.

The random waveform model associated with these data takes the
form

x =

N∑
n=1

X∆
n βnun +

N∑
m=1

XΛ
mαmψm + r , (1)

wherer is someresidualsignal, modelled as a second order, wide
sense (cyclically) stationary random signal. Here, we shall limit our-
selves to the simple case of a Gaussian white noise.

Numerical experiments show that such models do succeed at re-
producing the behavior of the pdfs displayed inFig. 1 andFig. 2
show the pdfs of MDCT and wavelet coefficients of signals gener-
ated according to the above model.

Given such a signal model, the main problems are the following :
from one (or several) realization(s) of the signal, assumingsparsity
(i.e. the significance maps are small sets) anddictionary incoherence
(i.e. the two bases are “significantly different”),

1. Parameter estimation : estimate the parameters of the model
(variances of coefficients, distribution of the significance maps,...)
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Fig. 2. pdfs of wavelet (left) and MDCT (right) coefficients of a
synthetic signal generated following the Random Waveform Model.

2. Estimate the significance mapsΛ and∆.

3. Estimate the twolayers: theU andΨ parts of the signal

xU =

N∑
n=1

X∆
n βnun , xΨ =

N∑
m=1

XΛ
mαmψm (2)

To identify the so-obtained layers with tonal and transient compo-
nents of ausio signals, the orthonormal basesU andΨ have to be
chosen adequately. Following, among others [4] we limit ourselves
to the case of a wavelet basis for the transient part, and an MDCT
basis (with sufficiently large window, say about 25 or 50 msec long)
for the tonal part. Other choices are possible, among which MDCT
bases with different window sizes, or more generally frames.

2. THEORETICAL STUDY

2.1. Parseval weights, and behavior of observed coefficients

The main ingredients of the study will be theobservedcoefficients
of the signal with respect to the two bases :

bn = 〈x, un〉 , am = 〈x, ψm〉 . (3)

Conditionally to the significance mapsΛ and∆ these are (corre-
lated) zero mean Gaussian random variables. Their covariance struc-
ture is governed by the Parseval weights

pn(Λ) =
∑
λ∈Λ

|〈un, ψλ〉|2 , (4)

p̃m(∆) =
∑
δ∈∆

|〈uδ, ψm〉|2 , (5)

whose distribution depends on the coherence of the dictionary, and
the distribution of the significance maps. More precisely :

• The sparser the significance maps, the smaller the Parseval
weights.

• The more “different” the two bases, the smaller the Parseval
weights.

The uncorrelatedness of the coefficientsα andβ in fact yield the
following Gaussian mixture model for the observed coefficients. For
wavelet coefficients (a similar result holds true for MDCT coeffi-
cients) we can state

Theorem 1 Under the above assumptions, withr a white noise with
varianceσ2

0 ,

1. Conditional to the significance maps, the observed wavelet
coefficients are zero-mean Gaussian random variables, with
variance

Var{am} = σ2XΛ
m + σ̃2pm(∆) + σ2

0 (6)

2. For every eigenvaluez of the covariance matrix, there is an
indexk ∈ IN such that

|z − Var{ak}| ≤ σ̃2
√
pk(∆)

∑
` 6=k

√
p`(∆) (7)

Sketch of the proof :The computation of the covariance matrices of
the observed coefficients may be carried out explicitely, and yields
the following result

E0{aka`} = (σ2XΛ
k + σ2

0)δk` + σ̃2
N∑

m=1

X∆
m〈ψk, um〉〈um, ψ`〉 ,

The estimate in the second part of the theorem then follows from
Gershgorin’s disk theorem. The case of MDCT coefficients is han-
dled similarly. �

Taking the randomness of the significance maps into account,
we obtain a mixture of two Gaussian mixtures, whose characteristics
depend upon the distribution of the Parseval weights. We denote by
p andp̃ themembership probabilitiesof the maps (points of the maps
are assumed to be identically distributed)

p̃ = P{n ∈ ∆} , p = P{n ∈ Λ} , n ∈ IN . (8)

Numerical simulations (not shown here) actually show that if the sig-
nificance maps are sparse enough (i.e. ifp andp̃ are small enough),
and if the two bases are sufficiently different, then the Parseval weights
tend to be small, and the distribution of observed coefficients repro-
duces fairly well the “experimental” shapes displayed inFig. 1.

“Mean field” type approximations yield fairly simple approx-
imations of the distribution of observed coefficients as mixture of
two Gaussians. Denote byE∆ the expectation with respect to the
significance map∆. Then one has for example

Corollary 1 Assume that the elements of the index setIN are iden-
tically distributed. Then on average with respect to∆,

E∆ {E {aman}} = δmn

(
σ2XΛ

m + p̃σ̃2 + σ2
0

)
. (9)

This results kind of supports a model of mixture of two gaussians.
However, it is worth stressing that the latter equation does not in-
volve the two bases, and only exploits the sparsity of the signifi-
cance maps. In other words, it does not depend on whether the two
basesU andΨ are very different or not (it would hold true as well
if U = Ψ).

Interestingly enough, the estimates given in Theorem 1 and Corol-
lary 1 do not involve second order moments of the significance maps.
Informations regarding the dependence between elements in the in-
dex set show up in higher order moments of the observed coeffi-
cients. Different models, including Bernoulli models, or structured
models such as Markov or Ising models, yield different estimates.

2.2. Estimating parameters, significance maps and coefficients
in the case of the Bernoulli model

We now limit ourselves to the case of significance maps distributed
according aBernoulli model: starting from fixed membership prob-
abilitiesp (resp. p̃), the index valuesn ∈ IN are iid, and belong to
Λ (resp. ∆) with probability p (resp. p̃) and toΛ (resp. ∆) with
probability1− p (resp.1− p̃).

Given observed coefficients, the simplest strategy for estimating
parameters of the model is to rely on Theorem 1, and fit a Gaussian



mixture model to the empirical distribution of observed coefficients.
In such a way, one ends up with estimates for membership probabil-
ities p andp̃, and variancesσ2, σ̃2 andσ2

0 . Given this empirical es-
timates, observed coefficients may be classified accordingly, which
yields estimateŝ∆ and Λ̂ for the significance maps (see Section 3
for more details).

However, it is worth mentioning that the Gaussian mixture fit
here is not a simple problem, as according to Theorem 1, the ob-
served coefficients are distributed according to a mixture of two
(hopefully significantly different) Gaussian mixtures. In our ap-
proach, the strategy is to fit it with a mixture of a small number
of Gaussians, most generally larger than two (which would be the
choice suggested by Corollary 1).

Finally, assuming that the parameters and significance maps have
been suitably estimated, the estimation of the layers may be carried
out in a simple way. Depending on the situation, two different ap-
proaches for that problem can be exploited.

1. Assume that theΨ andU components of the signal are sparse
enough. Then the estimates∆̂ andΛ̂ of the significance maps
generate asub-dictionaryD̂ = {ψλ, λ ∈ Λ̂} ∪ {uδ, δ ∈ ∆̂}
of the complete waveform dictionaryU ∪Ψ. Therefore, the
orthogonal projection of the signalx onto the linear span of
D directly yields the desired decomposition.

2. If the signal is not sparse enough, i.e. if the estimated sig-
nificance maps are large sets, the above technique (which in-
volves the inversion of a matrix as large as the dictionary)
may yield high computational load. In such a case, instead
of an orthogonal projection (that minimizes the distance be-
tweenx and the linear span of the dictionary), a Wiener-type
method may be used (which amounts to minimize the dis-
tance betweenx and the linear span of the dictionary, on av-
erage with respect toP0). More precisely, an estimate of the
form {

x̂Ψ =
∑

λ∈Λ tλaλψλ ,
x̂U =

∑
δ∈∆ t̃δbδuδ

(10)

is seeked, where the weights are chosen so as to minimize the
mean squared error.

This may be done thanks to the following

Theorem 2 Conditionally to the significance map∆, the optimal
weightstλ and t̃δ for the Wiener-type estimate (10) in the transient
layer are given by tλ = σ2

σ2+σ̃2pλ(∆)+σ2
0
,

t̃δ = σ̃2

σ̃2+σ2pδ(Λ)+σ2
0
.

(11)

3. ALGORITHMS AND NUMERICAL RESULTS

We now illustrate and comment on the results obtained using the
“three-steps” procedures we developed for the estimation and sep-
aration of the two layers above, in the framework of the Bernoulli
model. Using a pair of orthonormal bases (here, wavelet and MDCT
bases), we proceed as follows :

• Computation of observed wavelet and MDCT coefficients of
the signal, followed by an estimation of the parameters of the
models (variances, membership probabilities). For this, we
use EM algorithms, which are very well adapted to Gaussian
mixtures. However, due to the fact that all Gaussian pdfs that
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Fig. 3. Xilophone signal, decomposed using an MDCT (window
length 2048 samples) and a Daubechies 10 wavelet basis. Top : orig-
inal; middle : tonal layer; bottom : transient layer

come into play here are zero-mean, and that more than two
pdfs are to be estimated, we rely on an approximate approach
in which the EM algorithm is ran several times for separating
the “large variance” component from several “small variance”
ones.

• Estimation of the significance maps : the EM algorithm de-
scribed above labels the observed coefficients, depending on
the pdf they are assigned to. “Large variance” coefficients are
assigned to the significance mapsΛ and∆.

• Estimation of the two layers : according to the above discus-
sion, two approaches were tested and compared.

1. Least square optimization on the subdictionary

D̂ = {ψλ, λ ∈ Λ̂} ∪ {uδ, δ ∈ ∆̂} .

of D = Ψ ∪ U induced by the significance maps.
This amounts to compute the Gram matrix associated
to the family of time-frequency atoms corresponding to
∆̂ andΛ̂, and obtain new coefficients by applying the
matrix to the observed coefficients.

2. Wiener-type filtering of retained coefficientsaλ andbδ,
following the lines of Theorem 2, and equations (10)
and (11).

An example of separation between tonal and transient layer based
upon the Bernoulli model is displayed inFig. 3 andFig. 4. The sig-
nal is a short 1.5 sec long piece of xilophone signal, sampled at 44.1
kHz. The two orthonormal bases were an MDCT basis (with maxi-
mally smooth, 2048 samples long window), and Daubechies 10 and
Daubechies 20 wavelet bases. The two layers were estimated follow-
ing the lines of the algorithm presented above, using the orthogonal
projection method for computing the layers from estimated signifi-
cance map and coefficients.

As may be seen, the algorithm did a fairly good job at separating
the different components; as could be anticipated, the transients are
better resolved when a Daub10 wavelet basis is used than with the
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Fig. 4. Xilophone signal, decomposed using an MDCT (window
length 2048 samples) and a Daubechies 20 wavelet basis. Top : orig-
inal; middle : tonal layer; bottom : transient layer

Daub20 basis, which has poorer time localization. In both cases,
|∆̂|+ |Λ̂| < 1600, i.e. about 4% of coefficients (out of 65536) were
retained.

Using the Wiener-type approach for computing the transient and
tonal estimates (results not shown here) yields similar estimates, of
poorer quality though. This could be anticipated, as the Wiener-
type estimates come from anaverageerror minimization (unlike the
Gram matrix based estimation, that exploits the realization of the
signal at hand).

4. CONCLUSIONS

We have presented in this note a family of simple random models in-
volving sparse expansions in waveform dictionaries. We have more
specially focused on dictionaries constructed as unions of two (sig-
nificantly different) orthonormal basesΨ andU of the underlying
signal space. Numerical simulations show that such models turn out
to be fairly realistic for describing audio signals, which suggest to
exploit them for audio coding.

A more precise study of the behavior of theobserved coefficients
of the signal with respect to theΨ andU bases leads to simple strat-
egy for estimating the corresponding layers. This approach turns
out to produce very sparse approximations of audio signals. Even
though these approximations seem to be of poorer quality than those
obtained using more sophisticated approaches (see for example [8]),
our approach (which may be seen as a first step towards more elabo-
rate models) is much simpler, and efficient in terms of computational
load.

Among the extensions that are currently under study, let us men-
tion two possible ways of improving the models we propose :

• Frames : replacing the orthonormal bases with frames of
waveforms (see for example [9] for a definition) would allow
one to use waveforms possessing better time-frequency local-
ization properties. However, the redundancy of frames hap-
pens to make the analysis more difficult, in particular when it
comes to estimate the significance maps. Different strategies
seem to be needed here.

• Structures :As shown in [3, 4], relying on individual coef-
ficients is often not enough to split audio signals into layers
in a sensible way. Consideringstructured setsof coefficients
instead than individual coefficients turned out to significantly
improve the results. The random waveform models we pre-
sented here offer ways of implementing structures into the
model. However, the resulting estimation algorithms do not
seem to remain as simple as the algorithms adapted to the
Bernoulli case.

To conclude, let us also mention alternative algorithms, based on
variational approaches, which have been considered recently [10].
A systematic comparison with such approaches would probably be
extremely instructive.
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