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Abstract— Digital color cameras acquire color images by
means of a sensor on which a color filter array (CFA) is
overlaid. The Bayer CFA dominates the consumer market and
little attention has been directed to the design of alternative
CFAs in the literature. Recent works of Hirakawa et al. [1]–[4]
introduced new insights in this field by focusing on the spectral
properties of CFAs and operating directly in the Fourier domain.
However, this new paradigm is generic and leaves open questions
about the optimization of the many available parameters. In
this work, we investigate the link between them and the light
sensitivity and color discrimination capabilities of the CFA.
Indeed, these characteristics determine the quality of the whole
imaging pipeline, since they directly control its sensitivity to noise.
By optimizing the key parameters, we obtain a class of new CFAs
with optimal properties, in which the shortest 2×3 pattern shows
up as the best compromise. Moreover, a simple and efficient linear
demosaicking algorithm is associated to these CFAs, which fully
exploits their spectral properties. Practical experiments confirm
the superiority of our new design.

Index Terms— Color filter array (CFA), color imaging, de-
mosaicking, digital camera pipeline, spatio-spectral sampling,
luminance/chrominance gains, noise sensitivity.

I. INTRODUCTION

The growing popularity of digital photography demands

every attempt of improvement in terms of quality and speed of

the features provided in digital cameras. The heart of a digital

still or video camera is its sensor, a 2-D array of light-sensitive

diodes (photosites) that measure the amount of light absorbed

during the exposure time. Since only one measurement is

performed by each photosite, the color information is obtained

by means of a color filter array (CFA) overlaid on the sensor,

such that each photosite is covered by a color filter sensitive

to only a portion of the visible light spectrum [5]. For a sensor

with given geometry, the CFA is the most crucial element in

the imaging pipeline that determines the image quality [5],

[6]. From the mosaicked image acquired by the camera, some

processing is required to recover a full color image with three

components per pixel, carrying information in the red (R),

green (G) and blue (B) spectral bands to which the human

visual system (HVS) is sensitive. This reconstruction operation

is called demosaicking, see e.g. [5], [7]–[9].

This work was performed in part during the stay of the author at the
Helmholtz Zentrum München — German Research Center for Environmental
Health, Neuherberg, Germany, where he was supported by the Marie Curie Ex-
cellence Team Grant MEXT-CT-2004-013477, Acronym MAMEBIA, funded
by the European Commission.

The Bayer CFA [10], which consists in filters with the

primary colors R,G,B, is the most popular and dominates the

consumer market. Other CFAs have been proposed and are

currently used in some imaging devices; some of these are

compared in [11]. We can mention for instance the CMY CFA,

where the R,G,B filters of the Bayer CFA are replaced by

filters with the complementary colors C (cyan), M (magenta)

and Y (yellow), yielding a doubled sensitivity. Also, Kodak

recently patented new CFAs containing transparent (panchro-

matic) filters, in addition to R,G,B filters [12]. They should

replace the Bayer CFA in the next generation of cameras

of this manufacturer. However, all these CFAs (see also [7],

[13]–[15]) have been designed empirically, and a thorough

theory for CFA design has been lacking so far. There is a

vast literature dealing with the best way to reduce artifacts

during the demosaicking process, but these artifacts inherently

originate from the suboptimal choice of the Bayer CFA itself.

A breakthrough in the field was made recently by Hirakawa

et al., who proposed to design CFAs directly in the Fourier

domain, without constraints on the colors of the filters in the

spatial domain. Based on previous work characterizing the

spectral properties of the Bayer CFA [8] and showing that

the mosaicked image actually consists in the superposition

of modulated signals encoding the color information, they

proposed to design a CFA so that these signals, expressed

in some basis where they are decorrelated, tile the frequency

plane with minimum overlap [1]–[3]. However, this paradigm

is quite general and it leaves open questions about the choice

of the many degrees of freedom that are left free.

The aim of this work is to investigate the link between these

parameters and the light sensitivity and color discrimination

capabilities of the CFA, hence, its sensitivity to noise, which

is crucial for the quality of the whole imaging pipeline. In fact,

the mosaicked image, which encodes the three channels of the

color scene together, is corrupted by noise in practice [16].

Thus, the image quality after subsequent reconstruction (de-

mosaicking) directly depends on the signal-to-noise ratio for

each of the three channels. Moreover, higher sensitivity prop-

erties allow, when acquiring a given picture, to reduce the

exposure time (for less blur due to shake of the camera) or

to increase the aperture (for increased depth-of-field, hence

less out-of-focus blur). This is particularly important for

photography in low-light level environments. Hence, the need

really exists for developing new CFAs with improved light

sensitivity. So, the essence of CFA design consists in ensuring
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that maximum energy of the color scene is packed into the

mosaicked image. However, the sensitivity of a CFA with

respect to the luminance and the one with respect to the

chrominance information (the ability to discriminate colors)

are antagonist characteristics. For instance, a transparent CFA

lets all the photons reach the sensor, and then has maximum

light sensitivity, but the color information is completely lost.

In this work, by optimizing the key parameters in the

Fourier domain, we show how to design CFAs that attain

the best possible compromise in this respect, while at the

same time being little prone to inter-channel aliasing. The

paper is organized as follows. In Section II, we express the

design problem in the Fourier domain, using a characteri-

zation of the spectral properties of CFAs in an appropriate

luminance/chrominance basis that decorrelates the degrees of

freedom. In Section III, we put some requirements on the

design and tune the remaining parameters to obtain a class of

new CFAs with optimal sensitivity properties and robustness

to inter-channel aliasing. We then discuss in Section IV the

criteria of choice that play an important role when choosing

a particular CFA in this class. As a result, the CFA with

2 × 3 periodicity appears as a well-balanced compromise

with many advantages over every other design for high image

fidelity. In Section V, we present a simple and efficient linear

demosaicking method that fully exploits the specificities of

our new CFAs. We illustrate in Section VI the relevance of

the proposed design by practical experiments, which show its

superiority both in noiseless and noisy situations.

II. SPECTRAL CHARACTERIZATION OF CFAS

In this article, boldface quantities denote vectors, e.g. k =
[k1, k2]

T ∈ Z
2 and 0 = [0, 0]T.

We define a CFA as a color image cfa = (cfa[k])k∈Z2 ,

where cfa[k] =
[
cfaR[k], cfaG[k], cfaB[k]

]T ∈ [0, 1]3 is the

color value in the R,G,B basis of the filter centered at the

location k. For instance, a green filter corresponds to [0, 1, 0]T.

We put emphasis on the fact that the components of cfa[k]
are constrained to lie in [0, 1] for physical realizability. Also,

the color values correspond to opacity rates: the white color

[1, 1, 1]T stands for a transparent filter. A CFA cfa is periodic

with generating pattern of size N1×N2 if cfa[k1 +N1, k2] =
cfa[k1, k2 + N2] = cfa[k] for every k. We focus in this work

on periodic CFAs; thus, the design of CFAs having a random

pattern, like e.g. in [15], is beyond the scope of this paper.

Also, we consider patterns defined on the square lattice, but

the principles developed in this work could be extended to

other geometries, e.g. hexagonal arrangements.

We define the color image im = (im[k])k∈Z2 as the ground

truth to be estimated by the demosaicking process. That is,

im[k] is the vector of the three R,G,B values that would

have been obtained by the photosite at the location k, if

three measurements had been performed using R,G,B filters

in front of the sensor. Consequently, the mosaicked image

v = (v[k])k∈Z2 is such that

v[k] = im[k]Tcfa[k] ∀k ∈ Z
2. (1)

Note that this model holds in the ideal noise free situation. In

practice, an additive random term modeling the effect of noise

has to be added in (1) [16].

It is well known that in natural images, the R,G,B compo-

nents are not independent [5], [17]–[20]. Thus, we define the

orthonormal basis corresponding to luminance, red/green and

yellow/blue chrominance, as

L =
1√
3
[1, 1, 1]T, C1 =

1√
2
[−1, 1, 0]T, C2 =

1√
6
[−1,−1, 2].

(2)

We denote uL, uC1 , and uC2 the components of a color

signal u in this basis. According to the theory of opponent

colors, validated by experimental evidences [21], this lumi-

nance/chrominance basis is a good model of the three channels

used in the HVS to process the visual information. In fact, the

components of natural images can be considered as statistically

independent in this basis [17].

There is a temptation to define the luminance with a

higher weight for the green channel, arguing that the contrast

sensitivity function of the HVS is higher for this channel. For

this reason, the Bayer CFA has twice more green filters as red

or blue ones. However, contrary to what Bayer thought as he

designed his CFA, having more green filters does not enable a

better estimation of the luminance, as shown in [8]. Actually,

exchanging the blue and green colors in the Bayer pattern

can improve the quality of the demosaicking process [8].

So, we prefer defining the luminance without preferred color

component. This ensures the orthogonality of the L, C1, C2

basis for maximum decorrelation of the image content in this

basis.

In order to analyse the properties of the Bayer CFA,

Alleysson et al. showed that the mosaicked image v can be

interpreted, in the Fourier domain, as the sum of the luminance

and chrominance components of the color reference image im,

moved at different locations of the frequency plane [8]. We

extend this characterization to every CFA, by simply writing

cfa as the sum of its Fourier components:

cfaX [k] =

⌊
N1

2
⌋∑

n1=⌊
N1−1

2
⌋

⌊
N2

2
⌋∑

n2=0

αX
n

cos

(
2πn1

N1
k1 +

2πn2

N2
k2

)
+

βX
n sin

(
2πn1

N1
k1 +

2πn2

N2
k2

)
(3)

for every X ∈ {L, C1, C2} and k ∈ Z
2, where ⌊·⌋ is the

rounding operator to the nearest smaller integer. So, the design

of cfa turns out to choosing its 3N1N2 Fourier coefficients

αX
n

and βX
n

appropriately. For this, we express the Fourier

transform v̂(ω) =
∑

k∈Z2 v[k]e−jω
T
k in function of the

Fourier transforms of the components of im:

v̂(ω) =
∑

X∈{L,C1,C2}

⌊
N1

2
⌋∑

n1=⌊
N1−1

2
⌋

⌊
N2

2
⌋∑

n2=0

αX
n

2

(
îmX

(
ω +

[
2πn1

N1
, 2πn2

N2

]T )
+ îmX

(
ω −

[
2πn1

N1
, 2πn2

N2

]T ))
+

βX
n

2j

(
îmX

(
ω +

[
2πn1

N1
, 2πn2

N2

]T )
− îmX

(
ω −

[
2πn1

N1
, 2πn2

N2

]T ))

(4)
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for every ω ∈ R
2. So, for every CFA, we can write the Fourier

transform of the mosaicked image as the sum of the luminance

and chrominance components îmX , replicated at the sites of

the dual lattice induced by the periodicity of the pattern.

In the spatial domain, this corresponds to writing v as the

sum of the luminance and chrominance channels of im, each

one being modulated by some specific carrier wave: expanding

(1) in the L, C1, C2 basis, we get

v[k] =
∑

X∈{L,C1,C2}

imX [k]×

⌊
N1

2
⌋∑

n1=⌊
N1−1

2
⌋

⌊
N2

2
⌋∑

n2=0

αX
n cos

(
2πn1

N1
k1 +

2πn2

N2
k2

)
+

βX
n sin

(
2πn1

N1
k1 +

2πn2

N2
k2

)
. (5)

The major contribution of Hirakawa et al. to the problem

of CFA design was the idea of directly designing the CFA in

the Fourier domain by optimizing the carrier waves, so that

the baseband luminance is at the origin and the chrominance

is modulated far away from it [1]–[3]. This constrains the

degrees of freedom N1, N2, α
X
n , βX

n to some extent, but the

question of further defining the many remaining parameters is

left open. This is the aim of this work to show how tuning

these parameters to obtain a CFA with optimal sensitivity

characteristics, hence, robustness of the imaging pipeline to

sensor noise. We note that Hirakawa et al. work with the

G, R − G, B − G basis, which is not orthogonal and does

not decorrelate the color image content at best. Separating

the carrier waves in the basis L, C1, C2 instead, as done in

this work, allows to reduce the bandwidth of the chrominance

channels—hence, aliasing with the luminance—even more.

III. A NEW FAMILY OF CFAS WITH OPTIMAL

SENSITIVITY CHARACTERISTICS

We now construct step by step a family of CFAs by

enforcing some design criteria in the frequency domain. Thus,

we progressively reduce the number of degrees of freedom

to finally obtain a class of CFAs parameterized by only

two values. We discuss the optimization of these remaining

parameters in the next section.

The requirements we adopt are the following:

Condition 1) For the CFA to be physically realizable,

the values cfaX [k] have to lie in [0, 1]. This implies that

αL
0 > 0. In other words, the luminance of im appears in

the low-frequency part of v. In order to avoid aliasing of the

luminance information, we impose that there be no replica of

the luminance at other frequencies than zero, in the spectrum

of v; that is,

αL
n = βL

n = 0 ∀n 6= 0. (6)

Also, having a uniform quantum efficiency accross the image

plane reduces the issues of under- and over-saturation of the

sensor measurements. Hence, (3) gives cfaL[k] = αL
0
, which

is then a constant. Further on, we rewrite this value γL =
αL

0
and call it the luminance gain of the CFA. This value

lies in the interval [0,
√

3] and characterizes the average light

sensitivity of the CFA. This is a crucial parameter, as explained

in the Introduction. The Bayer CFA satisfies this condition,

with cfaR[k] + cfaG[k] + cfaB[k] = 1; hence, its luminance

gain is 1/
√

3.

Condition 2) Since the three luminance and chrominance

channels of im are assumed mutually independent, we im-

pose, in order to be able to separate them optimally during

the demosaicking process, that their carrier waves in (5) be

orthogonal. This yields the condition

⌊
N1

2
⌋∑

n1=⌊
N1−1

2
⌋

⌊
N2

2
⌋∑

n2=0

αX
n αY

n + βX
n βY

n = 0, (7)

for every X, Y ∈ {L, C1, C2}, X 6= Y .

As a first consequence, due to the condition 1), we obtain

αC1

0
= αC2

0
= 0: there is no chrominance in the low-frequency

part of v. This also means that the CFA will capture, in

average, the same amount of R, G and B light:

N1∑

k1=1

N2∑

k2=1

cfaR[k] =

N1∑

k1=1

N2∑

k2=1

cfaG[k] =

N1∑

k1=1

N2∑

k2=1

cfaB[k].

(8)

The Bayer CFA does not satisfy this requirement, with a

sensitivity to G two times higher than the one to B or R.

Condition 3) Since the chrominance of im appears in the

high-frequency content of v while the luminance is in the

low frequency part, the quality of the demosaicked image is

essentially linked to the ability of correctly separating these

two parts of v in the frequency domain. In order to maximally

reduce the overlaps between the channels, we impose the

chrominance to be shifted at only one frequency ±ω0. Hence,

the information of luminance is concentrated around 0 in v̂,

while the chrominance is around ±ω0. So, the expression of

the chrominance of cfa simplifies to

cfaX [k] = αX cos(ωT
0 k) + βX sin(ωT

0 k) ∀X ∈ {C1, C2}.
(9)

The Bayer CFA does not satisfy this condition, with

the chrominance spread at the frequencies [π, 0]T, [0, π]T,

[π, π]T [8].

Due to the condition 2), the carrier waves for the two

chrominance channels are sines in quadrature: αC1αC2 +
βC1βC2 = 0. So, there is no overlap of the two informations

of chrominance, since they occupy the same frequency band,

but with different phases. In comparison with designs where

the chrominance is spread at several frequencies, like in [2],

the risk of inter-chrominance aliasing is drastically reduced,

see the example in Fig. 6. Note that this condition excludes the

frequencies [0, π]T, [π, 0]T and [π, π]T as admissible values

for ω0.

Condition 4) We impose that the gain of the two chromi-

nance channels be the same, so that the color discrimination

of the CFA is the same for every color, without privileged

chrominance axis. That is,

(αC1)2 + (βC1)2 = (αC2)2 + (βC2)2 = 2(γC)2, (10)
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where we introduce γC , the chrominance gain of the CFA.

Consequently, we can rewrite (9) as

cfaC1 [k] = γC
√

2 cos(ωT
0 k − ϕ) (11)

cfaC2 [k] = γC
√

2 sin(ωT
0 k − ϕ), (12)

for every k ∈ Z
2, where the phase ϕ is, at this point, a free

degree of freedom.

We can note that the only known CFAs with R,G,B filters

satisfying the four previous conditions are the horizontal or

vertical or diagonal stripe CFAs, depicted in [11, Fig. 2 d),e)].

Since we do not impose constraints on the colors of the filters,

we can find CFAs with much better properties, as will be

shown in the following.

Condition 5) For every CFA cfa, we define the reversed

CFA Rcfa by RcfaX [k] = 1 − cfaX [k] for every X ∈
{R, G, B},k ∈ Z

2. Rcfa has exactly the same chrominance

carrier waves (up to a change of sign) as cfa; hence, the

same chrominance gain, if defined. Only the luminance gain

is changed to
√

3 − γL. For instance, applying this reversal

process to the Bayer CFA gives the CMY CFA. Therefore,

since the light sensitivity of a CFA is one of its most crucial

characteristics, we impose

γL ≥
√

3

2
. (13)

That is, given a CFA that does not satisfy this condition, we ap-

ply the reversal process to it. This may increase the amount of

demosaicking artifacts due to luminance/chrominance aliasing

(the ratio γC/γL is reduced), but this is largely compensated

by the increased light sensitivity. Indeed, the improved signal-

to-noise ratio for the luminance signal yields a smaller amount

of noise in the luminance channel of the demosaicked image.

Condition 6) The farther the chrominance from the zero

frequency, the smaller the overlap between luminance and

chrominance in the spectrum of v. So, a crucial parameter,

in order to minimize the demosaicking artifacts, is ‖ω0‖, that

should be high enough. We remark that if N1 or N2 is even,

we can optimally place ω0 on the boundary of the Nyquist

band, far away from the zero frequency. So, like in [2], we

impose that N1 be even—the choice of N2 would yield the

same CFAs, up to a rotation of 90o. This actually reduces to

set N1 = 2, since the frequency of π yields a periodicity of 2

for the pattern of the CFA in the spatial domain. Additionally,

this minimal value of N1 provides us with CFAs having a

small repetitive pattern, hence, a small number of different

filters, with benefits for the physical realizability of the CFA.

Consequently, the modulating frequency takes the form

ω0 = [π, ω0]
T, with ω0 =

2πn2

N2
, (14)

where the integer n2 ∈ (1, ⌊(N2 − 1)/2⌋) is a free parameter,

such that n2 and N2 are relatively prime (else, the CFA reverts

to a CFA obtained with a lower value of N2). We can choose

ω0 > 0, since the opposite sign yields the same CFA, up to an

horizontal symmetry. We also note that N2 ≥ 3, since there is

no 2 × 2 CFA satisfying the six previous criteria.

We can now give the expression of every CFA satisfying

the six previous conditions as:

cfaL[k] = γL (15)

cfaC1 [k] = γC(−1)k1

√
2 cos(ω0k2 − ϕ) (16)

cfaC2 [k] = γC(−1)k1

√
2 sin(ω0k2 − ϕ), (17)

where ω0 is given by (14) and N2, n2, γL, γC , ϕ are free

parameters.

Condition 7) In order to maximize the color discrimination

capabilities of the CFA, for given values of N2, n2, and γL,

we impose the chrominance gain γC to be maximal, since

a high value of γC reduces both the demosaicking artifacts

(the chrominance information is less polluted by the high

frequency content of the luminance) and the level of noise

in the chrominance channels of the demosaicked image. After

some calculations which are given in the Appendix, we obtain

the final form of the CFAs satisfying all the above constraints

as:

cfaL[k] = γL (18)

cfaC1 [k] = γC(−1)k1+1
√

2 sin(ω0k2 − ω2) (19)

cfaC2 [k] = γC(−1)k1

√
2 cos(ω0k2 − ω2), (20)

where

γC =

√
3 − γL

2 cos(ω2)
, (21)

ω0 =
2πn2

N2
, ω2 =

π

lcm(6, N2)
, (22)

and lcm denote the least common multiple.

Let us synthesize the ideas of the design process carried

out in this section. Using the previous conditions, we derived

a new family of CFAs with the following features:

• The CFA has a periodic pattern of arbitrary size 2 × N2

(or N2 × 2 after rotation).

• The luminance of the scene lies in the low-frequency part

of the mosaicked image, with adjustable light sensitivity

γL.

• The chrominance of the scene lies in the high-frequency

part of the mosaicked image. More precisely, the chromi-

nance is the combination of two low-pass signals, mod-

ulated in quadrature at the high frequency ±ω0, opti-

mally placed on the boundary of the Nyquist band. So,

the two chrominance information are fairly encoded the

same way, and the CFA does not have a higher color

discrimination along some preferential chrominance axis.

Consequently, the R, G, and B sensitivities of the CFA

are the same.

• The chrominance gain is maximum for a given lumi-

nance gain, which means optimal color discrimination

capabilities for the CFA. Consequently, the demosaicking

artifacts are minimized and the signal-to-noise ratio in the

chrominance bands is maximized.

In the next section, we push the optimization constraints

further, and tune the remaining degrees of freedom to exhibit

a single CFA having the best properties.
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ω2

0 ω1

ω2

0 ω1

[π,
3π

4
]

[π,
π

2
]

(a) (b)

Fig. 1. If the luminance and two chrominance channels are band-limited,
it is possible to modulate the chrominance channels in quadrature at some
high frequency so that there is no aliasing. (a) Assuming that the channels
are circularly band-limited with maximum bandwidth for the luminance (big
circle), the modulating frequency [π, 3π

4
] allows the maximum bandwidth for

the chrominance (shaded circles). (b) For signals band-limited with diamond
shapes, an assumption which more accounts for the predominance of vertically
and horizontally aligned content in natural scenes, then the modulating
frequency [π, π

2
] allows the maximum bandwidth for the chrominance.

IV. SENSITIVITY VS. ROBUSTNESS TO ALIASING

Up to this point of the design, we have no indication on

how choosing the modulating frequency ω0. It should be

the farthest to the origin—that is, the closest to [π, π]T—to

minimize the aliasing between the luminance and chrominance

information. Especially, it should be far from the vertical

and horizontal axes, where some energy of the luminance

is concentrated, due to the predominance of vertical and

horizontal structures in natural scenes. On the other side, if

ω0 is too close to [π, π]T, aliasing will occur between the

two chrominance channels. Indeed, the chrominance content

should have a maximal cutoff frequency of min(ω0, π−ω0) to

avoid inter-channel aliasing. In Fig. 1, we show that ω0 should

reasonably be chosen in the interval [π
2 , 3π

4 ], depending on the

assumption we make on the power spectra of the luminance

and chrominance for typical natural images. Also, Hirakawa

showed that the cross-talk effects during acquisition, that are

neglected in this work but encountered in practice, desaturate

the chrominance information [22]. This amounts to further

reduce the chrominance gain of the CFA, and the farther ω0

from 0, the higher this reduction.

Moreover, due to the many problems encountered in practice

for manufacturing filters having precisely the required colors,

the number of distinct filters should be small. In this respect,

the 2 × 4 pattern (with N2 = 4, n2 = 1, ω0 = π
2 ) is the best,

with only four distinct filters. The size of the pattern should be

small too, to simplify the manufacture but also to simplify the

design of the demosaicking process and the visibility of some

artifacts: when high-frequency content of the chrominance is

aliased and misinterpreted as luminance information, zipper

artifacts appear with the 2 × 2 Bayer pattern. With a pattern

having a bigger size, the equivalent artifacts may be more

visually disturbing, showing a pattern with larger periodicity.

The 2 × 3 pattern is the best one in this respect.

Keeping in mind the previous remarks of this section,

we concentrate again on what we consider to be the first

and foremost design criterion in this framework; that is,

the maximization of the chrominance gain γC for a given

luminance gain γL. We used this criterion in the Condition 7)

in the previous section to constrain the admissible solutions,

but we can go one step further and also optimize the frequency

ω0 with respect to this requirement. According to Eqns. (21)

and (22), we conclude that the optimal pattern is obtained with

N2 = 3 (therefore, n2 = 1). Every other pattern in our family

has a chrominance gain 10% to 13% lower. This 2×3 pattern

is the smallest and it has a small number (six) of distinct filters.

Its modulation frequency ω0 = 2π
3 is well placed, according

to the previous discussion. So, the 2 × 3 pattern shows up as

the best compromise in the whole family.

It should be noted that in practice, the manufacturers put

a so-called anti-alias filter on the sensor, a thin layer of

a material with blurring properties that acts like a lowpass

filter on the continuously-defined color scene s(x) which is

sampled. In other words,

im[k] = (s ∗ g)(Tk) ∀k ∈ Z
2, (23)

where T is the sampling step and g is the lowpass filter

modeling the combined effect of the anti-alias filter, the micro-

lenses and the integration over the photo-sensitive surface

of each sensor pixel (assuming that the optical system is

good enough and is not the limiting factor of the resolution).

The anti-alias filter is chosen so that the cut-off frequency

of g appropriately limits the bandwidth of the luminance

and chrominance before sampling. Thus, there is no aliasing

between them after sampling. That is why we almost never

see, in pictures acquired with digital cameras, the typical

color fringes which are described in the academic literature

of demosaicking. The price to pay for removing the visually

disturbing artifacts due to aliasing is a loss of resolution1.

This means that the demosaicked image is over-sampled:

its frequency-content does not occupy the whole available

bandwidth, since the high-frequencies of the color scene

have been removed more than required to match the Nyquist

frequency associated to the sensor geometry. So, the whole

discussion about the amount of distortion due to aliasing

should be turned into a discussion about the actual resolution

of the demosaicked image. We leave the detailed analysis

of the intricate relationships between robustness to aliasing,

sensitivity properties, sensor resolution, noise level, cross-talk

effects, and the resulting image quality, to future publications,

since this goes far beyond the scope of this paper. We refer

to [6] on this topic. To conclude this point, we just have to

keep in mind that a CFA less prone to luminance/chrominance

aliasing than the Bayer CFA allows to capture the same visual

information, using a sensor of given size having a lower pixel

count.

V. DEMOSAICKING STRATEGY

A. A Generic Linear Approach to Demosaicking for the New

CFAs

Our CFAs have a natural and simple demosaicking algo-

rithm associated to them, inspired by their characteristics in

1but this is a relevant choice: to quote a remark in [2], “although it is a
well-accepted fact that our visual systems are less sensitive to changes in
color than changes in brightness, manifestation of colors utterly irrelevant to
the scene stand out more than minor alterations in brightness”.
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the Fourier domain. This demosaicking process amounts to

separate the frequency content of the mosaicked image into

the luminance and chrominance channels of the reconstructed

image. For this, we first estimate the chrominance and then

subtract it to the mosaicked image v to obtain the luminance.

The chrominance is obtained by re-modulating v so that the

chrominance is shifted in the low frequency area, and then

applying a low-pass convolution. So, the complexity of the

demosaicking process is basically limited to two convolutions!

In addition, they use the same filter and can be performed in

parallel.

More precisely, the demosaicking method proposed consists

in the following steps, where we denote by ĩm the demo-

saicked image, that aims at estimating im.

1) Compute the image v1 from v by modulation with

the carrier wave of the chrominance C1: v1[k] =
(−1)k1+1

√
2 sin(ω0k2 − ω2)/γC v[k].

2) Apply the convolution with the appropriate low-pass

filter h: ĩm
C1

= v1 ∗ h.

3) Compute the image v2 from v by modulation with

the carrier wave of the chrominance C2: v2[k] =
(−1)k1

√
2 cos(ω0k2 − ω2)/γC v[k].

4) Apply the convolution with the same low-pass filter h:

ĩm
C2

= v2 ∗ h.

5) Estimate the luminance by subtraction of

the remodulated chrominance: ĩm
L
[k] =(

v[k] − γC(−1)k1+1
√

2 sin(ω0k2 − ω2) ĩm
C1

[k] −

γC(−1)k1

√
2 cos(ω0k2 − ω2) ĩm

C2

[k]
)

/γL.

6) Compute ĩm
R
, ĩm

G
, ĩm

B
by change of basis from

ĩm
C1

, ĩm
C2

, ĩm
L

.

In practice, the values of the carrier waves should be pre-

computed in a look-up table of size 2N2, to exploit their peri-

odicity. We also remark that it is equivalent to directly estimate

the luminance from v by convolution: we have ĩm
L

= v ∗ g,

where g[k] =
(
δk,0 − 2(−1)k1 cos(ω0k2)h[k]

)
/γL and the

Kronecker symbol is defined by δx,y = {1 if x = y, 0 else}.

This possibility may be interesting if the luminance is to be

computed in parallel with the chrominance.

If cross-talk has to be taken into account and corrected,

the method proposed in [22] simply amounts to multiplying

ĩm
C1

and ĩm
C2

by some constant between steps 5 and 6.

The proposed algorithm can be easily adapted to handle

other CFAs. It turns out that our algorithm does the same,

but more efficiently, as the generic approach of Hirakawa et

al. [2], [4]. In particular, for their 2×4 CFA, our algorithm can

be used, by putting the appropriate values for the gains and

the modulating frequencies (see Sect. VI-A). The algorithm

can also be adapted for the Bayer CFA; this exactly yields

the linear algorithm of Dubois [9]. Note that with CFAs other

than the new ones proposed in this work, the estimation of the

luminance is not equivalent to a convolution any more. This

makes the analysis of the process in noisy situations and the

development of efficient denoising strategies more difficult.
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Fig. 2. The 9× 9 filter used for estimating the chrominance, optimal in the
least-squares sense, for the proposed 2 × 3 CFA (depicted as CFA (VI) in
Fig 3) (a) and its spectrum (b).

The choice of the filter h still has to be discussed. It

is possible to use, like in [4], a short separable filter, with

zeros at ω0 and 2ω0 for the vertical filter and at π for the

horizontal one. In this work, for comparison purpose between

the CFAs, we use in Sect. VI for every CFA the non-separable

9 × 9 filter(s) optimal in the least-squares sense. That is,

we minimize the error ‖Ax − b‖2, where x is the vector

containing the 81 coefficients, in lexicographic order, of the

filter h we are seeking; A is the matrix whose each row

contains the 81 chrominance values for every 9 × 9 patch of

the mosaicked images in the whole test set of 20 images; b

is the vector containing the true chrominance values for the

corresponding center pixel of the patch. It is known that the

solution of this standard linear algebra problem has the form

x = (AT
A)−1

A
T
b. So, the LS-optimal filters are solutions

of 81×81 linear systems, which have to be solved off-line only

once for every CFA. The filter h obtained for our CFA (VI) is

depicted in Fig. 2. For the Bayer filter, we computed for the

C3 chrominance (see Sect. VI-A) the filter such that, when

applied at [π, 0]T and its transpose at [0, π]T, the estimation

based on the average of the two results is optimal in the LS

sense.

Therefore, by using the LS-optimal filters, we are able

to exploit at best the intrinsic properties of the CFAs. The

combination of the generic linear framework based on spectral

selection and the optimal filters associated to each CFA

provides a fair and robust way for comparing the performances

of CFAs.

B. Behavior in Noisy Conditions

The linearity of the demosaicking process is a very impor-

tant property in the case the mosaicked image is corrupted

by sensor noise. The linearity allows to precisely describe

the behavior of the noise throughout the process and to

develop efficient strategies for subsequent denoising or for

joint demosaicking/denoising. On the contrary, non-linear de-

mosaicking approaches may provide better results in ideal

noiseless conditions, but their mechanisms use properties of

the image that may be not exploitable any more in the noisy

case. In addition to this lack of robustness, they distort the

noise characteristics, so that denoising is made much harder.

Since the study of joint demosaicking and denoising would go

far beyond the scope of this paper, we limit our analysis to
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(I) (II) (III) (IV) (V) (VI) (VII)

Fig. 3. The seven CFAs used in our experiments. (I): Bayer pattern [10], (II): Bayer pattern with permuted G and B channels, (III): CMY pattern [10],

(IV): Hirakawa pattern [1], [2] (γL =
√

3
2

), (V): proposed 2× 8 pattern (γL =
√

3
2

), (VI): proposed 2× 3 pattern (γL =
√

3
2

), (VII): proposed 2× 3 pattern

with higher luminance gain (γL = 2√
3

, like for the CMY pattern).

(I) R/B (VI)
(V)

(IV) R/B

(IV) G/M
(I) G/M

(III) R/G

(III) Y/B

(VII)
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Fig. 4. Luminance and chrominance gains for the CFA depicted in Fig. 3.

the behavior of noise throughout the proposed demosaicking

process, denoted by D thereafter

Since D is linear, applying it to the mosaicked image vn =
v+ε corrupted by additive noise yields the noisy demosaicked

image ĩmn = Dv + Dε = ĩm + Dε. Therefore, the problems

of demosaicking and denoising are separable: we can leave

the demosaicking process unchanged in presence of noise and

concentrate on the denoising task which consists in estimating

ĩm from ĩmn, performed after demosaicking. Let us focus on

the characteristics of the color noise εεε = Dε, in the case ε is

a realization of a white Gaussian stationary random process

with zero mean and standard deviation σ. Then, we obtain the

following results after some calculations, under the assumption

that the lowpass filter h is bandlimited with cutoff frequency

min(ω0, π − ω0):

• The three bands εL, εC1 , εC2 of εεε are statistically

independant.

• εC1 and εC2 are realizations of a Gaussian stationary

random process with zero mean and power spectrum

density σ2

(γC)2
|ĥ(ω)|2.

• εL is a realization of a Gaussian stationary random

process with zero mean and power spectrum density

σ2|ĝ(ω)|2 = σ2

(γL)2
|1 − ĥ(ω − ω0) − ĥ(ω + ω0)|2.

Thus, since the channels of ĩm are also independent in the

L, C1, C2 basis, the denoising problem is separable: we can

denoise the three channels of ĩmn in this basis, independently.

This task is made difficult by the fact that the noise is not

white, however.

VI. PERFORMANCE ANALYSIS

A. The CFAs Under Comparison

In order to evaluate the performances of our new designs,

we consider the seven CFAs depicted in Fig. 3. To compare

their characteristics, we first define another orthonormal lumi-

nance/chrominance basis:

L =
1√
3
[1, 1, 1]T, C3 =

1√
2
[−1, 0, 1]T, C4 =

1√
6
[−1, 2,−1].

(24)

Then, the seven CFAs under comparison are:

• (I). The well-known Bayer CFA [10]. It has γL = 1/
√

3.

The chrominance C4 is modulated at ω0 = [π, π]T with

γC4 =
√

6/4 and the chrominance C3 is modulated at

[0, π]T and [π, 0]T. The chrominance gain γC3 can be

defined by extension, from the amplification value of the

noise level after demosaicking by spectral selection and

averaging of these two replicas. This yields γC3 = 1/2.

• (II). The Bayer CFA, whose green and blue filters have

been exchanged, to validate the intuition given in [8] that

this variant should perform better than the Bayer CFA.

In fact, the spectral overlap between luminance and the

chrominance C3 is decreased, since there is in average

less energy in the R−G than in the R−B chrominance

band in natural images. The gains are the same as for the

Bayer CFA, considering a decomposition in C1 and C2

instead of C3 and C4.

• (III). The CMY pattern, a variant of the Bayer CFA

with doubled light sensitivity (γL = 2/
√

3) [10]. To

our knowledge, no advanced demosaicking method was

proposed for it in the literature. This CFA is the reversed

version of the CFA (II) (see Condition 5) in Section III);

so, their chrominance gains are the same. Therefore, the

linear and non-linear demosaicking methods based on

spectral selection, like in [8], [9], can be applied to this

CFA the same way, after only changing some constant

values in the algorithms.

• (IV). The pattern of type 1 recently designed by Hirakawa

et al. [1], [2]. It consists in filters with the colors [ 12 , 1, 0],
[0, 1, 1

2 ], [1, 0, 1
2 ] and [ 12 , 0, 1] arranged with a 2 × 4

periodicity. The results reported in [1], [2] makes this

CFA the best proposed to date. Its luminance gain is γL =√
3/2. The chrominance C3 is modulated at ω0 = [π, π]T

with γC3 =
√

2/4 and the chrominance C4 is modulated

at ω0 = [π, π/2]T with γC4 =
√

6/4. This CFA has been

obtained by maximizing the total chrominance energy(
γC3

)2
+

(
γC4

)2
among all possible patterns of size 2×4.
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Original (I) (II) (III)

(IV) (V) (VI) (VII)

Fig. 5. Results of our demosaicking method used with the seven CFAs depicted in Fig. 3, on a grayscale synthetic zoneplate pattern.

• (V). The proposed 2×8 pattern with γL =
√

3/2, which

has chrominance modulated at ω0 = [π, 3π/4]T with

γC ≈ 0.433.

• (VI). The proposed 2×3 pattern with γL =
√

3/2, which

has chrominance modulated at ω0 = [π, 2π/3]T with

γC = 1/2. This CFA is made of filters with the colors

[1, 0, 1
2 ], [1, 1

2 , 0], [0, 1, 1
2 ], [0, 1

2 , 1], [ 12 , 0, 1] and [ 12 , 1, 0].
• (VII). The proposed 2× 3 pattern with higher luminance

gain γL = 2/
√

3, like the CFA (III). Its chrominance

gain is γC = 1/3.

The luminance and chrominance gains of these CFAs are

summarized in Fig. 4. We first remark that the CFAs (I)–(III)

have maximal chrominance gains for their respective lumi-

nance gains, since they are made of filters having maximally

saturated colors. Secondly, the CFAs (IV) and (VI) have the

same chrominance energy captured in the mosaicked image:(
γC3

)2
+

(
γC4

)2
= 1/2 in both cases. However, this is

obtained for the CFA (IV) at the cost of a strong asymmetry

between the two color components: γC4/γC3 =
√

3. This

means that noise is much more amplified in the B − R band

than in the G − M band after demosaicking. Also note that

for the CFAs (III) to (VI), increasing γL simply amounts to

take a linear combination of the CFA with the transparent

CFA (cfa[k] = [1, 1, 1]T ∀k). So, the chrominance gains are

reduced in the same extent. Since these gains are already

smaller than γL, which indicates a higher amplification of

chrominance noise than luminance noise during demosaicking,

γL should be maintained at its smallest value. So, the CFA

(VII) is given only for illustration purpose; in comparison with

the CFA (VI), it is more sensitive to luminance/chrominance

aliasing and the chrominance noise is even more amplified.

(a) (b) (c)

Fig. 6. Demosaicking results for the synthetic image (a), which consists
in a sine with pulsation π/5 oscillating between green and magenta. With
the CFA (IV) of Hirakawa et al. (b), aliasing between the two chrominance
bands appears, while with our CFA (VI) (c), there is only aliasing between
the chrominance and the luminance.

To visually illustrate the modulation of the chrominance

in the Fourier domain by the CFAs, we give in Fig. 5 the

images obtained when a synthetic zoneplate is mosaicked

and demosaicked with the proposed method. These images

show how the demosaicking method assigns the frequency

content of the mosaicked image—equal in this case to the

initial zoneplate, since it is gray-valued—to the luminance or

chrominance bands of the reconstructed color image. Thus,

we can see at which frequencies aliasing occurs and to which

extent. For instance, we see that the CFA (IV) is sensitive to

aliasing between the two chrominance bands. This may be vis-

ible in demosaicked natural images at sharp color transitions

for horizontally aligned objects. This effect is illustrated by a

synthetic example in Fig. 6.

B. Evaluation in Noiseless Situations

For experimental validation purpose, we consider the data

set of 20 color images of size 768 × 512 used by many

authors to test their methods (e.g. [2], [23]). These images
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TABLE I

MSE FOR THE LINEAR DEMOSAICKING EXPERIMENTS USING DIFFERENT CFAS, IN THE NOISELESS CASE. IMAGE NUMBERS CORRESPOND TO [23].

Demosa. Non-linear Non-linear Proposed linear demosaicking framework
method [9] [24] with 9 × 9 LS-optimal filters

CFA Bayer Bayer Bayer Bayer CMY Hirakawa 2 × 8 2 × 3 2 × 3

G ⇔ B [1], [2] γL=
√

3
2

γL=
√

3
2

γL= 2√
3

1 10.12 11.45 12.93 12.85 21.24 6.53 6.60 7.12 12.03
2 6.80 5.75 7.92 8.17 12.53 6.01 7.42 7.07 10.02
3 10.56 10.14 13.14 11.59 14.79 12.58 13.07 13.38 20.22
4 6.47 10.15 10.26 8.84 13.65 4.80 5.09 5.32 8.73
5 4.00 5.02 3.34 4.40 5.91 4.59 5.03 4.53 6.64
6 19.31 19.26 29.25 26.28 46.55 10.92 11.42 11.90 18.38
7 3.96 3.38 5.16 4.39 6.03 3.88 4.15 4.00 5.79
8 3.91 3.56 4.42 4.01 4.73 3.57 3.70 3.58 5.03
9 6.80 7.49 8.74 8.30 11.77 5.76 6.18 6.14 9.54

10 3.20 3.39 4.17 4.05 6.36 2.93 2.95 2.92 4.09
11 19.98 27.03 20.39 18.74 25.10 16.87 16.05 17.90 31.44
12 7.35 7.08 7.82 8.40 10.36 7.06 7.40 7.36 9.80
13 2.77 4.92 5.26 4.47 7.08 2.10 2.17 2.15 3.33
14 4.42 4.66 4.69 4.21 4.85 4.14 4.30 4.54 6.79
15 12.05 13.01 12.42 11.50 13.50 11.15 11.59 11.81 18.37
16 5.92 6.30 10.06 8.77 14.69 4.48 4.73 4.87 7.47
17 5.92 5.04 6.11 4.77 5.60 4.64 4.93 5.05 7.29
18 8.51 8.72 9.34 8.13 12.15 5.59 5.90 6.04 9.62
19 9.86 9.00 10.78 9.84 12.97 8.48 8.94 8.81 11.84
20 18.94 21.42 19.29 16.70 18.67 14.24 14.92 15.44 20.39

Mean 8.54 9.25 10.36 9.42 13.43 7.02 7.33 7.50 11.34

were mosaicked using the considered CFAs and demosaicked

using spectral selection, as discussed in Sect. V. We caution

the reader that image quality after reconstruction depends on

the demosaicking method used, but the aim of this article

is not the optimization of demosaicking per se. The generic

and robust paradigm of spectral selection provides reliable

qualitative insights into the difference of image quality that

can be expected when using one or the other CFA. Note that

to simulate an acquisition with a real camera, all images were

put in landscape mode; that is, the vertical images were turned

90◦ left. Indeed, vertical pictures are taken by rotating the

camera, so that the scene presented to the sensor is rotated in

that case.

The mean squared errors (MSE)2 obtained are reported in

Tab. I. In the first two columns, we also report the results

obtained for the Bayer CFA with two state-of-the-art non-

linear demosaicking methods3, to illustrate the gains that can

be expected when non-linearly exploiting the redundancy of

the B − R chrominance modulated at [0, π]T and [π, 0]T

for this CFA. Such improvements can not be expected for

the CFAs (IV) to (VII) since each chrominance channel is

modulated at only one frequency. Also, these improvements

2The MSE between im and fim for images of size N × M is

MSE =
1

3NM

X

k∈[1..N]×[1..M]

X

X∈Ω

˛

˛im
X [k] − fim

X

[k]
˛

˛

2
, (25)

for Ω = {R, G, B} or Ω = {L, C1, C2}. However, in this article, like in [2],
we do not take into account the first and last five rows and columns of the
demosaicked images for the computation of the MSE, since the initial images
used for the tests have been badly acquired at the boundaries.

3For the method of Dubois [9], we computed the MSE using the images
available online at
http://www.site.uottawa.ca/˜edubois/demosaicking/.

For the method of Nai-Xiang et al. [24], we performed the demosaicking
experiments using the Matlab code put available online by the authors at
http://www.ntu.edu.sg/home5/CHAN0069/AFdemosaick.zip

can be achieved because of the noiseless assumption. In the

more realistic case where the mosaicked image is corrupted

by noise, it is doubtful that the redundancy can be exploited

any more, since the mechanisms involved, based on local

orientation detection, are sensitive to noise. Moreover, the

non-linear demosaicking methods distort the characteristics

of noise, which makes subsequent denoising a much more

difficult task. As result, the MSE improvement of at most 18%
obtained with the non-linear methods over our linear approach

is not so significant, especially when taking into account the

much higher computation cost.

Since the MSE results may not be sufficient to evaluate

the quality of the demosaicked images, we also provide

illustrations in Fig. 7. We have to keep in mind that the

objective of commercial photography is not so much the accu-

rate reproduction of a scene, but delivering visually pleasant

images without noticeable artifacts. From the numerical and

visual results, the following observations can be made:

• The best results are obtained with the CFA (IV). The CFA

(V) and (VI) are slightly worse, but these three CFAs

largely outperform the Bayer CFA, even when non-linear

demosaicking is used. The typical color fringes (see the

fence) and zipper effects (see the red bow) that occur

with the CFAs (I)–(III) disappear with the CFAs (IV)–

(VII). This is due to the property that with the new CFAs,

the chrominance is modulated farther away from the

origin and not on the horizontal and vertical axes of the

frequency plane, where much energy is present because of

the predominance in natural images of structures aligned

along these two canonical directions.

• In real acquisition conditions, with the CFAs (IV)–(VI),

there would not be artifacts like the ones slightly visible

in Fig. 7, since the resolution of the whole acquisition

system for oblique angles rarely matches the resolution



10 RESEARCH REPORT HAL-00347433, DEC. 2008

Original (I) (II) (III)

(IV) (V) (VI) (VII)

Fig. 7. Results of our demosaicking method used with the seven CFAs depicted in Fig. 3, on three parts of the Lighthouse image (image number 16 in
Tab. I). The image was rotated before mosaicking and rotated back after demosaicking, to simulate acquisition with a sensor aligned for landscape images.
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of the sensor (in other words, we are in a situation like

in Fig. 1). Therefore, the anti-alias filter in front of the

sensor required with the Bayer CFA is not necessary any

more with the new CFAs.

• The CFAs (III) and (VII) with larger luminance gain

yield the worst performances. This confirms the property

that the ratio γC/γL must not be too small; else, the

chrominance is polluted by the high frequencies of the

luminance. Indeed, the fringes visible with the Bayer

CFA have an even higher intensity with the CFA (III),

at every location in the image where a sharp transition is

present. For the CFA (VII), the aliasing artifacts take the

form of rainbow halos around sharp transitions oriented

at ± arctan(3/2) ≈ ±56◦ with respect to the horizontal

axis. These artifacts are the same for the CFAs (V) and

(VI), but with lower intensity.

• With the CFA (IV), the artifacts are present around

transitions with more orientations than with the CFAs

(V) and (VI), but with lower intensity, and they take

the form of bicolored instead of rainbow-like halos.

In fact, only one half of the frequency content of the

mosaicked image around ±[π, π/2]T has to be shared

between luminance and G/M chrominance during demo-

saicking. The remaining energy, at the same frequency

but with phase in quadrature, corresponds to luminance

information. This property, visible in Fig. 5, explains why

the CFA (IV) slightly outperforms the CFAs (V) and (VI),

whose modulating frequency ω0 is farther from zero,

but with two times more energy around ω0, potentially

aliased.

• The observation in [8] that exchanging the blue and green

filters of the Bayer CFA improves the performances is

confirmed, with an average 9% decrease of the MSE.

C. Evaluation in Noisy Situations

The ideal noiseless scenario does not realistically represent

real acquisition conditions. The sensor always delivers data

corrupted by noise, and the noise level is amplified by the

analog gain (corresponding to the choice of the ISO sensitivity

in the camera) applied to the sensor output before A/D conver-

sion [16]. In Fig. 8, we give examples of images demosaicked

with our approach, when the mosaicked image is corrupted by

additive white Gaussian noise of standard deviation σ = 20.

We first observe that for every CFA, most of the demosaicked

noise is concentrated in the luminance. In fact, following the

analysis in Sect. V-B, we can write, for our new CFAs, the

mean square error MSEn between the reference image and

the noisy demosaicked image ĩmn as

MSEn = MSE+
σ2

3

(
1

(γL)2
(
2‖h− δ0‖2 − 1

)
+

2

(γC)2
‖h‖2

)
.

(26)

where δ0 stands for the identity filter. For instance, with the

CFA (VI) and the adopted 9 × 9 lowpass filter h, this yields

MSEn = MSE + 0.45σ2, with 86% of the noise energy in

the luminance of ĩmn. Such an analytical study of the noise

characteristics can be carried out for the other CFAs, but

the analysis is more complicated, since the two chrominance

bands are not modulated at the same frequency. Therefore, we

provide in Fig. 9 the results of numerical simulations showing

the MSE increase as a function of the noise level σ. Of course,

a denoising method would be applied in real applications,

but the hierarchy between the CFAs should remain the same,

before and after denoising.

We can do the following observations:

• The CFAs (I)–(III) have the same lowest level of chromi-

nance noise, since they have the highest chrominance

gains.

• The CFAs (III) and (VII) have the same lowest level of

luminance noise, but the chrominance noise is reduced

with the CFA (III).

• We can see the influence of increasing γL by comparing

the results of the CFAs (VI) and (VII). The second one

has less luminance noise, but more chrominance noise,

which may be difficult to remove since it is lowpass.

• The CFAs (IV), (V), (VI) have the same level of lu-

minance noise, and they outperform the Bayer CFA for

every σ.

• The differences between the CFAs (IV), (V), (VI) may be

difficult to see visually in the example of Fig. 9, but there

is more noise in the B/R than in the G/M chrominance

channel of ĩmn for the CFA (IV). This asymmetry is not

present with our new CFAs.

• As soon as σ > 5, the CFAs (V) and (VI) outperform

the CFA (IV); indeed, the MSE with the CFA (VI) is 5%
lower than with the CFA (IV), which is penalized by the

asymmetry of its two chrominance gains.

These properties have to be confronted with the expectations

from the imaging system of a digital camera. Depending

on the luminosity conditions, different amplification gains

(corresponding to the choice of the ISO sensitivity) are used.

The image quality is expected to be the best possible at

the native sensitivity (e.g. ISO 100) and, secondly, the best

possible at high ISO sensitivities. Hence, the best CFA depends

on the noise level of the sensor: at the base sensitivity, the

sensors available in reflex cameras deliver almost noise free

images, while the sensor of a cheap camera phone is noisy

even at the minimum usable ISO sensitivity. To summarize,

for a cheap noisy sensor (with σ > 6 for every ISO choice),

the CFA (III), which has been neglected so far in the literature,

is, unexpectedly, the best choice, since its (γL, γC) tradeoff is

the best in noisy conditions. On the other hand, the CFA (VI)

shows up as the best compromise for reflex cameras, since its

performances are globally the best in the whole range of noise

levels.

VII. CONCLUSION

In this work, we redefined the problem of CFA design as

the maximization of the energy of the color scene captured

in the mosaicked image, through the choice of the luminance

and chrominance gains of the CFA. We derived the analytical

solution to the optimization of these key parameters, under

the spectral separation constraint that the chrominance be

modulated far away from the luminance in the Fourier domain,

as advocated recently by Hirakawa et al. [2]. Thus, we provide
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Original (I) (II) (III)

(IV) (V) (VI) (VII)

Fig. 8. Results of our demosaicking method used with the seven CFAs depicted in Fig. 3, on a part of the Lighthouse image. The mosaicked image is
corrupted by additive white Gaussian noise of standard deviation σ = 20 and no denoising process is applied.

a constructive method for designing CFAs within the generic

framework of these authors. Consequently, we proposed a

whole class of new CFAs with optimal spectral properties.

The pattern with the smallest 2 × 3 periodicity (CFA (VI) in

Fig. 3) turns out to be the best compromise; it offers improved

robustness to aliasing artifacts and to noise in comparison

with the Bayer CFA. A sensor (with given size, geometry,

pixel count) equipped with this new CFA would provide

images with higher perceived resolution (better definition of

small details, since the anti-alias filter can be removed) and

better overall quality (the lower level of noise allows the

use of a less destructive denoising method). Moreover, the

linear demosaicking method proposed, which fully exploits

the properties of the CFA, allows to significantly reduce

the hardware complexity. In comparison with the designs of

Hirakawa et al. [2], the two chrominance bands are modulated

even farther from the origin and at the same frequency,

which slightly improves the robustness to noise and inter-

chrominance aliasing.

This article focused on the design of CFAs with optimal

theoretical performances, but this is only the first stone in the

development of a whole imaging pipeline. We are confident

that the spectral properties of the proposed CFAs would

benefit to every of its steps, like white-balancing and tone

mapping [25], but this is still to be demonstrated. In particular,

the design of efficient joint demosaicking/denoising strategies

is an open issue, which we are currently investigating.

The proposed framework may also be used for multispectral

imaging, e.g. for remote sensing systems which acquire more

than three bands in the visible and infrared wavelengths.

APPENDIX I

MAXIMIZATION OF THE CHROMINANCE GAIN

To optimize the chrominance gain γC , we proceed in two

steps: 1) given ϕ, we maximize γC and 2) we choose ϕ so that

the previously determined γC is maximal. For this, let us write

cfai
, i = 0, 1, 2 instead of cfaX

, X = L, C1, C2, respectively.

By expanding the equality cfa = cfaLL+cfaC1C1+cfaC2C2,
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Fig. 9. Square root of the average MSE over the 20 images in function of the standard deviation of the noise σ, after demosaicking in noisy situation with
the different CFAs in test. The sequence of the names in the caption, from top to bottom, corresponds to the hierarchy of the curves, for high values of σ.

we obtain:

cfai[k] =
γL

√
3

+ γC(−1)k1

√
2

(
2√
6

sin
(2π

3
(2 − i)

)

× cos(ω0k2 − ϕ)

+
2√
6

cos
(2π

3
(2 − i)

)
sin(ω0k2 − ϕ)

)
(27)

=
γL

√
3

+
2√
3
γC(−1)k1 sin

(2π

3
(2 − i) + ω0k2 − ϕ

)
.

(28)

Let us define the set

Ω =

{∣∣∣∣sin
(2π

3
(2 − i) + ω0k2 − ϕ

)∣∣∣∣ ; i, k2 ∈ Z

}
(29)

=
{
| sin(ω1k − ϕ)| ; k ∈ Z

}
, (30)

where

ω1 = gcd
(
ω0,

2π

3

)
=

2π

lcm(3, N2)
, (31)

and gcd and lcm denote the greatest common divisor and the

least common multiple, respectively.

Since γL >
√

3/2 after Condition 5), the limiting factor for

maximizing γC is the set of constraints cfai[k] ≤ 1 for every

i,k. Then, maximizing γC under these constraints amounts to

choose γC such that

γL

√
3

+
2√
3
γC max(Ω) = 1 ⇔ γC =

√
3 − γL

2 max(Ω)
. (32)

So, we have to choose ϕ so that max(Ω) is minimal. This is

the case if and only if

ϕ ∈ {±ϕ0 + mω1 ; m ∈ Z}, (33)

where

ϕ0 =

{
ω1/4 − π/2 if N2 is odd

ω1/2 − π/2 if N2 is even
. (34)

For such a ϕ, the value max(Ω) is

max(Ω) = sin(−ϕ0) =

{
cos(ω1/4) if N2 is odd

cos(ω1/2) if N2 is even
.

(35)

We note that the different values of ϕ in (33) either yield

the same CFA as with ϕ0, up to a displacement of the origin

cfa[0], or the CFA obtained after some permutation of its

R, G, B channels. So we assume ϕ = ϕ0 in the following.

Combining Eqns. (32), (35) and (31), Eqns. (15)-(17) can

then be rewritten under the form given in Eqns. (18)-(22).
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