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Chapter 1Kolmogorov Complexity
By Bruno Durand and Alexander ZvonkinThe term �
omplexity� has di�erent meanings in di�erent 
ontexts. Computa-tional 
omplexity measures how mu
h time or spa
e is needed to perform some
omputational task. On the other hand, the 
omplexity of des
ription (
alledalso Kolmogorov 
omplexity) is the minimal number of information bits neededto de�ne (des
ribe) a given obje
t. It may well happen that a short des
riptionrequires a lot of time and spa
e to follow it and a
tually 
onstru
t the des
ribedobje
t. However, when speaking about Kolmogorov 
omplexity, we usually ignorethis problem and 
ount only the des
ription bits.As it was 
ommon to him, Kolmogorov published, in 1965, a short note [10℄ thatstarted a new line of resear
h. Aside from the formal de�nition of 
omplexity,he has also suggested to use this notion in the foundations of probability theory.His idea was quite simple:An obje
t is random if it has maximal possible 
omplexity.The de�nition of 
omplexity uses the notion of an algorithm; this unexpe
tedmarriage of two a priori distant domains�in our 
ase, probability theory andtheory of algorithms�is also a typi
al trait of Kolmogorov's work.1.1 AlgorithmsThe notion of an algorithm in quite re
ent. In 1912 (when neither 
omputers norprogramming languages existed) Émile Borel (see [19℄) used the phrase �a formaland pre
ise automati
 rule� des
ribing an obje
t whi
h we would now 
all an1



2 CHAPTER 1. KOLMOGOROV COMPLEXITYalgorithm.(1) However, a mathemati
al theory of algorithms was developed onlyin the 1930ies (by Turing, Gödel, Post, Chur
h, Kleene and others). The keyobservation was the existen
e of a universal algorithm (see below); it allows toprove easily that some problems (e.g., the so-
alled �halting problem� that askswhether a given algorithm terminates on a given input) are unde
idable (
annotbe solved by algorithms). Note that to prove the non-existen
e of an algorithmthat solves a 
ertain problem we need a mathemati
ally pre
ise de�nition of thisnotion. When appeared, this notion be
ame a subje
t of the theory of algorithms,also 
alled theory of re
ursive fun
tions or theory of 
omputability.The remaining part of this se
tion dis
usses some aspe
ts of the notion of algo-rithm; the reader not interested in these details may skip it and pro
eed dire
tlyto Se
tion 1.2.It is rather di�
ult to give a mathemati
al de�nition that 
aptures the intuitiveidea of an algorithm in its full generality; instead, we may de�ne a spe
i�
 
lassof algorithms and 
laim that this 
lass is representative, i.e., that any algorithmis equivalent to a 
ertain algorithm in this 
lass. (By the way, one of these 
lasseswas suggested by Kolmogorov.)1.1.1 Models of 
omputationA model of 
omputation formally des
ribes some spe
i�
 
lass of algorithms (the
lass of obje
ts used as input/output data, how they are pro
essed, et
.) Some
omputational models resemble programming languages while others look moreas a hardware des
ription. In any 
ase, we assume that 
omputational resour
esare unlimited (and forget that in real programming languages integers are usuallybounded, pro
essor ar
hite
ture has a �xed word length, et
.).(The study of resour
es (time and spa
e) needed to solve a given problem is adi�erent �eld 
alled 
omputational 
omplexity. Let us note that an important no-tion in this �eld, NP-
ompleteness, was introdu
ed at the beginning of the 1970iesindependently by three resear
hers, one of whom, Leonid Levin, is Kolmogorov'sstudent. The �rst publi
ations by Levin were about Kolmogorov 
omplexity [21℄.His short biography and a brief story how Kolmogorov in�uen
ed him may befound in the book [17℄.)1The history of the term �algorithm� is interesting in itself. This word is a derivative of thename of a medieval Persian savant Al-Khw	arizm	� (787 � 
. 850) who was the author of a bookthrough whi
h the Europeans learned the positional number system and the rules of arith-meti
 operations (addition, multipli
ation, et
.). The name of Al-Khw	arizm	� (whi
h means �deKhorezm�, a town in Uzbekistan today 
alled Khiva) was transliterated in Latin as Algorith-mus. The term �algorithms� meant at the beginning �the rules of four arithmeti
 operations�.Then by extension it has got the meaning of any systemati
 method of 
omputation. Leibnitz
alled �algorithms� the set of rules of 
omputing di�erentials and integrals. It is only graduallythat the word a
quired its modern meaning; one hundred years ago this pro
ess was not yet�nished. (Authors' note)



1.1. ALGORITHMS 3Whi
h 
omputational model is �the best one�? This depends on our purposes. Ifwe want to write real programs, it is natural to use a real 
omputer and an appro-priate programming language. On the other hand, if we want to prove theoremsit would be more 
onvenient to work with an abstra
t model of 
omputation;a very simple model, with a small number of primitives, would then be better.However, there is no 
anoni
al model adapted for proofs sin
e di�erent modelsare more suitable for di�erent results.The most popular model is Turing ma
hine. It is rather easy to prove the univer-sality of this model; however, we have to deal with many details 
on
erning tapes,symbols, representation of the transition table, et
. There are many versions ofTuring ma
hines; the most 
ommon one was, by the way, presented by Post andnot by Turing.Re
ursive fun
tions �à la Chur
h� give a more mathemati
al and attra
tive modelthough the proofs of 
ertain basi
 theorems be
ome somewhat dis
ouraging if notfrightening.Markov algorithms are similar to rewriting systems for strings with termination
onditions; this is a model di�
ult to manipulate (but well suited for the proofof the unde
idability of word problems).The RAM (random a

ess ma
hines) model resembles von Neumann-style 
om-puters. . .Tea
hing the algorithms theory, one may 
hoose a di�erent approa
h and not �xany spe
i�
 model but rely dire
tly on the intuition of algorithms. More formally,it means that we have to a

ept some properties of algorithms used in the proofsas axioms. Then we do not need to go into 
umbersome details of a spe
i�

omputational model; the pri
e is, however, that the list of axioms is open (e.g.,if during the proof we need to establish the 
omputability of some fun
tion, wejust des
ribe informally its 
omputation and then add a new axiom saying thatthis fun
tion is 
omputable).1.1.2 All models of 
omputation are equivalentWhy do we believe that this or that 
omputational model 
orre
tly re�e
ts theintuitive notion of an algorithm? This statement is usually 
alled �the Chur
hthesis� (for a given 
omputation model): it 
laims that any 
omputable fun
tion(
omputed by an algorithm in the informal sense) is 
omputable in this model.This assertion is not a mathemati
al one; it is a belief 
on
erning the notion ofintuitive 
omputability. On the other hand, we 
an prove that these assertions fordi�erent 
omputation models are equivalent, sin
e it turns out that the 
lass of
omputable fun
tions is the same for di�erent existing models (Turing ma
hines,re
ursive fun
tions, et
.).The name given to the thesis is rather inappropriate. Chur
h 
laimed that all in-tuitively 
omputable total fun
tions are 
omputable in his model. A long 
ontro-versy followed, in whi
h Gödel took sometimes surprising positions [1℄. The �rst



4 CHAPTER 1. KOLMOGOROV COMPLEXITYequivalen
e theorem for two di�erent models (re
ursive fun
tions �à la Chur
h�and Turing ma
hines) was established by Turing in his seminal arti
le, and thethesis in its most general form was formulated by Post. Therefore, a more ap-propriate name would be �Chur
h�Turing�Post thesis�.All this was done in the 1930ies, so why Kolmogorov might want to suggest a dif-ferent 
omputation model in the 1950ies? His motivation 
ould be re
onstru
tedas follows. Though all 
omputation models mentioned above are equivalent, thetranslation between them sometimes repla
es one step in one model by a long se-quen
e of steps in another one. For example, an addition may be an elementaryoperation in some programming language while its implementation by Turingma
hine requires many steps.Kolmogorov wanted to �nd a model whose steps are �elementary� in the sensethat they do not allow natural de
omposition into a sequen
e of simpler steps. Onthe other hand, he tried to �nd a most general (and natural) model among thesemodels. This means that elementary steps of any other model (if they are indeedelementary a

ording to our intuition) should not require further de
ompositionwhen translated into Kolmogorov's model.1.1.3 Kolmogorov�Uspensky ma
hinesThe model suggested by Kolmogorov was later 
alled Kolmogorov�Uspensky ma-
hines. These ma
hines are not related to Kolmogorov 
omplexity, but they arerelated to Kolmogorov himself; hen
e we say a 
ouple of words about them.The 
on�guration (state of the 
omputation) of a Kolmogorov�Uspensky ma
hineis a graph; some node of this graph is de
lared to be a
tive. The program forthe ma
hine is a list of rules that say how this a
tive part should be transformedand when the pro
essing halts. So the 
omputation step is indeed �lo
al�; itdeals with a �nite size neighborhood of the a
tive node. On the other hand, the�topologi
al stru
ture� of the 
omputation 
an be
ome rather 
ompli
ated. Thismay be 
onsidered as a disadvantage of the model sin
e it allows some a
tions thatare hard to perform in a physi
al spa
e. (For example, a Kolmogorov�Uspenskyma
hine 
an 
reate a labeled tree that provides an unreasonably fast a

ess to anexponential amount of information.) So one may want to restri
t somehow the
lass of allowed graphs [19, 8, 1℄. Later a version of this model was 
onsideredby S
hönhage (who used dire
ted graphs with unlimited in-degrees). It seemspertinent to mention here the development of the GASM (Gurevi
h Abstra
tState Ma
hines) whi
h were inspired by Kolmogorov�Uspensky ma
hines buthave other goals and do not play a spe
i�
 role in the 
lassi
al 
omputabilitytheory. The �rst 
omplete des
ription of Kolmogorov�Uspensky ma
hines maybe found in [11℄; a more modern presentation is given in [19℄.



1.2. DESCRIPTIONS AND SIZES 51.1.4 UniversalityNow we are a

ustomed to the idea that the same pro
essor 
an be used to per-form di�erent tasks if provided with a suitable program. However, this idea of�universal 
omputation� was a nontrivial and very important step in the devel-opment of the �rst real 
omputers.The same idea 
an be formally expressed as follows: there exists a universal
omputable fun
tion U of two arguments p and x. The universality means that we
an obtain any 
omputable fun
tion of x by �xing an appropriate �rst argumentp (a program for this fun
tion).Why does a universal fun
tion exist? Imagine an interpreter of an arbitrary pro-gramming language that 
onsiders its �rst argument p as a program and exe
utesthis program using x as its input.1.1.5 Non-
omputable fun
tionsThe existen
e of a universal 
omputable fun
tion immediately brings us to aparadox. Consider the fun
tion F (p) = U(p; p) + 1. This (unary) fun
tion is
omputable sin
e U is. It should then have a program asso
iated to it (sin
e U isuniversal); let us denote this program by q. What happens if we apply programq to itself? By de�nition of U this gives U(q; q). On the other hand, sin
e q is aprogram for F , the same result must be equal to F (q) = U(q; q) + 1. So we getU(q; q) = F (q) = U(q; q) + 1, and this seems impossible.The only way to explain this paradox is to re
all that 
ertain 
omputations maynever terminate, so a program may 
ompute a non-total fun
tion. And the 
on-tradi
tion disappears if U(q; q) is not de�ned.A similar argument shows that the halting problem is unde
idable: there is noalgorithm that gets a program p and input x and tells whether U(p; x) is de�ned(= whether the program p terminates on input x).1.1.6 Ba
k to algorithmsReturning to pra
ti
e, let us note that the notion of a 
omputable fun
tion 
ap-tures only one aspe
t of algorithmi
 pra
ti
e. For example, the behavior of areal-time algorithm (su
h as an operating system) is a more 
ompli
ated thingthan a mere fun
tion. The 
hoi
e of a 
orre
t mathemati
al model for this 
lassof algorithms (very important for pra
ti
e) is a well studied but not fully solvedproblem of theoreti
al 
omputer s
ien
e.1.2 Des
riptions and sizesAny information may be en
oded as a bit string (a �nite sequen
e of bits). Forthis reason, in what follows we assume that our algorithms deal with bit strings.



6 CHAPTER 1. KOLMOGOROV COMPLEXITYBinary strings are also 
alled words in the alphabet B = f0; 1g, and the set of allbinary strings is denoted as B � . We identify B � with the set Z+nf0g = f1; 2; 3; : : :gusing the lexi
ographi
 order. (The empty word is asso
iated with 1, then 0 7! 2,1 7! 3, 00 7! 4, 01 7! 5, et
.: a string u is asso
iated with a natural numberthat has binary representation 1u. For example, the word 00 
orresponds to thenumber 1002, i.e., 4.)The length juj of a binary word u, i. e., the number of letters in it, is then equalto the integral part blog u
 of the binary logarithm of the number asso
iated withu. (Note that juj stands for the length of the word u and not for the absolutevalue of the 
orresponding integer.)De�nition 1.2.1. Let f : B � ! B � be a 
omputable fun
tion. We de�ne the
omplexity of x 2 B � with respe
t to f asKf (x) = � min jtj su
h that f(t) = x;1 if su
h t does not exist.In other terms, we 
all des
riptions of x (with respe
t to f) all strings t su
hthat f(t) = x; then the 
omplexity Kf (x) is de�ned as the length of the shortestdes
ription.The main problem with this de�nition is that the 
omplexity depends on the
hoi
e of f . It is unavoidable, but the theorem stated below (due to Kolmogorovbut already present, in an informal way, in the paper of Solomono� [18℄) ex-plains in whi
h way this dependen
e 
an be limited. This theorem was laterindependently proved by Chaitin but does not appear in his �rst papers on thesubje
t [2, 3℄�the priority 
laims have provoked a long and futile 
ontroversyexplained in [13℄.Theorem 1.2.1 (Existen
e of an optimal fun
tion). There exists a 
om-putable fun
tion f0 (
alled optimal fun
tion) su
h that for any other 
omputablefun
tion f there exists a 
onstant C su
h that8x Kf0(x) � Kf(x) + C : (1.2.1)(Note that the 
onstant C may depend on f but not on x.)Proof. Let t be a shortest des
ription of x with respe
t to f , i. e., f(t) = x.Then f0 uses as a des
ription of x the pair (p; t) where p is a program that
omputes the fun
tion f . In this pair p has jpj bits and t has jtj bits, so the totalnumber of bits is jpj+ jtj, i.e., jpj+Kf(x). So we let C = jpj. �Remark 1.2.1. This argument needs some re�nement. We 
annot use the pair(p; t) dire
tly; we need to en
ode it by a single string. Not any en
oding willwork. An appropriate en
oding may en
ode p in a very ine�
ient way�this onlyin
reases the 
onstant C. On the other hand, it is essential to be able to en
odet without any loss of spa
e sin
e an en
oding of t whi
h demands, say, �jtj bitswith � > 1 leads to the 
omplexity �Kf(x) + C instead of Kf(x) + C.



1.2. DESCRIPTIONS AND SIZES 7Corollary 1.2.1. If f1 and f2 are two optimal fun
tions then there exists a
onstant C su
h that 8x jKf1(x)�Kf2(x)j � C : (1.2.2)Pro
eeding from this 
orollary, we 
hoose some optimal fun
tion f0 and �x it.The subs
ript f0 in Kf0 is then suppressed. However, after doing this we stillhave in mind that in fa
t the Kolmogorov 
omplexity is de�ned only up to abounded additive term.De�nition 1.2.2. The Kolmogorov 
omplexity K(x) is the 
omplexity Kf0(x)with respe
t to some optimal fun
tion f0. The 
omplexity K(x) is de�ned up toa bounded additive term.Proposition 1.2.1.K(x) � jxj+ C; or, equivalently, K(x) � logx + C : (1.2.3)Proof. It su�
es to let f(x) = x in (1.2.1), i. e., to use x itself as a des
riptionof x. �Proposition 1.2.2 (Distribution of 
omplexities). Consider all binary stringsof length n. The fra
tion of strings x of length n su
h that K(x) < n � k doesnot ex
eed 2�k.Proof. The number of strings of length n is 2n while the number of (potential)des
riptions of length less than n� k is1 + 2 + : : :+ 2n�k�1 < 2n�k :�There exist strings of length n whose 
omplexity is at least n (they are often
alled in
ompressible strings). Indeed, there are 2n strings of length n and atmost 1 + 2 + : : :+ 2n�1 = 2n � 1 potential des
riptions of length less than n.One may ask for an example of an in
ompressible string. However, it is notpossible to �nd an in
ompressible string of length n e�e
tively (having n asinput). Indeed, if it were possible, a string generated by this algorithm wouldhave 
omplexity logn + 
 sin
e we need to spe
ify n (about logn bits) and thealgorithm itself (
onstant number of bits), and logn + 
 is less than n for allsu�
iently large n.In
ompressible strings are a useful tool in theoreti
al 
omputer s
ien
e (automatatheory, formal languages, et
.).Today everybody uses software for data 
ompression and de
ompression; thiswas not the 
ase in the 1960ies when Kolmogorov 
omplexity was introdu
ed.



8 CHAPTER 1. KOLMOGOROV COMPLEXITYHowever, the Kolmogorov 
omplexity theory may still provide useful hints: forexample, if a software advertisement 
laims that a latest version of the super-
ompressor 
ompresses every �le by a 
ertain fa
tor, you better avoid this prod-u
t.Finally, to prepare for the next se
tion (on Gödel's in
ompleteness theorem), wepresent a variation on a well known theme of busy beavers. Initially the busybeaver numbers were de�ned as follows. Consider Turing ma
hines that have atmost n states and whose tape alphabet 
onsists of two symbols (say, �blank� and�stroke�). We start su
h a ma
hine on the blank tape. Some ma
hines do notterminate at all. For the ma
hines that terminate we 
ount the number of steps;let T (n) be the maximal number of steps among the terminating ma
hines withat most n states.Evidently, T (n) is an in
reasing fun
tion of n sin
e we 
onsider all ma
hinesthat have at most n states. It grows very fast; in fa
t, it grows faster that any
omputable fun
tion (does not have a 
omputable upper bound). Indeed, if a
omputable upper bound f(n) exists, it may be used to solve the halting problem,sin
e we know that if a ma
hine with n states does not terminate after f(n) steps,it will never terminate. So no 
omputable fun
tion, even a fast growing one, liken!n!���n! (n! levels), is an upper bound for T (n).But here we 
onsider a di�erent (but related) fast-growing fun
tion. Let us de�neÆ(n) as the biggest integer that has 
omplexity less than n. It exists sin
e thenumber of des
riptions of size less than n is �nite. By de�nition we have n � K(x)for any x > Æ(n), e.g., for x = Æ(n) + 1. If the fun
tion Æ were 
omputable wewould have K(Æ(n) + 1) � logn + C sin
e n might serve as a des
ription ofÆ(n) + 1. The 
ontradi
tion is evident. Hen
e, Æ is not 
omputable. In a similarway we 
an prove that Æ grows faster than any 
omputable fun
tion. (It su�
esto repla
e Æ(n) in the pre
eding inequalities by any 
omputable upper boundfor Æ.)1.3 Gödel's theorem1.3.1 It is proved that one 
annot prove everythingThe fun
tion K(x) is not 
omputable. How 
an we use it? For example, toprove theorems. Maybe the most remarkable example is the proof of Gödel'sin
ompleteness theorem. Roughly speaking, this theorem 
laims that not all thetruths are provable. Mathemati
s has its intrinsi
 limits: there exist propositionsthat are true but impossible to prove.We propose to you a more �
on
rete� form of a proposition that is true butunprovable; it was suggested by Gregory Chaitin [4℄.Theorem 1.3.1 (Gödel's in
ompleteness theorem). There exists a num-



1.3. GÖDEL'S THEOREM 9ber m su
h that for every x the propositionK(x) � mis unprovable.Note that the set of all x su
h that K(x) < m is �nite. So the propositionK(x) � m is true for in�nitely many values of x. And all these truths have noproof.Proof of Gödel's theorem. We use the same argument as in the previousse
tion (when we proved that the busy beaver fun
tion Æ(n) is non-
omputable)with some modi�
ations.Suppose that the statement is false, i.e., that for any integer m there exists xsu
h that the proposition �K(x) � m� is provable. Then 
onsider an algorithmthat �nds this x given m:� input: an integer m;� enumerate all the theorems (a theorem is a proposition whi
h has a proof);� as soon as a theorem �K(x) � m� is found, return x.Using this algorithm, we may 
onsider its input m as a des
ription of its outputx. Therefore, a

ording to (1.2.3), K(x) � logm + C. But, on the other hand,K(x) � m is a theorem (and therefore is true; we assume that all theorems aretrue, otherwise our notion of proof would be bad). Som � logm + C :The 
onstant C is �absolute�: it depends neither on m nor on x. So we get a
ontradi
tion, sin
e this inequality is false for su�
iently large m. �For a neophyte it is di�
ult to appre
iate fully this simple argument. One shouldknow, however, that Gödel's theorem had literally shattered the mathemati
al
ommunity at the beginning of the 1930ies. The proje
ts and hopes of greatmathemati
ians, su
h as David Hilbert, to get a 
omplete formal theory as aframework for mathemati
s were redu
ed to nothing. Gödel's theorem be
ame(and remains) one of the basi
 results and one of the gems of mathemati
al logi
.(Numerous volumes are devoted to this theorem, in
luding philosophi
al essaysand popular expositions; the bestseller by Douglas Hofstadter [9℄ has 800 pages.)Generations of logi
ians tried to understand fully why and how mathemati
s isin
omplete. Due to all their work, we are now able to explain the proof of thistheorem in a single paragraph.A philosopher on
e remarked that �every profound idea passes through threestages during its development: (1) it is impossible; (2) it is maybe possible butin
omprehensible; (3) it is trivial�. It seems that Gödel's theorem has alreadyarrived to the third stage.



10 CHAPTER 1. KOLMOGOROV COMPLEXITY1.3.2 Formal systemsOf 
ourse, our a

ount of the 
omplexity proof of Gödel theorem is quite informal.An informed reader may be worried about this. He had probably heard the wordsformal systems. Indeed, we speak about proofs and theorems but do not say whatthe axioms or inferen
e rules are (or any other proof ma
hinery). It turns out,however, that in fa
t we do not need to go into these details. There is only oneproperty of the proof system that is ne
essary.De�nition 1.3.1 (Formal system). A proof system is an algorithm that gen-erates statements, and all these statements are true.All usual proof systems (based on axioms and inferen
e rules) are formal systemsa

ording to the above de�nition. Indeed, theorems 
an be enumerated in thefollowing way: write all the strings of 
hara
ters in a 
ertasin order; for ea
h ofthem 
he
k whether it is a derivation (starts with axioms, follows inferen
e rules,et
.); if yes, �nd the statement that has been derived (usually the last statementof the derivation) and output this statement.This assumes that there is an algorithm that 
an distinguish derivations fromother 
hara
ter strings, but this is true for all reasonable formal systems. Oth-erwise, how 
ould we 
he
k that a proof is 
orre
t? (By a vote of members of ajury? By asking an ora
le, a prophet or another sort of authority? By a tourna-ment of knights like in Middle Ages? By drawing lots?) This is indeed the basi
underlying idea of a formal system; the 
orre
tness of proofs should be veri�ed�me
hani
ally�, that is, by an algorithm.1.3.3 Berry paradoxGregory Chaitin, who suggested this remarkable proof, mentioned that this proofis a formalization of the �Berry paradox� published by Bertrand Russell in 1908.It 
onsiders the smallest integer N whose des
rip-tion needs more than thousand words.First of all, the integers that need more than one thousand words in order tobe des
ribed, do exist�just be
ause the number of shorter des
riptions is �nite.Therefore, the boxed senten
e 
hara
terizes the integer N without ambiguity; inother words, it is a des
ription of N . But it 
ontains less than thousand words!Quite often a paradox appears sin
e we refer to a notion not well de�ned. What isthis notion here? The notion of the smallest element (in a set of positive integers)used in the phrase is well de�ned: the axiom of indu
tion implies that every non-empty subset of N has the smallest element. On the other hand, the notion of�des
ription� is indeed not well formalized. Kolmogorov 
omplexity provides aformal framework for this notion. Then, repla
ing words by bits, 
onsider (forevery m)



1.3. GÖDEL'S THEOREM 11the smallest integer N su
h that K(N) > m.Su
h an integer exists for every m; however, this expression (for a given m) is nota des
ription of N in Kolmogorov's sense, sin
e there is no algorithm that �ndsthis N . But if we 
hange the senten
e and saythe �rst integer N su
h that K(N) > m is provable(where ��rst� means ��rst in the sequen
e of generated proofs�), then it is indeed ades
ription of 
omplexity logm+ 
, and the only way to avoid the 
ontradi
tionis to 
on
lude that for some m there are no proofs of statements of the formK(N) > m. As you see, we 
ome to the proof of Gödel's theorem explainedabove.1.3.4 Gödelian propositions: �
on
rete� examplesGood students often ask: is it possible to give a 
on
rete example of an unprovableproposition?This question sets a trap for us. Without doubt, we mean a true but unprovableproposition. But how, then, 
ould we know that some proposition is true if it hasno proof? Apparently, we should have other reasons, and very strong reasons, bythe way, in order to believe that it is true.Logi
ians know di�erent ways to address this problem. For example, we 
anprovide two statement �A� and �not A� that are unprovable. Then we knowthat at least one of them is true but unprovable. (But this probably 
annot be
onsidered as a �
on
rete� example.)The other possibility is to 
onsider di�erent theories: a weak one (e.g., �rst-orderarithmeti
) and a stronger one (se
ond-order arithmeti
 or set theory). Then weshow a statement that is not provable in the weak theory, and this fa
t as wellas the statement itself 
an be proved in the strong theory.This is the approa
h found by Gödel himself. He proved that by using only (�rst-order) arithmeti
 it is impossible to prove that this theory (�rst-order arithmeti
)is 
onsistent, i. e., that it does not 
ontain a 
ontradi
tion. But the 
onsisten
yof the (�rst-order) arithmeti
 
an be proved in the set theory or se
ond-orderarithmeti
 (and, last but not least, it is 
on�rmed by mathemati
al pra
ti
e).Kolmogorov 
omplexity provides us with another pro
edure of produ
ingGödelian(that is, true but unprovable) propositions. Let us suppose that the number min the Gödel theorem is, say, 100. (A 
areful reasoning 
an indeed provide somespe
i�
 value for m. It depends on the formal system we use and the optimalfun
tion we 
hoose in the de�nition of Kolmogorov 
omplexity.)Then we may toss up a 
oin, say, 500 times, and then 
laim that the 
omplexityof the sequen
e of bits obtained is greater than 100. This statement will beimpossible to prove, but we may be pra
ti
ally sure that it is true: the probability



12 CHAPTER 1. KOLMOGOROV COMPLEXITYof getting a false statement in this way is less than 2�400 (see the proposition aboutthe distribution of 
omplexities on p. 7). We thus obtain an arithmeti
 statementwhi
h we believe to be true for probabilisti
 reasons.1.4 De�nition of randomness1.4.1 Questions, questions, questions...The more we think about the notions of probability and randomness, the moredi�
ult is to explain even the most �basi
� things. Let us start by an exampleborrowed from the everyday life. Suppose that you see a 
ar whose number onthe li
en
e plate is 7777 ZZ 77. This number seems rather extraordinary, doesn'tit? As to the number 7353 NY 42, it seems perfe
tly �normal�. Why?We would like to say: be
ause the �rst number has very small probability. Yet,this answer is not valid: the probability of the �rst number is exa
tly the same asthat of the se
ond. If we suppose that all digits and all letters are equiprobableand independent, then this probability is equal to 1=(106�262). When we toss upa 
oin 1000 times, the probability to get 1000 heads is 2�1000, but the probabilityof every other sequen
e of heads and tails is exa
tly the same! Why then does thesequen
e of 1000 identi
al tosses arouse a suspi
ion as to its random 
hara
ter?If we think more about this phenomenon, we �nally understand that, in fa
t,while speaking about 
ar �numbers�, we do not mean individual numbers but setsof �similar� numbers. The �rst number is a representative of the set of numberswhere �the digits are repeated, and also the letters�. This set is simple to des
ribe,and its probability is small. As to the se
ond number, it is �just a number�. Weare unable to outline its spe
i�
 simple property whi
h would des
ribe a set ofsmall probability. (And, if you are, this was not intended by the authors.) This isrelated to 
omplexity: a simple property that is true only for few obje
ts makesthese obje
ts simple.Now, let us go further: what is probability?Despite what one might believe, probability theory (whose rigorous mathemati
alfoundation was provided by Kolmogorov himself in 1933) does not answer thisquestion. This theory formulates, in a form of axioms, the properties of probabili-ties. It also permits to 
al
ulate probabilities of 
ertain events when probabilitiesof other events are known. Thus, it treats probability theory just as any otherbran
h of mathemati
s, without bothering mu
h about �useless� philosophi
alquestions. People were quite satis�ed by this situation�ex
ept for Kolmogorov.How would you explain to an intelligent person with no mathemati
al ba
kgroundwhat probability is? You 
laim that when one tosses a 
oin, the probability toget a head is 1=2. Then he starts to question you:� I don't understand the word �probability� in your senten
e.� I mean that the 
han
es to get a head or a tail are equal.



1.4. DEFINITION OF RANDOMNESS 13� Hm. . . you've repla
ed the word �probability� by �
han
e�, but what does itmean?� OK, OK. I would only like to say that in, say, a thousand of 
oin tosses youget approximately half of heads and half of tails.� Ah. . . It seems that I begin to understand something. For the moment, Iwon't ask you how pre
ise this approximation is. But please tell me: do youreally guarantee that the fra
tion of heads is always 
lose to one half?� Alas, no. It is not always the 
ase, but it is true with a very high probability.However, there remain extremely small 
han
es to get (for example) only theheads.� �With a very high probability�! Again this word! You started to explain whatprobability is, but now you use the same notion in a mu
h more 
ompli
ated
ontext, that of 1000 tosses instead of one. Frankly, all that is not very serious.� But wait, wait! I 
an give you axioms whi
h des
ribe the properties of prob-abilities. . .� To know the properties of something is 
ertainly very important. But it wouldalso be good, before speaking about properties, to understand what is the obje
twhose properties we want to study. The sepulkas are used for sepulation, oneputs them in a sepulkary, they 
an be assembled in beads, and they are able towistle:(2) do you understand anything here?� We've been talking for a long time already, but there still remains an approa
hby whi
h I 
ould try to 
onvin
e you. You see, the property of having the pro-portion of 0's and of 1's 
lose to 1=2 is true not only with a large probability; itis also true for all random sequen
es. The sequen
es whi
h do not satisfy thisproperty are just not random.� Is the sequen
e of alternating zeros and ones random a

ording to you?� No, it is not. It is obviously too regular to be random.� Then I don't understand at all what you are speaking about. What does theword random mean?� Mmm. . .� Are there at least any axioms whi
h would des
ribe the properties of theobje
ts you 
all random?� Mmm. . .1.4.2 Random sequen
esThe approa
h based on Kolmogorov 
omplexity permits to de�ne the notion ofan individual random sequen
e formally without any referen
es to probabilities.For in�nite sequen
es of bits it provides a sharp boundary between random andnon-random sequen
es. For �nite sequen
es (binary strings) we have no hope to2See Stanisªaw Lem, Memoirs of a spa
e traveller, London, 1982. (Authors' note)
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hieve this sharp division. (Indeed, 
hanging one bit 
annot make a randomsequen
e non-random, but a sequen
e of 
hanges 
an.)For a �nite sequen
e, to be random is a synonym of having a 
omplexity 
loseto the length. In other words, the best (or 
lose to the best) way to des
ribesu
h a sequen
e is to present it literally. Then we 
an prove that in a randomsequen
e the frequen
y of zeros (and ones) is 
lose to 1=2. For example, 
onsidera sequen
e of 1000 bits that 
ontains, say, 300 ones and 700 zeros. This fa
tsigni�
antly redu
es its 
omplexity, and therefore the sequen
e is not random.(Indeed, we 
an say that this is a sequen
e that has number N in the list of allsequen
es that have 300 ones and 700 zeros, and one 
an see that the bit length ofN is mu
h smaller than 1000: N � �1000300 � hen
e logN � log�1000300 � < 877.)So the random sequen
e should 
ontain approximately equal number of zerosand ones. However, if we push the same reasoning a little further, we see thatif a sequen
e had exa
tly the same number of zeros and ones, we would alsohave some nontrivial information about it, so it 
ould not be perfe
tly random.For a truly random sequen
e, zeros and ones must be slightly unbalan
ed (thedi�eren
e should be proportional to the square root of the length).As we have said, a

ording to Kolmogorov's idea a sequen
e is random if it is�almost� in
ompressible. However, 
omplexity is de�ned for �nite sequen
es.Therefore to de�ne randomness for an in�nite sequen
e we need to 
onsider some�nite strings related to it. The most natural 
hoi
e is pre�xes.If an in�nite sequen
e is denoted by x, let x1:n denote a �nite string 
onsistingof the �rst n bits of x. We 
ould try the following de�nition: x is random if andonly if 9C 8n K(x1:n) > n� C :The 
onstant termC is natural sin
e the 
omplexityK is de�ned up to an additive
onstant. Unfortunately, this de�nition does not work: there is no sequen
e x thatsatis�es this requirement. Ten years passed before this di�
ulty was resolved.The solution is sometimes 
onsidered as a �te
hni
al tri
k�. However, what is
onsidered as a te
hni
al tri
k by mathemati
ians 
orresponds to a reality wellknown to 
omputer s
ientists: we should distinguish between a program thatreads/writes a bit string (of a spe
i�ed length) and a program that reads fromthe (potentially in�nite) input stream or writes into the output stream. Storinga �le or a string, we should reserve additional pla
e to store its length or reservesome symbol as a terminator. Both solutions require additional spa
e, at leastlogn bits for keeping the length of an n-bit string.There are di�erent te
hni
al solutions; one of them is that we require our de-s
riptions to have the pre�x property: if a string t is a des
ription of some x,then any 
ontinuation of t (i. e., any string that extends t) is also a des
riptionof x. So we do not need to say when the des
ription stops, sin
e the trailingbits do not 
hange anything. If we modify the de�nition of the Kolmogorov 
om-
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tion (whi
h requires some pre
autions but is feasible), theformula suggested in the previous paragraph be
omes a reasonable de�nition ofrandomness for in�nite sequen
es. (Te
hni
ally speaking, we may swit
h fromthe �plain� 
omplexity to �pre�x� 
omplexity. This gives some other advantages;for example, for this version of 
omplexity the 
omplexity of a pair of binarystrings (under any 
omputable en
oding) does not ex
eed the sum of their 
om-plexities. (This is not true for the original �plain� Kolmogorov 
omplexity wherean additive logarithmi
 term is needed.)Another Kolmogorov's idea was to de�ne a random sequen
e as a sequen
e whi
hes
apes from every e�e
tively null set. In order to de�ne the notion of an �e�e
-tively null set� we take a usual de�nition of a null set (a set of measure zero) andinterpret the existential quanti�er in an e�e
tive way (instead of mere existen
ewe demand that the required obje
t be provided by some algorithm). This givesus the following de�nition:A set A is an e�e
tively null set if there exists a program p whi
h, for any integern given as input, produ
es an in�nite series of stringsx(n)0 ; x(n)1 ; : : :su
h that for all n Xi 2�jx(n)i j < 1=nand for every w 2 A and for every n the sequen
e w has one of the strings x(n)ias a pre�x.This idea was developed by Martin-Löf [15℄, a student of Kolmogorov. The e�e
-tively null sets 
orrespond to �non-randomness� tests, and a sequen
e is randomif it resists to all these tests. The existen
e of a universal algorithm allows us to
onstru
t one universal test: every sequen
e whi
h resists to this test resists aswell to all other tests and is therefore random.One of the prin
ipal results of the algorithmi
 information theory is the 
onne
-tion between the in
ompressibility of pre�xes of in�nite sequen
e and its random-ness seen as resistan
e to every algorithmi
 test. This equivalen
e is a theoremproved in the 1970ies by Levin and S
hnorr [12, 16℄ in the 
ontexts of slightlydi�erent de�nitions (they used some version of the so 
alled �monotone� 
om-plexity; see [20℄ for the details). Thus a good de�nition of randomness (for anin�nite sequen
e) was obtained; �good� means here that two di�erent reasonablede�nitions turn out to be equivalent. Moreover, all basi
 theorems of probabil-ity theory that have the form �for almost all x the property P is true� 
an benow reformulated as follows: �for every random (in the sense des
ribed above)sequen
e the property P is true�. The latter result is not a formal statement; wemean that di�erent authors studied di�erent theorems of this form (for example,the ergodi
 theorem) and proved that these theorems remain true for every algo-random sequen
e. In 
ertain 
ases (for example, for ergodi
 theorem), this is arather deli
ate work and about ten years were required to 
omplete it.



16 CHAPTER 1. KOLMOGOROV COMPLEXITYThe relation between 
omplexity and measure 
an be used also for �nite se-quen
es. For example, we may prove that any in
ompressible sequen
e has someproperty (by showing that sequen
es whi
h do not have this property 
an be 
om-pressed). Then we 
on
lude that almost all sequen
es have this property (beingin
ompressible).1.4.3 Sequen
es of low 
omplexityWe have seen that the sequen
es that have pre�xes of high 
omplexity are random.It is natural to ask whi
h sequen
es have pre�xes of small 
omplexity. Thereexists a ni
e theorem, proved independently by several authors long ago whenthe theory of Kolmogorov 
omplexity appeared. A

ording to the date of the�rst publi
ation, this theorem must be attributed to Albert Meyer and it waspublished in a paper by Loveland [14℄. Its proof may be found in [21℄. Let usstate this result using the notation of the previous se
tion.Theorem 1.4.1. A sequen
e x is re
ursive (i. e., 
omputable by an algorithm) ifand only if 9C 8n K(x1:n j n) < C:We use here a slightly more general�namely, 
onditional�form of Kolmogorov
omplexity. In order to simplify our presentation we did not mention it untilnow, but it is a useful and natural notion. We de�ne K(x j y) (
omplexity ofx while knowing y) as the length of the shortest des
ription of x, if des
riptionshave a

ess to y as input. Formally,Kf (x j y) = � min jtj su
h that f(t; y) = x;1 if su
h t does not exist.The existen
e of optimal fun
tions is proved in the same way as before. If y is�xed, the 
omplexity K(x j y) as a fun
tion of x 
oin
ides with K(x) up to a
onstant so we get nothing really new (re
all that the 
omplexity is de�ned upto an additive 
onstant anyway). But this new notion makes sense, for example,if we let y be the length of x (or the number of zeros in x, the substring formedby bits with even indi
es, et
.)The theorem says that the �simplest� in�nite sequen
es are exa
tly the 
om-putable ones. It is important to use K(x1:njn) and not K(x1:n) sin
e even fora 
omputable x the pre�x x1:n 
ontains a small amount of information, i.e., thelength n. (Why didn't we add a similar term in the 
hara
terization of randomsequen
es? In fa
t this is also possible but not ne
essary.)In one dire
tion this theorem is trivial: if a sequen
e is re
ursive then 
omplexityis bounded (in fa
t, bounded by the 
omplexity of a program that produ
es x1:ngiven n).The 
onverse impli
ation is more subtle. It is one of the examples that appearfrom time to time in theoreti
al 
omputer s
ien
e, when it is possible to prove



1.4. DEFINITION OF RANDOMNESS 17that an algorithm exists but it is impossible to 
onstru
t it. In this spe
i�
 
asewe 
an prove that the sequen
e is re
ursive but there is no 
omputable bound onthe size of the program generating x that depends only on C.We 
an explain informally why this happens (see [6, 7℄ for details) in the followingway. Consider a sequen
e x that starts with a large number N of zeros that arefollowed by 1, then some string z and then zeros again. Any program thatgenerates x gives us 
omplete information about z (we have only to delete theleading zeros), and its 
omplexity is high if z has high 
omplexity. On the otherhand the 
omplexity K(x1:njn) is low if n � N (sin
e only zeros appear in x1:nand 
an be low for n > N sin
e in this 
ase we know some number n greater thanN and this information may be useful for �nding z.1.4.4 Ba
k to the de�nition of randomnessOur de�nition of �random sequen
e� (in this se
tion we say �algo-random�) 
anbe 
riti
ized from many di�erent viewpoints. First, this de�nition uses the notionof an algorithm that was never used in probability theory. It leads to a naturalquestion: is the notion of algorithm really ne
essary to give a reasonable de�nitionof a random sequen
e?Se
ond, one 
ould note that some easily de�nable sequen
es are algo-random.For example, there exists a sequen
e de�ned by G.Chaitin (
alled !) that isalgo-random. It is de�ned as follows. Consider an optimal algorithm in the sensedes
ribed in Se
tion 1.2, but in the self-delimiting version, and apply it to randombits obtained by 
oin tossing. (This algorithm will a
tually use only �nitely manyof these bits to produ
e the output.) The 
omputation may terminate or not,depending on the 
hoi
e of random bits. Then ! is de�ned as the probability oftermination.(3)This sequen
e is (as Chaitin noted) an algo-random one, and this raises a question.The proposition �x 6= ! for almost all x� is true (almost all sequen
es di�erfrom !). However, we 
annot 
laim that �x 6= ! for all algo-random x�, sin
e !is one of them. Even if this example seems to be a little arti�
ial, a true problemis raised.The �rst possibility is to 
hange the notion of algo-randomness, allowing a broader
lass of randomness tests. In this way we obtain a notion of �arithmo-random�sequen
es. Two formal de�nitions are possible: one 
onsiders the 
lassi
al theorybased on algorithms and then relativizes these algorithms using arithmeti
al or-a
les; the other one de�nes everything dire
tly using arithmeti
 formulas. Thesetwo approa
hes lead to the same notion, whi
h 
orresponds to a smaller 
lass ofrandom sequen
es. The problem is that this de�nition is not 
losed: there is no3Similar experiment was performed at the early stages of Unix development. Some standardutilities were taken and sequen
es of random bits were fed into them. The probability of 
rashturned out to be embarrassingly large. (Authors' note)
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lass 
onsidered. This is due to an important stru
tural dif-feren
e between the enumerable sets and the arithmeti
 sets: universal set existsfor enumerable sets but not for the arithmeti
 ones.Then we may make another, more radi
al, suggestion [5℄: let us 
onsider all thetheorems of the form �for almost all x, P (x)�, where P is a formula in somelanguage. There are 
ountably many theorems of this form, and their set is re-
ursively enumerable. Ea
h of these theorems 
orresponds to a set of measure 1(sequen
es for whi
h P is true). Consider the interse
tion of all these sets. The�-additivity (
ountable additivity) of the measure guarantees that this interse
-tion also has measure 1. Let us take this interse
tion as the set of randomsequen
es. Then by de�nition all the theorems of probability theory (provablytrue for almost all sequen
es) are true for the sequen
es from this set; however, ween
ounter then other di�
ulties (related to the basi
 problems in the foundationsof set theory, like the absen
e of the set of all sets, et
.)More subtle versions of this approa
h 
an be 
onsidered, but they are based onrather deli
ate te
hniques of the set theory. For example, instead a provablyminimal set we may 
onsider a set whi
h would be minimal in a 
onsistent way:this means that it is impossible to prove that it is not minimal. The existen
eof su
h a set is not at all evident; the proof makes use of �ne te
hniques of theset theory. To give an informal image of this approa
h we may 
ompare it withthe presumption of inno
en
e. A sequen
e must always be presumed random; ifit is suspe
ted not to be su
h, it must be taken to 
ourt; but in the absen
e ofany proofs whatsoever of its �guilt� the sequen
e must be exonerated (that is,
onsidered as random) for the bene�t of the doubt.A
knowledgement. The authors are grateful to Alexander Shen for manyhelpful 
omments.
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