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non invertible functions of the observations.
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ABSTRACT. We investigate a semiparametric regression model where one

gets noisy non linear non invertible functions of the observations. We focus on

the application to bearings-only tracking. We first investigate the least

squares estimator and prove its consistency and asymptotic normality under

mild assumptions. We study the semiparametric likelihood process and prove

local asymptotic normality of the model. This allows to define the efficient

Fisher information as a lower bound for the asymptotic variance of regular

estimators, and to prove that the parametric likelihood estimator is regular

and asymptotically efficient. Simulations are presented to illustrate our

results.

Key words and phrases: Nonlinear regression, Semiparametric models, Bearings-only Track-

ing, Inverse models, Mixed Effects models

1 Introduction

In bearings-only tracking (BOT), one gets information about the trajectory of a target

only via bearing measurements obtained by a moving observer. This is a highly ill-posed

problem which requires, so that one be able to propose solutions, the choice of a trajectory

model. The literature on the subject is very large, and many algorithms have been proposed

to track the target, see for instance [2], [4], [10], [13]. All these algorithms are designed for

particular classes of models for the trajectory of the target. In [6], the author proved that

the least squares estimator may be very sensitive to some small deterministic perturbations,

in which case the algorithms are highly non robust. However, it has been also claimed in

[6] that stochastic perturbations do not essentially alter the performances of the estimator.

The aim of this paper is to develop an estimation theory for a semiparametric model that
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applies to BOT. The model we study is the following:

{
Xk = Sθ(tk) + εk,

Yk = Ψ(Xk, tk) + Vk.
(1)

(t, θ) 7→ Sθ(t) is a known map from [0, 1] × Θ to R
d, Θ is the parameter set (in general, a

subset of a finite dimensional euclidian space), (x, t) 7→ Ψ(x, t) is a known function from

R
d × [0, 1] to R, which in general is non invertible, (tk)k∈N is the sequence of observation

times in [0, 1], (εk)k∈N is a sequence of random variables taking values in R
d, (Vk)k∈N is

a sequence of centered i.i.d. random variables taking values in R, with known marginal

distribution g(x)dx, variance σ2 , and independent of the sequence (εk)k∈N. The sequence

(Xk)1≤k≤n is not observed. We aim at estimating θ using only the observations (Yk)1≤k≤n.

In case of BOT, (Xk)1≤k≤n is the trajectory of the target, given by its euclidian coordinates

at times (tk)1≤k≤n (d = 2), Sθ(·) is the parametric trajectory the target is assumed to follow

up to some parameter θ, for instance uniform linear motion, or a sequence of uniform linear

and circular motions, (εk)1≤k≤n is a noise sequence to take into account the fact that the

model is only an idealization of the true trajectory and to allow stochastic departures of

the trajectory model, and (Vk)1≤k≤n is the observation noise. Since the observer is moving,

if (O(t))t∈[0,1] is its trajectory, the function Ψ(x, t) is the angle, with respect to some fixed

direction, of x − O(t), that is, for x = (x1, x2)
T :

Ψ(x, t) = arctan[x2 − O2(t)]/[x1 − O1(t)]. (2)

In such a case, for any z and fixed t, the set {x : Ψ(x, t) = z} is infinite. Our aim

here is to understand how it is possible to estimate the parameter θ in model (1), what

are the limitations in the statistical performances, to propose estimation procedures, to

build confidence regions for θ and to discuss their optimality under the weakest possible

assumptions on the sequence (εk)k∈N. Indeed, we would like to apply the results to BOT

under realistic assumptions, for which it is not a strong assumption to assume that the

observation noise (Vk)k∈N consists of i.i.d. random variables with known distribution, but

the trajectory noise (εk)k∈N may be quite complicated and unknown. To begin with, we

will assume that the variables (εk)k∈N are i.i.d. with unknown distribution.

As such, the model may be viewed as a regression model with two variables, in which one

of the variables is random, is not observed and follows itself a regression model. One could

think that it looks like an inverse problem, or that the model may be understood as a state

space model, or a mixed effects model, but in a nonstandard way, so that we have not been

able to find results in the literature that apply to this setting.

Throughout the paper, observations (Yk)1≤k≤n are assumed to follow model (1) with true

(unknown) parameter θ∗ and the observation times are tk = k
n , k = 1, . . . , n. All norms ‖ ·‖
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are euclidian norms.

In Section 2, we consider least squares estimation and prove consistency and asymptotic

normality in this setting, see Theorems 1 and 2. This allows to introduce basic consider-

ations and set some assumptions. We prove that the results apply to BOT for linear

observable trajectory models and when the trajectory noise has an isotropic distribution,

see Theorem 3. Then, in Section 3 we study the likelihood process to set local asymptotic

normality and efficiency in the parametric setting where the density of the noise (εk)k∈N

is known, and define the efficient Fisher information in the semiparametric setting where

the density of the noise (εk)k∈N is unknown. This also gives an estimation criterion which

may be used even if the trajectory noise is correlated. In Section 4, we propose strate-

gies for semiparametric estimation and discuss possible extension of the results to possibly

dependent trajectory noise (εk)k∈N. Section 5 is devoted to simulations. In each section,

particular attention is given to the application of the results to BOT.

2 Least squares estimation

In sections 2 and 3 we will use

Assumption 1 (εk)k∈N is a sequence of i.i.d. random variables.

To be able to obtain a consistent estimator of θ, we require that, in the absence of noise

(both observation noise and trajectory noise), the observation at all times is sufficient to

retrieve the parameter. We thus introduce

Assumption 2 If θ ∈ Θ is such that Ψ(Sθ(t), t) = Ψ(Sθ∗(t), t) a.e. for all t ∈ [0, 1], then

θ = θ∗.

This is the observability assumption.

If the observation noise is centered, in the absence of trajectory noise, the fact that only

Ψ(Sθ(t), t) is observed with additive noise is not an obstacle to the estimation of θ under

Assumption 2. But with trajectory noise, only the distribution of Ψ(Sθ(t) + ε1, t) may

be retrieved from noisy data. In case the marginal distribution of the εk’s is known, this

may be enough, but in case it is unknown, one has to be aware of some link between the

distribution of Ψ(Sθ(t) + ε1, t) and θ. We thus introduce the following assumption, which

will be proved to hold in some BOT situations.

Assumption 3 For all t ∈ [0, 1], for all θ ∈ Θ,

E{Ψ[Sθ(t) + ε1, t]} = Ψ[Sθ(t), t].
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Let us now define the least squares criterion and the least squares estimator (LSE) by

Mn(θ) =
1

n

n∑

k=1

(Yk − Ψ[Sθ(tk), tk])
2 ,

θn = arg min
θ∈Θ

Mn(θ),

where arg minθ∈Θ Mn(θ) is any minimizer of Mn.

2.1 Consistency

We assume that Θ is a compact subset of R
m, and we will use

Assumption 4 t 7→ E (Ψ[Sθ∗(t) + ε1, t])
2 defines a finite continuous function on [0, 1],

supt∈[0,1] E{(Ψ[Sθ∗(t) + ε1, t])
2 1(Ψ[Sθ∗(t)+ε1,t])2>M} tends to 0 as M tends to infinity, and

(t, θ) 7→ Ψ[Sθ(t), t] defines a finite continuous function on [0, 1] × Θ.

Theorem 1 Under assumptions 1 , 2, 3 and 4, θn converges in probability to θ∗ as n tends

to infinity.

The proof is a consequence of general results in M -estimation. We begin with a simple

Lemma:

Lemma 1 Under Assumption 1, if F (·, ·) is a real function on R
d×[0, 1] such that supt∈[0,1] E|F (ε1, t)|

is finite, limM→+∞ supt∈[0,1] E{|F (ε1, t)|1|F (ε1,t)|>M} = 0, and EF (ε1, ·) is Riemann-integrable,

then
1

n

n∑

k=1

F (εk, tk)

converges in probability to
∫ 1
0 EF (ε1, t) dt as n tends to infinity.

Proof

First of all, by the integrability assumption,

1

n

n∑

k=1

EF (εk, tk)

converges to
∫ 1
0 EF (ε1, t) dt as n tends to infinity. Then

1

n

n∑

k=1

[F (εk, tk) − EF (εk, tk)] =
1

n

n∑

k=1

[
F (εk, tk) 1|F (εk,tk)|>M − E{F (εk, tk)1|F (εk,tk)|>M}

]

+
1

n

n∑

k=1

[
F (εk, tk) 1|F (εk,tk)|≤M − E{F (εk, tk)1|F (εk,tk)|≤M}

]
.
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The variance of the second term is upper bounded by 2M2

n so that the second term tends to 0

in probability as n tends to infinity, and the absolute value of the first term has expectation

upper bounded by 2 supt∈[0,1] E{|F (ε1, t)|1|F (ε1,t)|>M}, which may be made smaller than

any positive ǫ for big enough M , which proves the lemma.

Define now

M(θ) =

∫ 1

0
E (Ψ[Sθ∗(t) + ε1, t] − Ψ[Sθ(t), t])

2 dt + σ2.

Direct calculations yield

M(θ) − M(θ∗)

=

∫ 1

0
E

(
{Ψ[Sθ∗(t) + ε1, t] − Ψ[Sθ(t), t]}2 − {Ψ[Sθ∗(t) + ε1, t] − Ψ[Sθ∗(t), t]}2

)
dt

=

∫ 1

0
{Ψ[Sθ∗(t), t] − Ψ[Sθ(t), t]} × {2E (Ψ[Sθ∗(t) + ε1, t]) − Ψ[Sθ∗(t), t] − Ψ[Sθ(t), t]} dt.

By Assumption 3, it follows that

M(θ) − M(θ∗) =

∫ 1

0
{Ψ[Sθ(t), t] − Ψ[Sθ∗(t), t]}2 dt

so that M(θ) has a unique minimum at θ∗ by Assumption 2. Also, under Assumption 4,

θ 7→ M(θ) is uniformly continuous from Θ to R.

Now, for any θ,

Mn(θ) =
1

n

n∑

k=1

V 2
k +

2

n

n∑

k=1

Vk (Ψ[Sθ∗(tk) + εk, tk] − Ψ[Sθ(tk), tk])

+
1

n

n∑

k=1

(Ψ[Sθ∗(tk) + εk, tk] − Ψ[Sθ(tk), tk])
2 .

1
n

∑n
k=1 V 2

k converges in probability to σ2; the variance of 1
n

∑n
k=1 Vk (Ψ[Sθ∗(tk) + εk, tk] − Ψ[Sθ(tk), tk])

is σ2

n2

∑n
k=1 E (Ψ[Sθ∗(tk) + εk, tk] − Ψ[Sθ(tk), tk])

2, which converges to 0, so that
2
n

∑n
k=1 Vk (Ψ[Sθ∗(tk) + εk, tk] − Ψ[Sθ(tk), tk]) converges in probability to 0; and applying

Lemma 1, 1
n

∑n
k=1 (Ψ[Sθ∗(tk) + εk, tk] − Ψ[Sθ(tk), tk])

2 converges in probability to
∫ 1
0 E (Ψ[Sθ∗(t) + ε1, t] − Ψ[Xθ(t), t])

2 dt. Thus for any θ ∈ Θ, Mn(θ) converges in probabil-

ity to M(θ).

Using the compacity of Θ and the second part of Assumption 4, it is possible to strengthen

this pointwise convergence to a uniform one:

sup
θ∈Θ

|Mn(θ) − M(θ)| = oPθ∗
(1). (3)
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Indeed, for any θ1 and θ2 in Θ,

Mn(θ1) − Mn(θ2)

=
1

n

n∑

k=1

(2Ψ[Sθ∗(tk) + εk, tk] − Ψ[Sθ1(tk), tk] − Ψ[Sθ2(tk), tk]) (Ψ[Sθ2(tk), tk] − Ψ[Sθ1(tk), tk])

+
2

n

n∑

k=1

Vk (Ψ[Sθ2(tk), tk] − Ψ[Sθ1(tk), tk])

so that for any δ > 0,

sup
‖θ1−θ2‖≤δ

|Mn(θ1)−Mn(θ2)| ≤ ω(δ)

[
1

n

n∑

k=1

(
2|Ψ[Sθ∗(tk) + εk, tk]| + 2 sup

θ,t
|Ψ[Sθ(t), t]| + 2|Vk|

)]

where ω(·) is the uniform modulus of continuity of (t, θ) 7→ Ψ[Sθ(t), t]. The right-hand side

of the inequality converges in probability by Lemma 1 to a constant times ω(δ), so that

equation (3) follows from compacity of Θ. Theorem 1 now follows from [14] Theorem 5.7.

2.2 Asymptotic normality

Asymptotic normality of the least squares estimator will follow using usual arguments

under further regularity assumptions.

Assumption 5 There exists a neighborhood U of θ∗ such that for all t ∈ [0, 1], θ 7→
Ψ[Sθ(t), t] possesses two derivatives on U that are continuous as functions of (θ, t) over

U × [0, 1].

If θ 7→ F is a twice differentiable function, let ∇θF (θ′) denote the gradient of F at θ′, and

D2
θF (θ′) the hessian of F at θ′. Define for θ ∈ U :

IR(θ) =

∫ 1

0
∇θΨ[Sθ(t), t]∇θΨ[Sθ(t), t]

T dt

IΨ(θ) =

∫
E {Ψ[Sθ∗(t) + ε1, t] − Ψ[Sθ(t), t]}2 ∇θΨ[Sθ(t), t]∇θΨ[Sθ(t), t]

T dt.

Then:

Theorem 2 Under Assumptions 1 , 2, 3, 4 and 5, if IR(θ∗) is non singular,

√
n(θn − θ∗) =

IR(θ∗)−1 1√
n

n∑

k=1

{Ψ[Sθ∗(tk) + εk, tk] − Ψ[Sθ∗(tk), tk] + Vk}∇θΨ[Sθ∗(tk), tk] + oPθ∗
(1).
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In particular,
√

n(θn − θ∗) converges in distribution to N
(
0, I−1

M (θ∗)
)

where

I−1
M (θ∗) = I−1

R (θ∗)
[
IΨ(θ∗) + σ2IR(θ∗)

]
I−1
R (θ∗).

Let us notice that, for a null sequence (εk)k∈N, we retrieve the usual Fisher information

matrix for the parametric regression model.

The proof follows Wald’s arguments. On the set (θn ∈ U), which has probability tending

to 1 according to Theorem 1:

∇θMn(θn) = 0 = ∇θMn(θ∗) +

∫ 1

0
D2

θMn[θ∗ + s(θn − θ∗)] ds (θn − θ∗).

Direct calculations yield for any θ ∈ U

∇θMn(θ) = − 2

n

n∑

k=1

{Ψ[Sθ∗(tk) + εk, tk] + Vk − Ψ[Sθ(tk), tk]}∇θΨ[Sθ(tk), tk],

and

D2
θMn(θ) =

2

n

n∑

k=1

∇θΨ[Sθ(tk), tk]∇θΨ[Sθ(tk), tk]
T

− 2

n

n∑

k=1

{Ψ[Sθ∗(tk) + εk, tk] + Vk − Ψ[Sθ(tk), tk]}D2
θΨ[Sθ(tk), tk]. (4)

Notice that, using Assumption 3, ∇θMn(θ∗) is a centered random variable, and that, using

Assumptions 4, 5, the variance of ∇θMn(θ∗) converges to 4
[
IΨ(θ∗) + σ2IR(θ∗)

]
as n → +∞.

Also using Assumptions 3, 4, 5, and applying Lemma 1, D2
θMn(θ) converges in probability

to 2IR(θ) as n → +∞.

Using Assumption 5, there exists an increasing function ω satisfying limδ→0 ω(δ) = 0 such

that, for all (θ, θ′) ∈ U2 with ‖θ − θ′‖ ≤ δ,

∥∥D2
θMn(θ) − D2

θMn(θ′)
∥∥ ≤ ω(δ) × 1

n

n∑

k=1

(|Ψ[Sθ∗(tk) + εk, tk] + Vk| + 2) .

It follows that on the set (θn ∈ U)

‖D2
θMn[θ∗ + s(θn − θ∗)] − D2

θMn(θ∗)‖ ≤ ω(‖θn − θ∗‖)× 1

n

n∑

k=1

(|Ψ[Sθ∗(tk) + εk, tk] + Vk| + 2) .
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By Lemma 1, 1
n

∑n
k=1 |Ψ[Sθ∗(tk) + εk, tk] + Vk| = OPθ∗

(1) so that, using the consistency of

θn, Lemma 1 and Assumption 5:

∫ 1

0
D2

θMn[θ∗ + s(θn − θ∗)] ds = 2IR(θ∗) + oPθ∗
(1).

Finally, we obtain

(
IR(θ∗) + oPθ∗

(1)
)√

n(θn − θ∗) =

1√
n

n∑

k=1

{Ψ[Sθ∗(tk) + εk, tk] + Vk − Ψ[Sθ∗(tk), tk]}∇θΨ[Sθ∗(tk), tk] + oPθ∗
(1).

Using Assumption 5, the convergence in distribution to N
(
0, I−1

M (θ∗)
)

is a consequence of

the Lindeberg-Feller Theorem and Slutzky’s Lemma.

Notice that, if ÎM is a consistent estimator of IM (θ∗), by Slutsky’s Lemma,
√

nÎ
1/2
M (θn − θ∗) converges in distribution to the centered standard gaussian distribution in

R
m, which allows to build confidence regions with asymptotic known level. If the distribu-

tion of the trajectory noise (εk) is known, one may use ÎM = IM (θn). If the distribution of

the noise is unknown, one could use bootstrap procedures to build confidence regions based

on the empirical distribution of θn using bootstrap replicates.

Another possibility occurs if one has a majoration

E {Ψ[Sθ∗(t) + ε1, t] − Ψ[Sθ∗(t), t]}2 ≤ A2, (5)

where A denotes a known constant. Indeed, in such a case, IΨ(θ∗) is upper bounded (in

the natural ordering of positive symetric matrices) by A2IR(θ∗), so that I−1
M (θ∗) is upper

bounded by (A2 + σ2)I−1
R (θ∗), and one may use (A2 + σ2)I−1

R (θn) as variance matrix to

obtain conservative confidence regions.

2.3 Application to BOT

To apply the results to BOT, one has to see whether Assumptions 1, 2, 3, 4 and 5 hold

and if IR(θ∗) is non singular.

Assumption 2 is the usual observability assumption which holds for models such as uniform

linear motion if the observer does not move itself along uniform linear motion , or a sequence

of uniform linear and circular motions, if the observer does not move along uniform linear

motion or circular motion in the same time intervals as the target. Various observability

properties are proved in [7].

Assumptions 4 and 5 hold as soon as the trajectory model Sθ(t) is twice differentiable for
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all t as a function of θ and the denominator in (2) may not be 0, that is the bearing exact

measurements of the non noisy possible trajectory stay inside an interval with length π.

This may be seen as an assumption on the manoeuvres of the observer. This is a usual

assumption in BOT literature. The fact that IR(θ∗) is non singular is equivalent to the

observability assumptions for linear models. Let us introduce such models.

Let e1(t), . . . , ep(t) be continuous functions on [0, 1], θ = (a1, . . . , ap, b1, . . . , bp)
T ,

Sθ(t) =

(
a1e1(t) + . . . + apep(t)

b1e1(t) + . . . + bpep(t)

)

. (6)

Then

Proposition 1 Under model (6), Assumption 2 holds if and only if IR(θ∗) is non singular.

Proof

Let θ∗ = (a∗1, . . . , a
∗
p, b

∗
1, . . . , b

∗
p)

T . Let

m(θ, t) =
Sθ(t)2 − O2(t)

Sθ(t)1 − O1(t)
.

Simple algebra gives that Ψ[Sθ(t), t] = Ψ[S∗
θ (t), t] if and only if

p∑

k=1

(bk − b∗k)ek(t) −
p∑

k=1

(ak − a∗k)ek(t)m(θ∗, t) = 0,

so that Assumption 2 holds if and only if the functions e1(t), . . . , ep(t), e1(t)m(θ∗, t), . . . , ep(t)m(θ∗, t)

are linearly independent in the space of continuous functions on [0, 1].

Also, for i = 1, . . . , p:

∂

∂ai
arctan m(θ∗, t) = −

(
1

1 + m(θ∗, t)2

)(
1

Sθ(t)1 − O1(t)

)
ei(t)m(θ∗, t)

and
∂

∂bi
arctan m(θ∗, t) =

(
1

1 + m(θ∗, t)2

)(
1

Sθ(t)1 − O1(t)

)
ei(t),

so that IR(θ∗) is non singular if and only if the functions e1(t), . . . , ep(t), e1(t)m(θ∗, t), . . . , ep(t)m(θ∗, t)

are linearly independent in the space of continuous functions on [0, 1], which ends the proof.

Thus under model (6), if the trajectory of the observer is such that O2(t)−
∑p

k=1 b∗kek(t) 6=
0 for all t ∈ [0, 1] and Assumption 2 holds, Assumptions 4 and 5 hold and IR(θ∗) is non

singular.

What remains to be seen is whether Assumption 3 holds, and it is the case under a

simple assumption on the distribution of the trajectory noise:
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Assumption 6 ε1 has an isotropic distribution in R
2.

We introduce some prior knowledge on the trajectory and on the variance of the trajectory

noise to be able to obtain conservative confidence regions.

Assumption 7 The trajectory model (t, θ) 7→ Sθ(t) is such that for all (θ, t) ∈ Θ × [0, 1],

‖O(t) − Sθ(t)‖ ≥ Rmin, and a constant number A2 such that

π2
(
1 + π−2/3

)3 E‖ε1‖2

R2
min

≤ A2

is known.

This condition makes sense since in the context of passive tracking one usually assumes

that the distance between target and observer is quite large.

Theorem 3 If the trajectory model (t, θ) 7→ Sθ(t) and the move of the observer are such

that Assumptions 2, 4, 5 and 7 hold and IR(θ∗) is non singular,

or if the trajectory model is (6), the trajectory of the observer is such that O2(t)−
∑p

k=1 b∗kek(t) 6=
0 for all t ∈ [0, 1] and Assumption 2 holds,

if moreover Assumption 1 and 6 hold,

then for any α > 0, if Cα is a region with coverage 1 − α for the standard gaussian distri-

bution in R
m, then

lim inf
n→+∞

Pθ∗

( √
n√

A2 + σ2
IR

1/2(θn)
(
θn − θ∗

)
∈ Cα

)
≥ 1 − α.

Proof

Under Assumption 6, let the density of ε1 be F (‖ε‖). Recall that the trajectory of the

observer is (O(t))t∈[0,1]. Let β(t) = arctan[Sθ(t)2 − O2(t)]/[Sθ(t)1 − O1(t)] = Ψ[Sθ(t), t].

E{Ψ[Sθ(t) + ε1, t]} =

∫∫

R×(−π,π)
arctan

[
Sθ(t)2 − O2(t) + r sin α

Sθ(t)1 − O1(t) + r cos α

]
F (r) rdrdα ,

= β(t) +

∫∫

R×(−π,π)
arctan

(
r sin(α − β(t))

‖O(t) − Sθ(t)‖ + r cos(α − β(t))

)
F (r) rdrdα.

Let

Gθ,t(r, α) = arctan

(
r sin α

‖O(t) − Sθ(t)‖ + r cos α

)
.

Then,

E{Ψ[Sθ(t) + ε1, t]} = Ψ[Sθ(t), t] +

∫∫

R×(−π,π)
Gθ,t(r, α)F (r) rdrdα.
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But for any r > 0, for any α, Gθ,t(r,−α) = Gθ,t(r, α) so that

E{Ψ[Sθ(t) + ε1, t]} = Ψ[Sθ(t), t].

Now,

Ψ[Sθ∗(t) + ε1, t] − Ψ[Sθ∗(t), t] =

∫ 1

0
∇xΨ[Sθ∗(t) + hε1, t]

T ε1dh,

and direct calculations provide

‖∇xΨ[x, t]‖ = ‖O(t) − x‖−1.

Thus for any a ∈]0, 1[:

E {Ψ[Sθ∗(t) + ε1, t] − Ψ[Sθ∗(t), t]}2 ≤ π2
P (‖ε1‖ ≥ a‖O(t) − Ψ[Sθ∗(t)‖)

+
E‖ε1‖2

(1 − a)2‖O(t) − Ψ[Sθ∗(t)‖2

≤ π2
P (‖ε1‖ ≥ aRmin) +

E‖ε1‖2

(1 − a)2R2
min

since |Ψ(u)−Ψ(v)| ≤ π for any real numbers u and v, and by using the triangular inequality

and Assumption 7.

But Tchebychev inequality leads to

E {Ψ[Sθ∗(t) + ε1, t] − Ψ[Sθ∗(t), t]}2 ≤ E‖ε1‖2

R2
min

(
π2

a2
+

1

(1 − a)2

)
(7)

which is minimum for a = 1
1+π−2/3 leading to

(
π2

a2 + 1
(1−a)2

)
= π2

(
1 + π−2/3

)3
and

E {Ψ[Sθ∗(t) + ε1, t] − Ψ[Sθ∗(t), t]}2 ≤ A2.

To conclude one may apply the concluding remark of Section 2.2 to obtain asymptotic con-

servative confidence regions for θ.

3 Likelihood and efficiency

Let F be the set of probability densities f on R
d such that for all t ∈ [0, 1], for all θ ∈ Θ,

∫

Rd

Ψ[Sθ(t) + ε, t]f (ε) dε = Ψ[Sθ(t), t]. (8)

We will replace Assumptions 1 and 3 by
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Assumption 8 (εk)k∈N is a sequence of i.i.d. random variables with density f∗ ∈ F .

The normalized log-likelihood is the function on Θ ×F

Jn(θ, f) =
1

n

n∑

k=1

log

(∫
g {Yk − Ψ[Sθ(tk) + u, tk]} f(u)du

)
. (9)

Define

G ((ε, V ), t; θ) = log

(∫
g {Ψ[Sθ∗(t) + ε, t] + V − Ψ[Sθ(t) + u, t]} f(u) du

)
,

where (ǫ, V ) has the same distribution as (ǫ1, V1).

As soon as for any (θ, f) ∈ Θ × F , it is possible to apply Lemma 1 to G ((·), ·; θ), Jn(θ, f)

converges in probability to

J(θ, f) =

∫ 1

0

∫

Rd

∫

R

log

(∫
g {Ψ[Sθ∗(t) + ε, t] + v − Ψ[Sθ(t) + u, t]} f(u) du

)
g(v)f∗(ε) dv dε dt.

(10)

Let

p(θ,f) (z, t) =

∫
g {z − Ψ[Sθ(t) + u, t]} f(u) du

be the density, for fixed t, of the random variable Z = Ψ[Sθ(t) + U, t] + V where U is a

random variable in R
d with density f independent of the random variable V in R with

density g. Thus, p(θ∗,f∗) (·, tk) is the probability density of Yk. Then, the change of variable

z = Ψ[Sθ∗(t)+ε, t]+v in
∫

R
log
(∫

g {Ψ[Sθ∗(t) + ε, t] + v − Ψ[Sθ(t) + u, t]} f(u) du
)

g(v) dv

leads to

J(θ, f) =

∫ [∫
p(θ∗,f∗) (z, t) log p(θ,f) (z, t) dz

]
dt.

Thus, for any (θ, f) ∈ Θ ×F ,

J(θ∗, f∗) ≥ J(θ, f),

and J(θ∗, f∗) = J(θ, f) if and only if t a.e. p(θ,f) (z, t) = p(θ∗,f∗) (z, t) z a.e., that is the

probability distribution of Ψ[Sθ(t) + U, t] + V ,where U is a random variable in R
d with

density f independent of the random variable V in R with density g, is the same as that of

Ψ[Sθ∗(t) + U∗, t] + V ,where U∗ is a random variable in R
d with density f∗ independent of

the random variable V in R with density g. But if f ∈ F and f∗ ∈ F , taking expectations

leads to the fact that, t a.e., Ψ[Sθ(t), t] = Ψ[Sθ∗(t), t], so that θ = θ∗ if Assumption 2 holds.

In other words, J(θ, f) is maximum only for θ = θ∗.

Following the same lines as for the LSE, we may thus easily obtain that, if the probabil-

ity density f∗ is known, the parametric maximum likelihood estimator is consistent and
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asymptotically gaussian. Define the parametric maximum likelihood estimator as :

θ̃n = arg max
θ∈Θ

Jn(θ, f∗).

where arg maxθ∈Θ Jn(θ, f∗) is any maximizer of Jn(·, f∗).

If for any θ ∈ Θ, there exists a small open ball containing θ such that Lemma 1 applies to

supθ∈U G ((·), ·; θ), it is possible, as in [14] Theorem 5.14, to strengthen the convergence of

Jn(θ, f∗) to J(θ, f∗) in a uniforme one. The consistency of θ̃n follows:

Theorem 4 Under assumptions 2 and 8, if moreover Lemma 1 applies to supθ∈U G ((·), ·; θ),

then the estimator θ̃n is consistent.

We will use the notation Y (t) for Y (t) = Ψ[Sθ∗(t)+ε1, t]+V1 to simplify the writing of some

integrals. We shall introduce the assumptions we need to prove the asymptotic distribution

of θ̃n:

Assumption 9 For all (z, t) ∈ R × [0, 1], the function θ 7→ p(θ,f∗) (z, t) is twice continu-

ously differentiable.

For any θ ∈ Θ, t 7→ E‖∇θ log p(θ,f∗) (Y (t), t) ‖2 is finite and continuous.

There exists a neighborhood U of θ∗ such that for all θ ∈ U , t 7→ ED2
θ log p(θ,f∗) (Y (t), t) is

finite and continuous.

Lemma 1 applies to log p(θ,f) (Y (t), t), for all θ, to ‖∇θ log p(θ,f∗) (Y (t), t) ‖2 and all com-

ponents of D2
θ log p(θ,f∗) (Y (t), t) for θ ∈ U .

Introduce the parametric Fisher information matrix:

I(θ) =

∫ 1

0
E

[∇θp(θ,f∗)

p(θ,f∗)
(Y (t), t)

∇θp(θ,f∗)

p(θ,f∗)
(Y (t), t)

]
dt

Theorem 5 Under assumptions 2, 8 and 9, θ̃n converges in probability to θ∗ as n tends to

infinity.

Moreover, if I(θ∗) is non singular,

√
n(θ̃n − θ∗) = I−1(θ∗)

1√
n

n∑

k=1

∇θp(θ∗,f∗)

p(θ∗,f∗)
(Yk, tk) + oPθ∗

(1),

and
√

n(θ̃n − θ∗) converges in distribution as n tends to infinity to N (0, I−1(θ∗)).

The proof follows the same lines as that of Theorems 1 and 2 and is left to the reader.

Notice that under the same assumptions, it is easy to prove that the parametric model is

locally asymptotically normal in the sense of Le Cam (see [8]) so that if I(θ∗) is singular,



14 E. Gassiat and B. Landelle

there exist no regular estimator of θ which is
√

n-consistent. Thus if IR(θ∗) is non singular

and the assumptions in Theorem 2 hold, in which case the LSE is regular
√

n-consistent,

then I(θ∗) is also non singular.

To investigate the optimality of possible estimators in the semiparametric situation,

with f∗ unknown but known to belong to F , we use Le Cam’s theory as developed for non

i.i.d. observations by Mc Neney and Wellner [9]. Introduce the set B of integrable functions

b on R
d such that:

•
∫

b(u)du = 0 and ∃δ > 0, f∗ + δb ≥ 0,

• for all t ∈ [0, 1], for all θ ∈ Θ,

∫

Rd

Ψ [Sθ(t) + ε, t] b(ε)dε = 0.

• ∫ 1

0
E

( ∫
g(Y (t) − Ψ[Sθ∗(t) + u, t])b(u)du∫
g(Y (t) − Ψ[Sθ∗(t) + u, t])f∗(u)du

)2

dt < ∞.

Let H = R
m × B be endowed with the inner product

〈(a1, b1), (a2, b2)〉H =
∫ 1
0 E

{(
∇θp

T
(θ∗,f∗)

p(θ∗,f∗)
(Y (t), t) · a1 +

∫
g(Y (t) − Ψ[Sθ∗(t) + u, t])b1(u)du∫
g(Y (t) − Ψ[Sθ∗(t) + u, t])f∗(u)du

)

(
∇θp

T
(θ∗,f∗)

p(θ∗,f∗)
(Y (t), t) · a2 +

∫
g(Y (t) − Ψ[Sθ∗(t) + u, t])b2(u)du∫
g(Y (t) − Ψ[Sθ∗(t) + u, t])f∗(u)du

)}
dt.

We will need only local smoothness, so we introduce:

Assumption 10 There exists a neighborhood U of θ∗ such that for θ ∈ U :

For all (z, t) ∈ R × [0, 1], the function θ 7→ p(θ,f∗) (z, t) is twice continuously differentiable.

t 7→ E‖∇θ log p(θ,f∗) (Y (t), t) ‖2 is finite and continuous.

t 7→ ED2
θ log p(θ,f∗) (Y (t), t) is finite and continuous.

For any b ∈ B, for all (z, t) ∈ R × [0, 1], θ 7→
∫

g(z −Ψ [Sθ(t) + u, t])b(u)du is continuously

differentiable and t 7→ E

∥∥∥∇θ

R

g(Y (t)−Ψ[Sθ(t)+u,t])b(u)du
p(θ∗,f∗)(Y (t),t)

∥∥∥ is finite and continuous.

Lemma 1 applies to ‖∇θ log p(θ,f∗) (Y (t), t) ‖2,all components of D2
θ log p(θ,f∗) (Y (t), t) and∥∥∥∇θ

R

g(Y (t)−Ψ[Sθ(t)+u,t])b(u)du
p(θ∗,f∗)(Y (t),t)

∥∥∥ for θ ∈ U .

Let Pn,(θ,f) be the distribution of Y1, . . . , Yn when the parameter is θ and the density of the

trajectory noise is f . For (θ, f) ∈ Θ ×F , let

Λn (θ, f) = log
dPn,(θ,f)(Y1, . . . , Yn)

dPn,(θ∗,f∗)(Y1, . . . , Yn)
= Jn (θ, f)− Jn (θ∗, f∗) .
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Then

Proposition 2 Assume that Assumption 10 holds. Then the sequence of statistical models

(Pn,(θ,f))θ∈Θ,f∈F is locally asymptotically normal with tangent space H, that is, for (a, b) ∈
H,

Λn

(
θ∗ +

a√
n

, f∗ +
b√
n

)
= Wn (a, b) − 1

2
‖ (a, b) ‖2

H + oPθ∗
(1),

where

Wn (a, b) =
1√
n

n∑

k=1

(
∇θp

T
(θ∗,f∗)

p(θ∗,f∗)
(Yk, tk) · a +

∫
g(Yk − Ψ[Sθ∗(tk) + u, tk])b(u)du∫
g(Yk − Ψ[Sθ∗(tk) + u, tk])f∗(u)du

)

and for any finite subset h1, . . . , hq ∈ H, the random vector (Wn(h1), . . . ,Wn(hq)) converges

in distribution to the centered Gaussian vector with covariance 〈hi, hj〉H.

Proof

Λn

(
θ∗ +

a√
n

, f∗ +
b√
n

)

=

n∑

k=1

log



1 +
p(θ∗+ a√

n
,f∗) − p(θ∗,f∗)

p(θ∗,f∗)
(Yk, tk) +

1√
n

∫
g(Yk − Ψ

[
Sθ∗+ a√

n
(tk) + u, tk

]
)b(u)du

p(θ∗,f∗)(Yk, tk)





= Wn (a, b) − 1

2
‖ (a, b) ‖2

H + oPθ∗
(1),

by using: Taylor expansion till second order of log(1+u), Taylor expansion till second order

of θ 7→ p(θ,f∗) (z, t) and Taylor expansion till first order of θ 7→
∫

g(z−Ψ [Sθ(t) + u, t])b(u)du,

which gives the first order term Wn (a, b), and then applying Lemma 1 to the second order

terms to get 1
2‖ (a, b) ‖2

H + oPθ∗
(1).

The convergence of (Wn(h))h∈H to the isonormal process on H comes from Lindeberg

Theorem applied to finite dimensional marginals.

The interest of Proposition 2 is that it gives indications on the limitations on the es-

timation of θ∗ when f∗ is unknown. Indeed, the efficient Fisher information I∗ is given

by:

inf
b∈B

‖ (a, b) ‖2
H = aT I∗a,

and if I∗ is non singular, any regular estimator θ̂ that converges at speed
√

n has asymptotic

covariance Σ which is lower bounded (in the sense of positive definite matrices) by (I∗)−1.

In case IR(θ∗) is non singular and the assumptions in Theorem 2 hold, one may deduce

that I∗ is non singular.
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3.1 Application to BOT

As seen in Section 2.3, the set of isotropic densities is a subset of F . If g is twice

differentiable, positive and upper bounded, if the trajectory model θ 7→ Sθ(t) is twice dif-

ferentiable for all t ∈ [0, 1], then Assumptions 9 and 10 hold under almost any trajectory of

the observer. Indeed, one may apply Lebesgue’s Theorem to obtain derivatives of integrals,

and use the fact that the function z 7→ arctan z is infinitely differentiable, has vanishing

derivatives at infinity, is bounded and has two bounded derivatives, so that if the trajectory

of the observer is such that, for all θ, the set of times t and points u such that Ψ(Sθ(t)+u, t)

is −π
2 or π

2 is negligible, then the smoothness assumptions hold.

Moreover, as seen again in Section 2.3, if the trajectory model is (6) and satisfies Assump-

tion 2, then IR(θ∗) is non singular, so that the efficient Fisher information I∗ is non singular,

and all results of Section 3 apply.

4 Further considerations

It would be of great interest to have a more explicit general expression of I∗, and of greater

interest to exhibit an asymptotically regular and efficient estimator θ̂. If one could approx-

imate the profile likelihood supf∈F Jn(θ, f), one could hope that the maximizer θ̂ of it be

a good candidate.

Another possibility would be to use Bayesian estimators. Indeed, in the parametric context,

the Bernstein-von Mises Theorem tells us that asymptotically, the posterior distribution of

the parameter is gaussian, centered at the maximum likelihood estimator, and with variance

the inverse of Fisher information (see [14] for a nice presentation). Extensions to semipara-

metric situations are now available, see [3]. To obtain semiparametric Bernstein-von Mises

Theorems, one has to verify assumptions relating the particular model and the choice of the

non parametric prior. This could be the object of further work. Then, with an adequate

choice of the prior on Θ×F , taking advantage of MCMC computations, one could propose

bayesian methods to estimate θ∗ (mean posterior, maximum posterior, median posterior

for example).

To extend the results of the preceding sections in the case where the trajectory noise is

no longer a sequence of i.i.d. random variables, one needs to prove laws of large numbers

and central limit theorems for empirical sums such as 1
n

∑n
k=1 F (εk, tk), we prove some

below for stationary weakly dependent sequences (εk)k∈N. In such a case, if M(θ) and

J(θ, f∗) are still the limits of Mn(θ) and Jn(θ, f∗) respectively, then asymptotics for θn and

θ̃n could be obtained. Here, Jn(θ, f∗) is no longer the normalized log-likelihood, rather the

marginal normalized log-likelihood, but J(θ, f∗) is still a contrast function.

Since the convergence of the expectation relies on purely deterministic arguments (Rieman



Semiparametric regression estimation 17

integrability), we focus on centered functions. We assume in this section that

Assumption 11 (εk)k∈N is a stationary sequence of random variables such that for all

t ∈ [0, 1]

E [F (ε1, t)] = 0.

Denote by (αk)k∈N the strong mixing coefficients of the sequence (εk)k∈N defined as in [12],

that is, for k ≥ 1,

αk = 2 sup
ℓ∈N,A∈σ(εi:i≤ℓ),B∈σ(εi:i≥k+ℓ)

|P (A ∩ B) − P (A) P (B)| .

and α0 = 1
2 . Notice that they are also an upper bound for the strong mixing coefficients of

the sequence (F (εk, tk))k∈N for any sequence (tk)k∈N of real numbers in [0, 1].

Proposition 3 Under Assumption 11, if αk tends to 0 as k → +∞, if supt∈[0,1] E|F (ε1, t)|
is finite and limM→+∞ supt∈[0,1] E{|F (ε1, t)|1|F (ε1,t)|>M} = 0, then

1

n

n∑

k=1

F (εk, tk)

converges in probability to 0 as n tends to infinity.

Proof

Using Ibragimov’s inequality ([5]), for any M :

Var

(
1

n

n∑

k=1

F (εk, tk) 1|F (εk,tk)|≤M

)

=
1

n2

n∑

i=1

n∑

j=1

Cov
(
F (εi, ti) 1|F (εi,ti)|≤M ;F (εj , ti) 1|F (εi,ti)|≤M

)

≤ 2M2

n2

n∑

i=1

n∑

j=1

α|i−j|

≤ 2M2

n

n−1∑

k=0

αk

which tends to 0 by Cesaro as n → +∞.

The end of the proof is similar to that of Lemma 1.

Define now

α−1 (u) = inf {k ∈ N; : αk ≤ u} =
∑

i≥0

1u<αi .

Define also for any t ∈ [0, 1],

Qt (u) = inf {x ∈ R; : P (|F (ε1, t)| > x) ≤ u} ,
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and

Q (u) = sup
t∈[0,1]

Qt (u) .

We shall assume that

Assumption 12 ∫ 1

0
α−1 (u)Q2 (u) du < +∞,

which is the same as the convergence of the series

∑

k≥0

∫ αk

0
Q2 (u) du.

Applying Theorem 1.1 in [12] one gets for any t ∈ [0, 1] and k ≥ 0:

|Cov (F (ε0, t) ;F (εk, t))| ≤ 2

∫ αk

0
Q2 (u) du,

so that if Assumption 12 holds, one may define

γ2 =

∫ 1

0
VarF (ε0, t) dt + 2

+∞∑

k=1

∫ 1

0
Cov (F (ε0, t) ;F (εk, t)) dt. (11)

Now:

Proposition 4 Under Assumptions 11 and 12, if σ2 > 0 and if for any integer k, the real

function (t, u) → Cov (F (ε0, t) ;F (εk, u)) is continuous on [0, 1]2, then

1√
n

n∑

k=1

F (εk, tk)

converges in distribution to N (0, γ2) as n tends to infinity.

Proof

Let Sn =
∑n

k=1 F (εk, tk) . First of all, let us prove that VarSn
n converges to σ2 as n tends

to infinity.

VarSn

n
=

1

n

n∑

i=1

n∑

j=1

Cov (F (εi, ti) ;F (εj , tj))

=
1

n

n−1∑

k=1−n

n∧(n−k)∑

i=1∨(1−k)

Cov (F (ε0, ti) ;F (εk, ti+k)) .
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For any K ≥ 1, using again Theorem 1.1 in [12]

∣∣∣∣∣∣
1

n

∑

K≤|k|≤n−1

n∧(n−k)∑

i=1∨(1−k)

Cov (F (ε0, ti) ;F (εk, ti+k))

∣∣∣∣∣∣
≤ 2

∑

k≥K

∫ αk

0
Q2 (u) du

which is smaller than any positive ǫ for big enough K under Assumption 12.

Now, for any fixed integer k,

∣∣∣∣∣∣
1

n

n∧(n−k)∑

i=1∨(1−k)

Cov (F (ε0, ti) ;F (εk, ti+k)) −
∫ 1

0
Cov (F (ε0, t) ;F (εk, t)) dt

∣∣∣∣∣∣

≤ sup
t,u∈[0,1],|t−u|≤ k

n

|Cov (F (ε0, t) ;F (εk, t + u)) − Cov (F (ε0, t) ;F (εk, t))|

+
k

n
sup

t∈[0,1]
|Cov (F (ε0, t) ;F (εk, t))|

which goes to 0 as n tends to infinity under the continuity assumption. The convergence

of VarSn
n to σ2 follows.

The end of the proof of Proposition 4 is a direct application of Corollary 1 in [11].

5 Simulations

The simulations have been realized using Matlab. The minimisation is made with the

function searchmin by setting to 2000 the options MaxFunEvals and MaxIter, so that the

method reaches the minimum.

For all the simulations, the observation time is of 20 s. The trajectory of the observer has

a speed with constant norm

∥∥∥∥
dO(t)

dt

∥∥∥∥equal to 0.25 km/s and makes maneuvers with norm

of acceleration

∥∥∥∥
d2O(t)

dt2

∥∥∥∥ of approximatively 50m/s2. The trajectory is mainly composed

of uniform linear motions and circular uniform motions. The different sequences of the tra-

jectory of the platform are described in the following table. The null values of acceleration

correspond to uniform linear motions and the others to uniform circular motion.

time interval (s) 0 − 6 7 − 10 11 − 14 15 − 20

norm of acceleration(m/s2) 50 0 −55 0

The positive and negative values for norm of acceleration correspond respectively to

anticlockwise and clockwise circular motion. The transition sequences between circular

motion and linear motion which are the time intervals [6, 7], [10, 11], and [14, 15] are such

that the whole trajectory is C∞.

The assumed parametric model is a uniform linear motion with a speed of 0.27 km/s.
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The parameter θ is defined by

θ =
(
x0 y0 vx vy

)T
.

where (x0, y0) denotes the initial position and (vx, vy) the speed vector. The parametric

trajectory is then defined by

Xθ(t) =

(
x0 + vxt

y0 + vyt

)
.

The observation noise is a sequence of i.i.d centered Gaussian variables with variance σ =

10−3 rad. The platform receives 2000 observations.

For the first simulation, we consider a sequence (εk)k∈N of i.i.d Gaussian centered ran-

dom variables with variance σ2
X × I2 and σX = 10m. The figure 1 shows the trajectory of

the platform with a realization of a trajectory of the target and the parametric trajectory

with parameter θn and also the confidence area with level of 95% for the position at final

time. The figure 4 presents the same for the maximum likelihood estimator (MLE) θ̃n.

By using Monte-Carlo methods with 1000 experiments, histograms of the coordinates

of
√

n(θn − θ∗) are presented on figure 2 with the marginal probability densities of the

asymptotic law N (0, I−1
M (θ∗)) in dotted line. The empirical cumulative distribution func-

tions of the coordinates of
√

n(θn−θ∗) are presented on figure 3 juxtaposed to the marginal

cumulative distributions of law N (0, I−1
M (θ∗)). These two figures illustrate the convergence

in distribution given by Theorem 2, since the sequence (εk)k∈N is an i.i.d. sequence of

isotropic random variables.

The figure 5 present the histograms of the coordinates of
√

n(θ̃n−θ∗) with the marginal

probability densities of the asymptotic law N (0, I−1(θ∗)) in dotted line. Empirical cumu-

lative distribution functions of the coordinates of
√

n(θ̃n − θ∗) and marginal cumulative

distributions of law N (0, I−1(θ∗)) are presented on figure 6. These two figures illustrate

the convergence in distribution given by Theorem 5.

Confidence intervals for coordinates of θ∗ with level of 95% are detailed in table 1 for θn

and in table 3 for θ̃n and are respectively denoted by IC1(θn) and IC3(θ̃n). We also present

in table 2 conservative confidence intervals denoted by IC2(θn) built on the result provided

by Theorem 3 with Rmin = 6km. The choice of σX and Rmin is a prior knowledge on the

experiment and is made according to the knowledge of the tactical situation of BOT. Note

that the majoration obtained in (7) shows that the accuracy of the conservative confidence

intervals is proportional to the ratio E‖ε1‖2

R2
min

. This result is very interesting in practice since

it shows that for high values of relative distance between target and observer and small

values of state noise variance, conservative confidence intervals are of high accuracy.

For these simulations, one needs to calculate IΨ(θn), IΨ(θ∗), I(θ̃n) and I(θ∗) which

involve expectations of functions of the r.v. ε1 with law N (O,σ2
X × I2). All integrals of this
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type has been calculated using quadrature formula with 12 points. Abscissas and weight

factors are given in [1]. Let us detail the numerical values of IΨ(θ̄n) and σ2 × IR(θn) for

one experiment used to build the estimators θn and θ̃n. These numerical values illustrate

that the contributions of state noise and observation noise are of the same level.

IΨ(θn) = 10−6 ×





0.0010 −0.0014 0.0049 −0.0094

−0.0014 0.0024 −0.0094 0.0220

0.0049 −0.0094 0.0400 −0.0950

−0.0094 0.0220 −0.0950 0.2709




,

σ2 × IR(θn) = 10−6 ×





0.0015 −0.0023 0.0082 −0.0169

−0.0023 0.0043 −0.0169 0.0428

0.0082 −0.0169 0.0728 −0.1853

−0.0169 0.0428 −0.1853 0.5639




.

Let us now precise the values of variance matrices. We have

I−1
M (θn) =





3.4917 3.8949 0.1560 −0.1399

3.8949 4.3496 0.1752 −0.1561

0.1560 0.1752 0.0074 −0.0062

−0.1399 −0.1561 −0.0062 0.0056




,

and

I−1(θ̃n) =





3.3918 3.7884 0.1526 −0.1359

3.7884 4.2362 0.1715 −0.1518

0.1526 0.1715 0.0072 −0.0061

−0.1359 −0.1518 −0.0061 0.0055




.

The true parameter θ∗ is

θ∗ =
(
2.8 3.8 0.225 −0.15

)T
,

and values of estimators θn and θ̃n, used to calculate variance matrices, are

θn =
(
2.8753 3.8841 0.2284 −0.1530

)T
,

θ̃n =
(
2.8067 3.8077 0.2253 −0.1502

)T
,

with x0, y0 given in km and vx, vy given in km/s and the position at final time is (7.3, 0.8).

It appears that the maximum likelihood estimator θ̃n is a bit more accurate than θn. It is

not surprising since the MLE is designed specifically for the model, and takes into account

the state noise. Nevertheless, because of the high calculation cost for the MLE, the BLSE
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is in practice a very useful alternative.

For the second simulation, we consider the case of a sequence (εk)k∈N of i.i.d Gaussian

centered random variables with variance σ2
X ×

(
62 0

0 1

)
and σX = 10m. It seems that the

results given by Theorems 2 and 5 still hold, even though the sequence (εk)k∈N does not

have an isotropic distribution, see Figures 7, 8, 9 and 10. The estimators values are

θ̄n =
(
2.8383 3.8440 0.2264 −0.1516

)T
,

θ̃n =
(
2.7984 3.7999 0.2253 −0.1499

)T
,

The values of variance matrices for the two estimators are

I−1
M (θ̄n) =





15.4505 17.0122 0.6174 −0.6253

17.0122 18.7661 0.6863 −0.6889

0.6174 0.6863 0.0263 −0.0250

−0.6253 −0.6889 −0.0250 0.0253




,

and

I−1(θ̃n) =





12.9538 14.0399 0.4766 −0.5214

14.0399 15.2720 0.5262 −0.5661

0.4766 0.5262 0.0197 −0.0192

−0.5214 −0.5661 −0.0192 0.0210




,

The confidence intervals detailed in table 4 and table 6 show that the maximum likelihood

estimator θ̃n is significantly more accurate than the BLSE. Comparing to the first simulation

where the difference is not so large, the higher accuracy of θ̃n can be understood because of

the higher level state noise in this simulation. Then, taking into account this state noise for

estimating the parameter provides a significantly better result. The conservative intervals

for Rmin = 6km described in table 5 are quite large compared to those obtained for the

first simulation. This inaccuracy results directly from the large value of E‖ε1‖2 chosen for

the state noise.

For the third and last simulation, the sequence (εk)k∈N is an AR(1) series such that

∀k ∈ N εk+1 = Φεk + ηk ,

where Φ = 0.6 and (ηk)k∈N is a sequence of i.i.d. random variables with law N (0, σ2
η) and

ση = 8m. Thus, the sequence of state noise (εk)k∈N is a dependent stationary sequence

such that the mixing coefficient αk tends exponentially fast to zero as k tends to infinity.

Then, we observe the predicted behavior described by Proposition 4. Indeed, by drawing

the densities and cumulative distribution functions of the centered Gaussian law with the
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empirical variance, we observe a very good adequacy to the Gaussian behavior, see figures

11 and 12.

Acknowledgements: the authors want to thank Jerôme Dedecker for helpful discussions

about dependent sequences of random variables.
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Figure 1: Trajectories with confidence area for BLSE at final position
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Figure 2: Histograms for BLSE with iid
Gaussian isotropic sequence
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Figure 3: Cumulative distribution func-
tions for BLSE with iid Gaussian isotropic
sequence
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Figure 4: Trajectories with confidence area for MLE at final position
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Figure 5: Histograms for MLE with iid
Gaussian isotropic sequence
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Figure 6: Cumulative distribution func-
tions for MLE with iid Gaussian isotropic
sequence
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IC1(θ̄n,i) |IC1(θ̄n,i)|
7.3128 7.5747 0.2619
0.8017 0.8456 0.0439
0.2253 0.2316 0.0063
-0.1558 -0.1503 0.0055

Table 1: Confidence intervals for BLSE at
level 95%

IC2(θ̄n,i) |IC2(θ̄n,i)|
6.0645 8.8230 2.7586
0.5917 1.0557 0.4640
0.1949 0.2619 0.0669
-0.1818 -0.1242 0.0576

Table 2: Conservative confidence intervals
for BLSE at level 95%

IC3(θ̃n,i) | IC3(θ̃n,i)|
7.1842 7.4430 0.2588
0.7815 0.8249 0.0434
0.2222 0.2285 0.0063
-0.1529 -0.1475 0.0054

Table 3: Confidence intervals for MLE at level 95%
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Figure 7: Histograms for BLSE with iid
Gaussian non-isotropic sequence
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Figure 8: Cumulative distribution func-
tions for BLSE with iid Gaussian non-
isotropic sequence
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Figure 9: Histograms for MLE with iid
Gaussian non-isotropic sequence
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Figure 10: Cumulative distribution func-
tions for MLE with iid Gaussian non-
isotropic sequence

IC1(θ̄n,i) | IC1(θ̄n,i)|
7.1040 7.6275 0.5235
0.7698 0.8552 0.0854
0.2204 0.2323 0.0119
-0.1574 -0.1457 0.0117

Table 4: Confidence intervals for BLSE at
level 95%

IC2(θ̄n,i) | IC2(θ̄n,i)|
1.5049 13.2266 11.7218
-0.1740 1.7990 1.9730
0.0842 0.3686 0.2844
-0.2740 -0.0291 0.2449

Table 5: Conservative confidence intervals
for BLSE at level 95%

IC3(θ̃n,i) | IC3(θ̃n,i)|
7.0721 7.5366 0.4645
0.7643 0.8388 0.0746
0.2201 0.2305 0.0103
-0.1552 -0.1446 0.0107

Table 6: Confidence intervals for MLE at level 95%
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Figure 11: Histograms for AR(1) se-
quence, Gaussian adequacy
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Figure 12: Cumulative distribution func-
tions for AR(1) sequence, Gaussian ade-
quacy


