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We investigate a semiparametric regression model where one gets noisy non linear non invertible functions of the observations. We focus on the application to bearings-only tracking. We first investigate the least squares estimator and prove its consistency and asymptotic normality under mild assumptions. We study the semiparametric likelihood process and prove local asymptotic normality of the model. This allows to define the efficient Fisher information as a lower bound for the asymptotic variance of regular estimators, and to prove that the parametric likelihood estimator is regular and asymptotically efficient. Simulations are presented to illustrate our results.

Introduction

In bearings-only tracking (BOT), one gets information about the trajectory of a target only via bearing measurements obtained by a moving observer. This is a highly ill-posed problem which requires, so that one be able to propose solutions, the choice of a trajectory model. The literature on the subject is very large, and many algorithms have been proposed to track the target, see for instance [START_REF] Bar-Shalom | Estimation with Applications to Tracking and Navigation[END_REF], [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF], [START_REF] Mazor | Interacting Multiple Model Methods in Target Tracking: A Survey[END_REF], [START_REF] Ristic | Beyond the Kalman Filter Artech House[END_REF]. All these algorithms are designed for particular classes of models for the trajectory of the target. In [START_REF] Landelle | Robustness considerations for bearings only tracking[END_REF], the author proved that the least squares estimator may be very sensitive to some small deterministic perturbations, in which case the algorithms are highly non robust. However, it has been also claimed in [START_REF] Landelle | Robustness considerations for bearings only tracking[END_REF] that stochastic perturbations do not essentially alter the performances of the estimator.

The aim of this paper is to develop an estimation theory for a semiparametric model that applies to BOT. The model we study is the following:

X k = S θ (t k ) + ε k , Y k = Ψ(X k , t k ) + V k . (1) 
(t, θ) → S θ (t) is a known map from [0, 1] × Θ to R d , Θ is the parameter set (in general, a subset of a finite dimensional euclidian space), (x, t) → Ψ(x, t) is a known function from R d × [0, 1] to R, which in general is non invertible, (t k ) k∈N is the sequence of observation times in [0, 1], (ε k ) k∈N is a sequence of random variables taking values in R d , (V k ) k∈N is a sequence of centered i.i.d. random variables taking values in R, with known marginal distribution g(x)dx, variance σ 2 , and independent of the sequence (ε k ) k∈N . The sequence (X k ) 1≤k≤n is not observed. We aim at estimating θ using only the observations (Y k ) 1≤k≤n .

In case of BOT, (X k ) 1≤k≤n is the trajectory of the target, given by its euclidian coordinates at times (t k ) 1≤k≤n (d = 2), S θ (•) is the parametric trajectory the target is assumed to follow up to some parameter θ, for instance uniform linear motion, or a sequence of uniform linear and circular motions, (ε k ) 1≤k≤n is a noise sequence to take into account the fact that the model is only an idealization of the true trajectory and to allow stochastic departures of the trajectory model, and (V k ) 1≤k≤n is the observation noise. Since the observer is moving, if (O(t)) t∈[0,1] is its trajectory, the function Ψ(x, t) is the angle, with respect to some fixed direction, of x -O(t), that is, for x = (x 1 , x 2 ) T :

Ψ(x, t) = arctan[x 2 -O 2 (t)]/[x 1 -O 1 (t)]. (2) 
In such a case, for any z and fixed t, the set {x : Ψ(x, t) = z} is infinite. Our aim here is to understand how it is possible to estimate the parameter θ in model [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables National Bureau of Standards Applied Mathematics Series[END_REF], what are the limitations in the statistical performances, to propose estimation procedures, to build confidence regions for θ and to discuss their optimality under the weakest possible assumptions on the sequence (ε k ) k∈N . Indeed, we would like to apply the results to BOT under realistic assumptions, for which it is not a strong assumption to assume that the observation noise (V k ) k∈N consists of i.i.d. random variables with known distribution, but the trajectory noise (ε k ) k∈N may be quite complicated and unknown. To begin with, we will assume that the variables (ε k ) k∈N are i.i.d. with unknown distribution.

As such, the model may be viewed as a regression model with two variables, in which one of the variables is random, is not observed and follows itself a regression model. One could think that it looks like an inverse problem, or that the model may be understood as a state space model, or a mixed effects model, but in a nonstandard way, so that we have not been able to find results in the literature that apply to this setting.

Throughout the paper, observations (Y k ) 1≤k≤n are assumed to follow model [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables National Bureau of Standards Applied Mathematics Series[END_REF] with true (unknown) parameter θ * and the observation times are t k = k n , k = 1, . . . , n. All norms • are euclidian norms.

In Section 2, we consider least squares estimation and prove consistency and asymptotic normality in this setting, see Theorems 1 and 2. This allows to introduce basic considerations and set some assumptions. We prove that the results apply to BOT for linear observable trajectory models and when the trajectory noise has an isotropic distribution, see Theorem 3. Then, in Section 3 we study the likelihood process to set local asymptotic normality and efficiency in the parametric setting where the density of the noise (ε k ) k∈N is known, and define the efficient Fisher information in the semiparametric setting where the density of the noise (ε k ) k∈N is unknown. This also gives an estimation criterion which may be used even if the trajectory noise is correlated. In Section 4, we propose strategies for semiparametric estimation and discuss possible extension of the results to possibly dependent trajectory noise (ε k ) k∈N . Section 5 is devoted to simulations. In each section, particular attention is given to the application of the results to BOT.

Least squares estimation

In sections 2 and 3 we will use

Assumption 1 (ε k ) k∈N is a sequence of i.i.d. random variables.
To be able to obtain a consistent estimator of θ, we require that, in the absence of noise (both observation noise and trajectory noise), the observation at all times is sufficient to retrieve the parameter. We thus introduce

Assumption 2 If θ ∈ Θ is such that Ψ(S θ (t), t) = Ψ(S θ * (t), t) a.e. for all t ∈ [0, 1], then θ = θ * .
This is the observability assumption.

If the observation noise is centered, in the absence of trajectory noise, the fact that only Ψ(S θ (t), t) is observed with additive noise is not an obstacle to the estimation of θ under Assumption 2. But with trajectory noise, only the distribution of Ψ(S θ (t) + ε 1 , t) may be retrieved from noisy data. In case the marginal distribution of the ε k 's is known, this may be enough, but in case it is unknown, one has to be aware of some link between the distribution of Ψ(S θ (t) + ε 1 , t) and θ. We thus introduce the following assumption, which will be proved to hold in some BOT situations.

Assumption 3 For all t ∈ [0, 1], for all θ ∈ Θ,

E{Ψ[S θ (t) + ε 1 , t]} = Ψ[S θ (t), t].
Let us now define the least squares criterion and the least squares estimator (LSE) by

M n (θ) = 1 n n k=1 (Y k -Ψ[S θ (t k ), t k ]) 2 , θ n = arg min θ∈Θ M n (θ),
where arg min θ∈Θ M n (θ) is any minimizer of M n .

Consistency

We assume that Θ is a compact subset of R m , and we will use

Assumption 4 t → E (Ψ[S θ * (t) + ε 1 , t]) 2 defines a finite continuous function on [0, 1], sup t∈[0,1] E{(Ψ[S θ * (t) + ε 1 , t]) 2 1 (Ψ[S θ * (t)+ε 1 ,t]
) 2 >M } tends to 0 as M tends to infinity, and

(t, θ) → Ψ[S θ (t), t] defines a finite continuous function on [0, 1] × Θ.
Theorem 1 Under assumptions 1 , 2, 3 and 4, θ n converges in probability to θ * as n tends to infinity.

The proof is a consequence of general results in M -estimation. We begin with a simple Lemma:

Lemma 1 Under Assumption 1, if F (•, •) is a real function on R d ×[0, 1] such that sup t∈[0,1] E|F (ε 1 , t)| is finite, lim M →+∞ sup t∈[0,1] E{|F (ε 1 , t)|1 |F (ε 1 ,t)|>M } = 0, and EF (ε 1 , •) is Riemann-integrable, then 1 n n k=1 F (ε k , t k )
converges in probability to 1 0 EF (ε 1 , t) dt as n tends to infinity.

Proof

First of all, by the integrability assumption,

1 n n k=1 EF (ε k , t k ) converges to 1 0 EF (ε 1 , t) dt as n tends to infinity. Then 1 n n k=1 [F (ε k , t k ) -EF (ε k , t k )] = 1 n n k=1 F (ε k , t k ) 1 |F (ε k ,t k )|>M -E{F (ε k , t k )1 |F (ε k ,t k )|>M } + 1 n n k=1 F (ε k , t k ) 1 |F (ε k ,t k )|≤M -E{F (ε k , t k )1 |F (ε k ,t k )|≤M } .
The variance of the second term is upper bounded by 2 M 2 n so that the second term tends to 0 in probability as n tends to infinity, and the absolute value of the first term has expectation upper bounded by 2 sup t∈[0,1] E{|F (ε 1 , t)|1 |F (ε 1 ,t)|>M }, which may be made smaller than any positive ǫ for big enough M , which proves the lemma. Define now

M (θ) = 1 0 E (Ψ[S θ * (t) + ε 1 , t] -Ψ[S θ (t), t]) 2 dt + σ 2 .

Direct calculations yield

M (θ) -M (θ * ) = 1 0 E {Ψ[S θ * (t) + ε 1 , t] -Ψ[S θ (t), t]} 2 -{Ψ[S θ * (t) + ε 1 , t] -Ψ[S θ * (t), t]} 2 dt = 1 0 {Ψ[S θ * (t), t] -Ψ[S θ (t), t]} × {2E (Ψ[S θ * (t) + ε 1 , t]) -Ψ[S θ * (t), t] -Ψ[S θ (t), t]} dt.
By Assumption 3, it follows that

M (θ) -M (θ * ) = 1 0 {Ψ[S θ (t), t] -Ψ[S θ * (t), t]} 2 dt
so that M (θ) has a unique minimum at θ * by Assumption 2. Also, under Assumption 4,

θ → M (θ) is uniformly continuous from Θ to R. Now, for any θ, M n (θ) = 1 n n k=1 V 2 k + 2 n n k=1 V k (Ψ[S θ * (t k ) + ε k , t k ] -Ψ[S θ (t k ), t k ]) + 1 n n k=1 (Ψ[S θ * (t k ) + ε k , t k ] -Ψ[S θ (t k ), t k ]) 2 .
1 n n k=1 V 2 k converges in probability to σ 2 ; the variance of 2 , which converges to 0, so that

1 n n k=1 V k (Ψ[S θ * (t k ) + ε k , t k ] -Ψ[S θ (t k ), t k ]) is σ 2 n 2 n k=1 E (Ψ[S θ * (t k ) + ε k , t k ] -Ψ[S θ (t k ), t k ])
2 n n k=1 V k (Ψ[S θ * (t k ) + ε k , t k ] -Ψ[S θ (t k ), t k ]
) converges in probability to 0; and applying Lemma 1,

1 n n k=1 (Ψ[S θ * (t k ) + ε k , t k ] -Ψ[S θ (t k ), t k ]) 2 converges in probability to 1 0 E (Ψ[S θ * (t) + ε 1 , t] -Ψ[X θ (t), t]) 2 dt. Thus for any θ ∈ Θ, M n (θ) converges in probabil- ity to M (θ).
Using the compacity of Θ and the second part of Assumption 4, it is possible to strengthen this pointwise convergence to a uniform one:

sup θ∈Θ |M n (θ) -M (θ)| = o P θ * (1). (3) 
Indeed, for any θ 1 and θ 2 in Θ,

M n (θ 1 ) -M n (θ 2 ) = 1 n n k=1 (2Ψ[S θ * (t k ) + ε k , t k ] -Ψ[S θ 1 (t k ), t k ] -Ψ[S θ 2 (t k ), t k ]) (Ψ[S θ 2 (t k ), t k ] -Ψ[S θ 1 (t k ), t k ]) + 2 n n k=1 V k (Ψ[S θ 2 (t k ), t k ] -Ψ[S θ 1 (t k ), t k ])
so that for any δ > 0, sup

θ 1 -θ 2 ≤δ |M n (θ 1 )-M n (θ 2 )| ≤ ω(δ) 1 n n k=1 2|Ψ[S θ * (t k ) + ε k , t k ]| + 2 sup θ,t |Ψ[S θ (t), t]| + 2|V k |
where ω(•) is the uniform modulus of continuity of (t, θ) → Ψ[S θ (t), t]. The right-hand side of the inequality converges in probability by Lemma 1 to a constant times ω(δ), so that equation (3) follows from compacity of Θ. Theorem 1 now follows from [START_REF] Van Der Vaart | Asymptotic Statistics[END_REF] Theorem 5.7.

Asymptotic normality

Asymptotic normality of the least squares estimator will follow using usual arguments under further regularity assumptions.

Assumption 5 There exists a neighborhood U of θ * such that for all t ∈ [0, 1], θ → Ψ[S θ (t), t] possesses two derivatives on U that are continuous as functions of (θ, t) over

U × [0, 1].
If θ → F is a twice differentiable function, let ∇ θ F (θ ′ ) denote the gradient of F at θ ′ , and

D 2 θ F (θ ′ ) the hessian of F at θ ′ . Define for θ ∈ U : I R (θ) = 1 0 ∇ θ Ψ[S θ (t), t]∇ θ Ψ[S θ (t), t] T dt I Ψ (θ) = E {Ψ[S θ * (t) + ε 1 , t] -Ψ[S θ (t), t]} 2 ∇ θ Ψ[S θ (t), t]∇ θ Ψ[S θ (t), t] T dt.
Then:

Theorem 2 Under Assumptions 1 , 2, 3, 4 and 5, if

I R (θ * ) is non singular, √ n(θ n -θ * ) = I R (θ * ) -1 1 √ n n k=1 {Ψ[S θ * (t k ) + ε k , t k ] -Ψ[S θ * (t k ), t k ] + V k } ∇ θ Ψ[S θ * (t k ), t k ] + o P θ * (1).
In particular, √ n(θ nθ * ) converges in distribution to N 0, I -1 M (θ * ) where

I -1 M (θ * ) = I -1 R (θ * ) I Ψ (θ * ) + σ 2 I R (θ * ) I -1 R (θ * ).
Let us notice that, for a null sequence (ε k ) k∈N , we retrieve the usual Fisher information matrix for the parametric regression model.

The proof follows Wald's arguments. On the set (θ n ∈ U ), which has probability tending to 1 according to Theorem 1:

∇ θ M n (θ n ) = 0 = ∇ θ M n (θ * ) + 1 0 D 2 θ M n [θ * + s(θ n -θ * )] ds (θ n -θ * ).
Direct calculations yield for any θ ∈ U

∇ θ M n (θ) = - 2 n n k=1 {Ψ[S θ * (t k ) + ε k , t k ] + V k -Ψ[S θ (t k ), t k ]} ∇ θ Ψ[S θ (t k ), t k ],
and

D 2 θ M n (θ) = 2 n n k=1 ∇ θ Ψ[S θ (t k ), t k ]∇ θ Ψ[S θ (t k ), t k ] T - 2 n n k=1 {Ψ[S θ * (t k ) + ε k , t k ] + V k -Ψ[S θ (t k ), t k ]} D 2 θ Ψ[S θ (t k ), t k ]. ( 4 
)
Notice that, using Assumption 3, ∇ θ M n (θ * ) is a centered random variable, and that, using Assumptions 4, 5, the variance of

∇ θ M n (θ * ) converges to 4 I Ψ (θ * ) + σ 2 I R (θ * ) as n → +∞.
Also using Assumptions 3, 4, 5, and applying Lemma 1, D 2 θ M n (θ) converges in probability to 2I R (θ) as n → +∞. Using Assumption 5, there exists an increasing function ω satisfying lim δ→0 ω(δ

) = 0 such that, for all (θ, θ ′ ) ∈ U 2 with θ -θ ′ ≤ δ, D 2 θ M n (θ) -D 2 θ M n (θ ′ ) ≤ ω(δ) × 1 n n k=1 (|Ψ[S θ * (t k ) + ε k , t k ] + V k | + 2) .
It follows that on the set (θ n ∈ U )

D 2 θ M n [θ * + s(θ n -θ * )] -D 2 θ M n (θ * ) ≤ ω( θ n -θ * )× 1 n n k=1 (|Ψ[S θ * (t k ) + ε k , t k ] + V k | + 2) . By Lemma 1, 1 n n k=1 |Ψ[S θ * (t k ) + ε k , t k ] + V k | = O P θ * (1)
so that, using the consistency of θ n , Lemma 1 and Assumption 5:

1 0 D 2 θ M n [θ * + s(θ n -θ * )] ds = 2I R (θ * ) + o P θ * (1).
Finally, we obtain

I R (θ * ) + o P θ * (1) √ n(θ n -θ * ) = 1 √ n n k=1 {Ψ[S θ * (t k ) + ε k , t k ] + V k -Ψ[S θ * (t k ), t k ]}∇ θ Ψ[S θ * (t k ), t k ] + o P θ * (1).
Using Assumption 5, the convergence in distribution to N 0, I -1 M (θ * ) is a consequence of the Lindeberg-Feller Theorem and Slutzky's Lemma.

Notice that, if ÎM is a consistent estimator of I M (θ * ), by Slutsky's Lemma, √ n Î1/2 M (θ nθ * ) converges in distribution to the centered standard gaussian distribution in R m , which allows to build confidence regions with asymptotic known level. If the distribution of the trajectory noise (ε k ) is known, one may use ÎM = I M (θ n ). If the distribution of the noise is unknown, one could use bootstrap procedures to build confidence regions based on the empirical distribution of θ n using bootstrap replicates.

Another possibility occurs if one has a majoration

E {Ψ[S θ * (t) + ε 1 , t] -Ψ[S θ * (t), t]} 2 ≤ A 2 , (5) 
where A denotes a known constant. Indeed, in such a case, I Ψ (θ * ) is upper bounded (in the natural ordering of positive symetric matrices) by

A 2 I R (θ * ), so that I -1 M (θ * ) is upper bounded by (A 2 + σ 2 )I -1
R (θ * ), and one may use (A 2 + σ 2 )I -1 R (θ n ) as variance matrix to obtain conservative confidence regions.

Application to BOT

To apply the results to BOT, one has to see whether Assumptions 1, 2, 3, 4 and 5 hold

and if I R (θ * ) is non singular.
Assumption 2 is the usual observability assumption which holds for models such as uniform linear motion if the observer does not move itself along uniform linear motion , or a sequence of uniform linear and circular motions, if the observer does not move along uniform linear motion or circular motion in the same time intervals as the target. Various observability properties are proved in [START_REF] Landelle | Etude statistique du problème de la trajectographie passive[END_REF].

Assumptions 4 and 5 hold as soon as the trajectory model S θ (t) is twice differentiable for all t as a function of θ and the denominator in (2) may not be 0, that is the bearing exact measurements of the non noisy possible trajectory stay inside an interval with length π.

This may be seen as an assumption on the manoeuvres of the observer. This is a usual assumption in BOT literature. The fact that I R (θ * ) is non singular is equivalent to the observability assumptions for linear models. Let us introduce such models.

Let e 1 (t), . . . , e p (t) be continuous functions on

[0, 1], θ = (a 1 , . . . , a p , b 1 , . . . , b p ) T , S θ (t) = a 1 e 1 (t) + . . . + a p e p (t) b 1 e 1 (t) + . . . + b p e p (t) . (6) 
Then Proposition 1 Under model ( 6), Assumption 2 holds if and only if I R (θ * ) is non singular.

Proof Also, for i = 1, . . . , p: What remains to be seen is whether Assumption 3 holds, and it is the case under a simple assumption on the distribution of the trajectory noise:

Let θ * = (a * 1 , . . . , a * p , b * 1 , . . . , b * p ) T . Let m(θ, t) = S θ (t) 2 -O 2 (t) S θ (t) 1 -O 1 (t) . Simple algebra gives that Ψ[S θ (t), t] = Ψ[S * θ (t), t] if and only if p k=1 (b k -b * k )e k (t) - p k=1 (a k -a * k )e k (t
∂ ∂a i arctan m(θ * , t) = - 1 1 + m(θ * , t) 2 1 S θ (t) 1 -O 1 (t) e i (t)m(θ * , t) and ∂ ∂b i arctan m(θ * , t) = 1 1 + m(θ * , t) 2 1 S θ (t) 1 -O 1 (t) e i (t
Assumption 6 ε 1 has an isotropic distribution in R 2 .
We introduce some prior knowledge on the trajectory and on the variance of the trajectory noise to be able to obtain conservative confidence regions.

Assumption 7 The trajectory model (t, θ) → S θ (t) is such that for all (θ, t) ∈ Θ × [0, 1],
O(t) -S θ (t) ≥ R min , and a constant number A 2 such that

π 2 1 + π -2/3 3 E ε 1 2 R 2 min ≤ A 2
is known.

This condition makes sense since in the context of passive tracking one usually assumes that the distance between target and observer is quite large. 

P θ * √ n √ A 2 + σ 2 I R 1/2 (θ n ) θ n -θ * ∈ C α ≥ 1 -α.

Proof

Under Assumption 6, let the density of ε 1 be F ( ε ). Recall that the trajectory of the

observer is (O(t)) t∈[0,1] . Let β(t) = arctan[S θ (t) 2 -O 2 (t)]/[S θ (t) 1 -O 1 (t)] = Ψ[S θ (t), t]. E{Ψ[S θ (t) + ε 1 , t]} = R×(-π,π) arctan S θ (t) 2 -O 2 (t) + r sin α S θ (t) 1 -O 1 (t) + r cos α F (r) rdrdα , = β(t) + R×(-π,π) arctan r sin(α -β(t)) O(t) -S θ (t) + r cos(α -β(t)) F (r) rdrdα. Let G θ,t (r, α) = arctan r sin α O(t) -S θ (t) + r cos α .
Then,

E{Ψ[S θ (t) + ε 1 , t]} = Ψ[S θ (t), t] + R×(-π,π) G θ,t (r, α)F (r) rdrdα.
But for any r > 0, for any α, G θ,t (r, -α) = G θ,t (r, α) so that

E{Ψ[S θ (t) + ε 1 , t]} = Ψ[S θ (t), t]. Now, Ψ[S θ * (t) + ε 1 , t] -Ψ[S θ * (t), t] = 1 0 ∇ x Ψ[S θ * (t) + hε 1 , t] T ε 1 dh,
and direct calculations provide

∇ x Ψ[x, t] = O(t) -x -1 .
Thus for any a ∈]0, 1[:

E {Ψ[S θ * (t) + ε 1 , t] -Ψ[S θ * (t), t]} 2 ≤ π 2 P ( ε 1 ≥ a O(t) -Ψ[S θ * (t) ) + E ε 1 2 (1 -a) 2 O(t) -Ψ[S θ * (t) 2 ≤ π 2 P ( ε 1 ≥ aR min ) + E ε 1 2 (1 -a) 2 R 2 min since |Ψ(u)-Ψ(v)
| ≤ π for any real numbers u and v, and by using the triangular inequality and Assumption 7.

But Tchebychev inequality leads to

E {Ψ[S θ * (t) + ε 1 , t] -Ψ[S θ * (t), t]} 2 ≤ E ε 1 2 R 2 min π 2 a 2 + 1 (1 -a) 2 (7) 
which is minimum for a =

1 1+π -2/3 leading to π 2 a 2 + 1 (1-a) 2 = π 2 1 + π -2/3 3 and E {Ψ[S θ * (t) + ε 1 , t] -Ψ[S θ * (t), t]} 2 ≤ A 2 .
To conclude one may apply the concluding remark of Section 2.2 to obtain asymptotic conservative confidence regions for θ.

Likelihood and efficiency

Let F be the set of probability densities f on R d such that for all t ∈ [0, 1], for all θ ∈ Θ,

R d Ψ[S θ (t) + ε, t]f (ε) dε = Ψ[S θ (t), t]. (8) 
We will replace Assumptions 1 and 3 by Assumption 8 (ε k ) k∈N is a sequence of i.i.d. random variables with density f * ∈ F.

The normalized log-likelihood is the function on Θ × F

J n (θ, f ) = 1 n n k=1 log g {Y k -Ψ[S θ (t k ) + u, t k ]} f (u)du . (9) 
Define

G ((ε, V ), t; θ) = log g {Ψ[S θ * (t) + ε, t] + V -Ψ[S θ (t) + u, t]} f (u) du ,
where (ǫ, V ) has the same distribution as (ǫ 1 , V 1 ).

As soon as for any (θ, f

) ∈ Θ × F, it is possible to apply Lemma 1 to G ((•), •; θ), J n (θ, f ) converges in probability to J(θ, f ) = 1 0 R d R log g {Ψ[S θ * (t) + ε, t] + v -Ψ[S θ (t) + u, t]} f (u) du g(v)f * (ε) dv dε dt. (10) 
Let

p (θ,f ) (z, t) = g {z -Ψ[S θ (t) + u, t]} f (u) du
be the density, for fixed t, of the random variable Z = Ψ[S θ (t) + U, t] + V where U is a random variable in R d with density f independent of the random variable V in R with density g. Thus, p (θ * ,f * ) (•, t k ) is the probability density of Y k . Then, the change of variable

z = Ψ[S θ * (t) + ε, t] + v in R log g {Ψ[S θ * (t) + ε, t] + v -Ψ[S θ (t) + u, t]} f (u) du g(v) dv leads to J(θ, f ) = p (θ * ,f * ) (z, t) log p (θ,f ) (z, t) dz dt.
Thus, for any (θ, f ) ∈ Θ × F,

J(θ * , f * ) ≥ J(θ, f ),
and In other words, J(θ, f ) is maximum only for θ = θ * .

J(θ * , f * ) = J(θ, f ) if and only if t a.e. p (θ,f ) (z, t) = p (θ * ,f * ) (z, t) z a.e.,
Following the same lines as for the LSE, we may thus easily obtain that, if the probability density f * is known, the parametric maximum likelihood estimator is consistent and asymptotically gaussian. Define the parametric maximum likelihood estimator as :

θn = arg max θ∈Θ J n (θ, f * ).
where arg max θ∈Θ J n (θ, f * ) is any maximizer of J n (•, f * ).

If for any θ ∈ Θ, there exists a small open ball containing θ such that Lemma 1 applies to sup θ∈U G ((•), •; θ), it is possible, as in [START_REF] Van Der Vaart | Asymptotic Statistics[END_REF] Theorem 5.14, to strengthen the convergence of

J n (θ, f * ) to J(θ, f *
) in a uniforme one. The consistency of θn follows:

Theorem 4 Under assumptions 2 and 8, if moreover Lemma 1 applies to sup θ∈U G ((•), •; θ), then the estimator θn is consistent.

We will use the notation Y (t) for Y (t) = Ψ[S θ * (t)+ε 1 , t]+V 1 to simplify the writing of some integrals. We shall introduce the assumptions we need to prove the asymptotic distribution of θn :

Assumption 9 For all (z, t) ∈ R × [0, 1], the function θ → p (θ,f * ) (z, t) is twice continu- ously differentiable. For any θ ∈ Θ, t → E ∇ θ log p (θ,f * ) (Y (t), t) 2 is

finite and continuous.

There exists a neighborhood U of θ * such that for all θ ∈ U , t → ED 2 θ log p (θ,f * ) (Y (t), t) is finite and continuous.

Lemma 1 applies to log p (θ,f ) (Y (t), t), for all θ, to ∇ θ log p (θ,f * ) (Y (t), t) 2 and all components of D 2 θ log p (θ,f * ) (Y (t), t) for θ ∈ U .

Introduce the parametric Fisher information matrix:

I(θ) = 1 0 E ∇ θ p (θ,f * ) p (θ,f * ) (Y (t), t) ∇ θ p (θ,f * ) p (θ,f * ) (Y (t), t) dt
Theorem 5 Under assumptions 2, 8 and 9, θn converges in probability to θ * as n tends to infinity.

Moreover, if I(θ * ) is non singular, √ n( θn -θ * ) = I -1 (θ * ) 1 √ n n k=1 ∇ θ p (θ * ,f * ) p (θ * ,f * ) (Y k , t k ) + o P θ * (1),
and √ n( θnθ * ) converges in distribution as n tends to infinity to N (0, I -1 (θ * )).

The proof follows the same lines as that of Theorems 1 and 2 and is left to the reader.

Notice that under the same assumptions, it is easy to prove that the parametric model is locally asymptotically normal in the sense of Le Cam (see [START_REF] Cam | Asymptotic methods in statistical decision theory[END_REF]) so that if I(θ * ) is singular, there exist no regular estimator of θ which is √ n-consistent. Thus if I R (θ * ) is non singular and the assumptions in Theorem 2 hold, in which case the LSE is regular √ n-consistent, then I(θ * ) is also non singular.

To investigate the optimality of possible estimators in the semiparametric situation, with f * unknown but known to belong to F, we use Le Cam's theory as developed for non i.i.d. observations by Mc Neney and Wellner [START_REF] Mc Neney | Application of convolution theorems in semiparametric models with non i.i.d. data[END_REF]. Introduce the set B of integrable functions b on R d such that:

• b(u)du = 0 and ∃δ > 0, f * + δb ≥ 0,

• for all t ∈ [0, 1], for all θ ∈ Θ,

R d Ψ [S θ (t) + ε, t] b(ε)dε = 0. • 1 0 E g(Y (t) -Ψ[S θ * (t) + u, t])b(u)du g(Y (t) -Ψ[S θ * (t) + u, t])f * (u)du 2 dt < ∞.
Let H = R m × B be endowed with the inner product

(a 1 , b 1 ), (a 2 , b 2 ) H = 1 0 E ∇ θ p T (θ * ,f * ) p (θ * ,f * ) (Y (t), t) • a 1 + g(Y (t) -Ψ[S θ * (t) + u, t])b 1 (u)du g(Y (t) -Ψ[S θ * (t) + u, t])f * (u)du ∇ θ p T (θ * ,f * ) p (θ * ,f * ) (Y (t), t) • a 2 + g(Y (t) -Ψ[S θ * (t) + u, t])b 2 (u)du g(Y (t) -Ψ[S θ * (t) + u, t])f * (u)du dt.
We will need only local smoothness, so we introduce:

Assumption 10 There exists a neighborhood U of θ * such that for θ ∈ U : For all (z, t) ∈ R × [0, 1], the function θ → p (θ,f * ) (z, t) is twice continuously differentiable.

t → E ∇ θ log p (θ,f * ) (Y (t), t) 2 is finite and continuous. t → ED 2 θ log p (θ,f * ) (Y (t), t) is finite and continuous. For any b ∈ B, for all (z, t) ∈ R × [0, 1], θ → g(z -Ψ [S θ (t) + u, t])b(u)du is continuously differentiable and t → E ∇ θ R g(Y (t)-Ψ[S θ (t)+u,t])b(u)du p (θ * ,f * ) (Y (t),t)
is finite and continuous.

Lemma

1 applies to ∇ θ log p (θ,f * ) (Y (t), t) 2 ,all components of D 2 θ log p (θ,f * ) (Y (t), t) and ∇ θ R g(Y (t)-Ψ[S θ (t)+u,t])b(u)du p (θ * ,f * ) (Y (t),t)
for θ ∈ U .

Let P n,(θ,f ) be the distribution of Y 1 , . . . , Y n when the parameter is θ and the density of the trajectory noise is f . For (θ, f

) ∈ Θ × F, let Λ n (θ, f ) = log dP n,(θ,f ) (Y 1 , . . . , Y n ) dP n,(θ * ,f * ) (Y 1 , . . . , Y n ) = J n (θ, f ) -J n (θ * , f * ) .
Then Proposition 2 Assume that Assumption 10 holds. Then the sequence of statistical models (P n,(θ,f ) ) θ∈Θ,f ∈F is locally asymptotically normal with tangent space H, that is, for (a, b) ∈ H,

Λ n θ * + a √ n , f * + b √ n = W n (a, b) - 1 2 (a, b) 2 H + o P θ * (1),
where

W n (a, b) = 1 √ n n k=1 ∇ θ p T (θ * ,f * ) p (θ * ,f * ) (Y k , t k ) • a + g(Y k -Ψ[S θ * (t k ) + u, t k ])b(u)du g(Y k -Ψ[S θ * (t k ) + u, t k ])f * (u)du
and for any finite subset h 1 , . . . , h q ∈ H, the random vector (W n (h 1 ), . . . , W n (h q )) converges in distribution to the centered Gaussian vector with covariance h i , h j H .

Proof 6) and satisfies Assumption 2, then I R (θ * ) is non singular, so that the efficient Fisher information I * is non singular, and all results of Section 3 apply.

Λ n θ * + a √ n , f * + b √ n = n k=1 log   1 + p (θ * + a √ n ,f * ) -p (θ * ,f * ) p (θ * ,f * ) (Y k , t k ) + 1 √ n g(Y k -Ψ S θ * + a √ n (t k ) + u, t k )b(u)du p (θ * ,f * ) (Y k , t k )   = W n (a, b) - 1 2 (a, b)

Further considerations

It would be of great interest to have a more explicit general expression of I * , and of greater interest to exhibit an asymptotically regular and efficient estimator θ. If one could approximate the profile likelihood sup f ∈F J n (θ, f ), one could hope that the maximizer θ of it be a good candidate.

Another possibility would be to use Bayesian estimators. Indeed, in the parametric context, the Bernstein-von Mises Theorem tells us that asymptotically, the posterior distribution of the parameter is gaussian, centered at the maximum likelihood estimator, and with variance the inverse of Fisher information (see [START_REF] Van Der Vaart | Asymptotic Statistics[END_REF] for a nice presentation). Extensions to semiparametric situations are now available, see [START_REF] Castillo | A semi-parametric Bernstein-von Mises theorem[END_REF]. To obtain semiparametric Bernstein-von Mises Theorems, one has to verify assumptions relating the particular model and the choice of the non parametric prior. This could be the object of further work. Then, with an adequate choice of the prior on Θ × F, taking advantage of MCMC computations, one could propose bayesian methods to estimate θ * (mean posterior, maximum posterior, median posterior for example).

To extend the results of the preceding sections in the case where the trajectory noise is no longer a sequence of i.i.d. random variables, one needs to prove laws of large numbers and central limit theorems for empirical sums such as 1 n n k=1 F (ε k , t k ), we prove some below for stationary weakly dependent sequences (ε k ) k∈N . In such a case, if M (θ) and J(θ, f * ) are still the limits of M n (θ) and J n (θ, f * ) respectively, then asymptotics for θ n and θn could be obtained. Here, J n (θ, f * ) is no longer the normalized log-likelihood, rather the marginal normalized log-likelihood, but J(θ, f * ) is still a contrast function.

Since the convergence of the expectation relies on purely deterministic arguments (Rieman integrability), we focus on centered functions. We assume in this section that Assumption 11 (ε k ) k∈N is a stationary sequence of random variables such that for all t ∈ [0, 1]

E [F (ε 1 , t)] = 0.
Denote by (α k ) k∈N the strong mixing coefficients of the sequence (ε k ) k∈N defined as in [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants Mathématiques et Applications[END_REF], that is, for k ≥ 1,

α k = 2 sup ℓ∈N,A∈σ(ε i :i≤ℓ),B∈σ(ε i :i≥k+ℓ) |P (A ∩ B) -P (A) P (B)| .
and α 0 = 1 2 . Notice that they are also an upper bound for the strong mixing coefficients of the sequence (F (ε k , t k )) k∈N for any sequence (t k ) k∈N of real numbers in [0, 1].

Proposition 3 Under Assumption 11, if α k tends to 0 as k → +∞, if sup t∈[0,1] E|F (ε 1 , t)| is finite and lim M →+∞ sup t∈[0,1] E{|F (ε 1 , t)|1 |F (ε 1 ,t)|>M } = 0, then 1 n n k=1 F (ε k , t k )
converges in probability to 0 as n tends to infinity. Proof Using Ibragimov's inequality ( [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF]), for any M :

Var 1 n n k=1 F (ε k , t k ) 1 |F (ε k ,t k )|≤M = 1 n 2 n i=1 n j=1 Cov F (ε i , t i ) 1 |F (ε i ,t i )|≤M ; F (ε j , t i ) 1 |F (ε i ,t i )|≤M ≤ 2M 2 n 2 n i=1 n j=1 α |i-j| ≤ 2M 2 n n-1 k=0 α k
which tends to 0 by Cesaro as n → +∞.

The end of the proof is similar to that of Lemma 1.

Define now

α -1 (u) = inf {k ∈ N; : α k ≤ u} = i≥0 1 u<α i .
Define also for any t ∈ [0, 1],

Q t (u) = inf {x ∈ R; : P (|F (ε 1 , t)| > x) ≤ u} , and 
Q (u) = sup t∈[0,1] Q t (u) .
We shall assume that Assumption 12

1 0 α -1 (u) Q 2 (u) du < +∞,
which is the same as the convergence of the series

k≥0 α k 0 Q 2 (u) du.
Applying Theorem 1.1 in [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants Mathématiques et Applications[END_REF] one gets for any t ∈ [0, 1] and k ≥ 0:

|Cov (F (ε 0 , t) ; F (ε k , t))| ≤ 2 α k 0 Q 2 (u) du,
so that if Assumption 12 holds, one may define

γ 2 = 1 0 VarF (ε 0 , t) dt + 2 +∞ k=1 1 0 Cov (F (ε 0 , t) ; F (ε k , t)) dt. (11) 
Now:

Proposition 4 Under Assumptions 11 and 12, if σ 2 > 0 and if for any integer k, the real function

(t, u) → Cov (F (ε 0 , t) ; F (ε k , u)) is continuous on [0, 1] 2 , then 1 √ n n k=1 F (ε k , t k )
converges in distribution to N (0, γ 2 ) as n tends to infinity.

Proof

Let S n = n k=1 F (ε k , t k ) .
First of all, let us prove that VarSn n converges to σ 2 as n tends to infinity.

VarS n n = 1 n n i=1 n j=1 Cov (F (ε i , t i ) ; F (ε j , t j )) = 1 n n-1 k=1-n n∧(n-k) i=1∨(1-k) Cov (F (ε 0 , t i ) ; F (ε k , t i+k )) .
For any K ≥ 1, using again Theorem 1.1 in [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants Mathématiques et Applications[END_REF] 1 n

K≤|k|≤n-1 n∧(n-k) i=1∨(1-k) Cov (F (ε 0 , t i ) ; F (ε k , t i+k )) ≤ 2 k≥K α k 0 Q 2 (u) du
which is smaller than any positive ǫ for big enough K under Assumption 12.

Now, for any fixed integer k,

1 n n∧(n-k) i=1∨(1-k) Cov (F (ε 0 , t i ) ; F (ε k , t i+k )) - 1 0 Cov (F (ε 0 , t) ; F (ε k , t)) dt ≤ sup t,u∈[0,1],|t-u|≤ k n |Cov (F (ε 0 , t) ; F (ε k , t + u)) -Cov (F (ε 0 , t) ; F (ε k , t))| + k n sup t∈[0,1] |Cov (F (ε 0 , t) ; F (ε k , t))|
which goes to 0 as n tends to infinity under the continuity assumption. The convergence of VarSn n to σ 2 follows.

The end of the proof of Proposition 4 is a direct application of Corollary 1 in [START_REF] Rio | About the Lindeberg method for strongly mixing sequences[END_REF].

Simulations

The simulations have been realized using Matlab. The minimisation is made with the function searchmin by setting to 2000 the options MaxFunEvals and MaxIter, so that the method reaches the minimum.

For all the simulations, the observation time is of 20 s. The positive and negative values for norm of acceleration correspond respectively to anticlockwise and clockwise circular motion. The transition sequences between circular motion and linear motion which are the time intervals [START_REF] Landelle | Robustness considerations for bearings only tracking[END_REF][START_REF] Landelle | Etude statistique du problème de la trajectographie passive[END_REF], [START_REF] Mazor | Interacting Multiple Model Methods in Target Tracking: A Survey[END_REF][START_REF] Rio | About the Lindeberg method for strongly mixing sequences[END_REF], and [START_REF] Van Der Vaart | Asymptotic Statistics[END_REF]15] are such that the whole trajectory is C ∞ .

The assumed parametric model is a uniform linear motion with a speed of 0.27 km/s.

The parameter θ is defined by

θ = x 0 y 0 v x v y T .
where (x 0 , y 0 ) denotes the initial position and (v x , v y ) the speed vector. The parametric trajectory is then defined by

X θ (t) = x 0 + v x t y 0 + v y t .
The observation noise is a sequence of i.i.d centered Gaussian variables with variance σ = 10 -3 rad. The platform receives 2000 observations.

For the first simulation, we consider a sequence (ε k ) k∈N of i.i.d Gaussian centered random variables with variance σ 2 X × I 2 and σ X = 10 m. The figure 1 shows the trajectory of the platform with a realization of a trajectory of the target and the parametric trajectory with parameter θ n and also the confidence area with level of 95% for the position at final time. The figure 4 presents the same for the maximum likelihood estimator (MLE) θn . Confidence intervals for coordinates of θ * with level of 95% are detailed in table 1 for θ n and in table 3 for θn and are respectively denoted by IC 1 (θ n ) and IC 3 ( θn ). We also present in table 2 conservative confidence intervals denoted by IC 2 (θ n ) built on the result provided by Theorem 3 with R min = 6 km. The choice of σ X and R min is a prior knowledge on the experiment and is made according to the knowledge of the tactical situation of BOT. Note that the majoration obtained in [START_REF] Landelle | Etude statistique du problème de la trajectographie passive[END_REF] shows that the accuracy of the conservative confidence intervals is proportional to the ratio

By using

E ε 1 2 R 2 min
. This result is very interesting in practice since it shows that for high values of relative distance between target and observer and small values of state noise variance, conservative confidence intervals are of high accuracy.

For these simulations, one needs to calculate I Ψ (θ n ), I Ψ (θ * ), I( θn ) and I(θ * ) which involve expectations of functions of the r.v. ε 1 with law N (O, σ 2 X × I 2 ). All integrals of this type has been calculated using quadrature formula with 12 points. Abscissas and weight factors are given in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables National Bureau of Standards Applied Mathematics Series[END_REF]. Let us detail the numerical values of I Ψ ( θn ) and σ 2 × I R (θ n ) for one experiment used to build the estimators θ n and θn . These numerical values illustrate that the contributions of state noise and observation noise are of the same level.

I Ψ (θ n ) = 10 -6 ×      
0.0010 -0.0014 0.0049 -0.0094 -0.0014 0.0024 -0.0094 0.0220 0.0049 -0.0094 0.0400 -0.0950 -0.0094 0.0220 -0.0950 0.2709 Let us now precise the values of variance matrices. We have where the difference is not so large, the higher accuracy of θn can be understood because of the higher level state noise in this simulation. Then, taking into account this state noise for estimating the parameter provides a significantly better result. The conservative intervals for R min = 6 km described in table 5 are quite large compared to those obtained for the first simulation. This inaccuracy results directly from the large value of E ε 1 2 chosen for the state noise.

      , σ 2 × I R (θ n ) = 10 -6 ×       0.
I -1 M (θ n ) =       3 
For the third and last simulation, the sequence (ε k ) k∈N is an AR(1) series such that

∀k ∈ N ε k+1 = Φε k + η k ,
where Φ = 0.6 and (η k ) k∈N is a sequence of i.i.d. random variables with law N (0, σ 2 η ) and σ η = 8 m. Thus, the sequence of state noise (ε k ) k∈N is a dependent stationary sequence such that the mixing coefficient α k tends exponentially fast to zero as k tends to infinity.

Then, we observe the predicted behavior described by Proposition 4. Indeed, by drawing the densities and cumulative distribution functions of the centered Gaussian law with the empirical variance, we observe a very good adequacy to the Gaussian behavior, see figures 11 and 12. 

  Monte-Carlo methods with 1000 experiments, histograms of the coordinates of √ n(θ nθ * ) are presented on figure 2 with the marginal probability densities of the asymptotic law N (0, I -1 M (θ * )) in dotted line. The empirical cumulative distribution functions of the coordinates of √ n(θ nθ * ) are presented on figure 3 juxtaposed to the marginal cumulative distributions of law N (0, I -1 M (θ * )). These two figures illustrate the convergence in distribution given by Theorem 2, since the sequence (ε k ) k∈N is an i.i.d. sequence of isotropic random variables. The figure 5 present the histograms of the coordinates of √ n( θnθ * ) with the marginal probability densities of the asymptotic law N (0, I -1 (θ * )) in dotted line. Empirical cumulative distribution functions of the coordinates of √ n( θnθ * ) and marginal cumulative distributions of law N (0, I -1 (θ * )) are presented on figure 6. These two figures illustrate the convergence in distribution given by Theorem 5.
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 12345 Figure 1: Trajectories with confidence area for BLSE at final position
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  Figure 6: Cumulative distribution functions for MLE with iid Gaussian isotropic sequence
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 789 Figure 7: Histograms for BLSE with iid Gaussian non-isotropic sequence
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 1112 Figure 11: Histograms for AR(1) sequence, Gaussian adequacy

  The convergence of (W n (h)) h∈H to the isonormal process on H comes from Lindeberg Theorem applied to finite dimensional marginals.The interest of Proposition 2 is that it gives indications on the limitations on the estimation of θ * when f * is unknown. Indeed, the efficient Fisher information I * is given As seen in Section 2.3, the set of isotropic densities is a subset of F. If g is twice differentiable, positive and upper bounded, if the trajectory model θ → S θ (t) is twice differentiable for all t ∈ [0, 1], then Assumptions 9 and 10 hold under almost any trajectory of the observer. Indeed, one may apply Lebesgue's Theorem to obtain derivatives of integrals, and use the fact that the function z → arctan z is infinitely differentiable, has vanishing derivatives at infinity, is bounded and has two bounded derivatives, so that if the trajectory of the observer is such that, for all θ, the set of times t and points u such that Ψ(S θ (t)+u, t) is -π 2 or π 2 is negligible, then the smoothness assumptions hold. Moreover, as seen again in Section 2.3, if the trajectory model is (

	by: and if I * is non singular, any regular estimator θ that converges at speed inf b∈B (a, b) 2 H = a T I * a, covariance Σ which is lower bounded (in the sense of positive definite matrices) by (I E. Gassiat and B. Landelle √ n has asymptotic 3.1 Application to BOT

2 

H + o P θ * (1), by using: Taylor expansion till second order of log(1+u), Taylor expansion till second order of θ → p (θ,f * ) (z, t) and Taylor expansion till first order of θ → g(z-Ψ [S θ (t) + u, t])b(u)du, which gives the first order term W n (a, b), and then applying Lemma 1 to the second order

terms to get 1 2 (a, b) 2 H + o P θ * (1). * ) -1 .

In case I R (θ * ) is non singular and the assumptions in Theorem 2 hold, one may deduce that I * is non singular.

  . The trajectory is mainly composed of uniform linear motions and circular uniform motions. The different sequences of the trajectory of the platform are described in the following table. The null values of acceleration correspond to uniform linear motions and the others to uniform circular motion.

			The trajectory of the observer has
	a speed with constant norm	dO(t) dt	equal to 0.25 km/s and makes maneuvers with norm
	of acceleration of approximatively 50 m/s 2 time interval (s) d 2 O(t) dt 2 0 -6 7 -10 11 -14 15 -20 norm of acceleration(m/s 2 ) 50 0 -55 0

  0 , y 0 given in km and v x , v y given in km/s and the position at final time is (7.3, 0.8).It appears that the maximum likelihood estimator θn is a bit more accurate than θ n . It is not surprising since the MLE is designed specifically for the model, and takes into account the state noise. Nevertheless, because of the high calculation cost for the MLE, the BLSE is in practice a very useful alternative.For the second simulation, we consider the case of a sequence (ε k ) k∈N of i.i.d Gaussian

	centered random variables with variance σ 2 X ×	6 2 0 0 1	and σ X = 10 m. It seems that the
	results given by Theorems 2 and 5 still hold, even though the sequence (ε k ) k∈N does not
	have an isotropic distribution, see Figures 7, 8, 9 and 10. The estimators values are
		θn = θn =	2.8383 3.8440 0.2264 -0.1516 2.7984 3.7999 0.2253 -0.1499	T T	, ,
	The values of variance matrices for the two estimators are
	and and	I -1 M ( θn ) = I -1 ( θn ) = I -1 ( θn ) =	                 	.4917 3.8949 0.1560 -0.1399 -0.1561 -0.0062 3.8949 0.1560 -0.1399 4.3496 0.1752 -0.1561 0.1752 0.0074 -0.0062 0.0056 15.4505 17.0122 0.6174 -0.6253 17.0122 18.7661 0.6863 -0.6889 0.6174 0.6863 0.0263 -0.0250 0.0253 -0.6253 -0.6889 -0.0250 3.3918 3.7884 0.1526 -0.1359 3.7884 4.2362 0.1715 -0.1518 0.1526 0.1715 -0.1359 -0.1518 -0.0061 0.0055 0.0072 -0.0061 12.9538 14.0399 0.4766 -0.5214 14.0399 15.2720 0.5262 -0.5661 0.4766 0.5262 -0.5214 -0.5661 -0.0192 0.0210 0.0197 -0.0192	                       	, , .
	The true parameter θ * is				
			θ * = 2.8 3.8 0.225 -0.15	T	,
	and values of estimators θ n and θn , used to calculate variance matrices, are
		θ n =	2.8753 3.8841 0.2284 -0.1530	T	,
		θn =	2.8067 3.8077 0.2253 -0.1502

T , with x , The confidence intervals detailed in table 4 and table 6 show that the maximum likelihood estimator θn is significantly more accurate than the BLSE. Comparing to the first simulation

Table 3 :

 3 Confidence intervals for MLE at level 95%
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 6 Confidence intervals for MLE at level 95%
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