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We present an ab initio numerical many-body GW calculation of the band plot in free-standing
graphene. We consider the full ionic and electronic structure introducing e-e interaction and cor-
relation effects via a self-energy containing non-hermitian and dynamical terms. With respect to
the density-functional theory local-density approximation, the Fermi velocity is renormalized with
an increase of 17%, in better agreement with the experiment. Close to the Dirac point the linear
dispersion is modified by the presence of a kink, as observed in angle-resolved photoemission spec-
troscopy. We demonstrate that the kink is due to low-energy π → π∗ single-particle excitations and
to the π plasmon. The GW self-energy does not open the band gap.

PACS numbers: 71.15.-m, 71.45.Gm, 79.20.Uv, 71.10.-w

The discovery of graphene by micromechanical cleav-
age [1, 2] and epitaxial grow [3] has attracted tremendous
interest in consideration of its unusual electronic proper-
ties. In the tight-binding (TB) formalism, the graphene
2D honeycomb lattice structure gives rise to a semicon-
ductor with zero band gap occurring at the K point in the
Brillouin zone and a cone-like linear band-dispersion at
low energy. This part is usually described by a massless
Dirac (Weyl) dispersion [4]. Ab initio density-functional
theory (DFT) calculations [5] confirm the TB linear dis-
persion picture and give an estimate of the Fermi ve-
locity vF lower by 15∼20% than the experimental value.
Recently, two angle-resolved photoemission spectroscopy
(ARPES) experiments on graphene epitaxially grown on
SiC [6, 7, 8, 9, 10] raised the general interest. The first
one [6, 9] observed at low energy a nearly linear band dis-
persion with slight deviations in the form of small kinks
interpreted as due to many-body electron-electron (e-e)
and electron-phonon (e-ph) self-energy effects. The sec-
ond one [7, 8, 10] provided a different picture, with the
opening of a band gap occurring at the Dirac K point and
attributed either to substrate (SiC) or to many-body self-
energy effects. A DFT calculation [11] seemed to confirm
a substrate induced symmetry breaking, but recent STM
measures [12] provided some evidence to exclude it. This
situation calls for clarification about the role of e-e self-
energy effects on the quasiparticle (QP) band plot, the
Fermi velocity and the band gap opening. Previous ab

initio works have dealt with e-ph effects [5, 13] and with
e-e GW effects in graphene nanoribbons [14]. There are
also several non ab initio works [15, 16, 17, 18] which
studied e-e self-energy effects in a 2D massless Dirac
model.

In this work we calculate the band plot of free-standing
undoped graphene introducing e-e interaction and cor-
relation effects by an ab initio many-body GW self-
energy [19, 20]. We numerically simulate the full ionic

and electronic structure of real graphene. We take
into account the full dynamical dependence and non-
hermiticity of the self-energy by an accurate contour-
deformation (CD) integration. From the self-energy we
then obtain the QP energies and the spectral function
which can be directly compared with ARPES spectra.
We show that the GW self-energy renormalizes the Fermi
velocity by 17% such that it corrects the DFT underes-
timation and leads to a value of 1.12 · 106 ms−1, in good
agreement with the accurate magnetotransport measure
of 1.1 ·106 ms−1 [2]. Furthermore, the nearly linear DFT
band dispersion is in GW considerably distorted. Close
to the Dirac point the self-energy results in an unusual
negative GW band gap correction and the appearance of
a kink in the band plot, leading to a scenario similar to
that observed in ARPES, Ref. [6]. A comparison with the
results of a GW plasmon-pole model calculation indicates
that the kink is due to a coupling with the π plasmon at
∼ 5 eV and the low-energy π → π∗ single-particle excita-
tions (SPE) shoulder present in the energy-loss function.
This provides a partial confirmation to the explanation
given in Ref. [6]. Finally, our results show that in free-
standing graphene the GW self-energy does not open the
band gap, in contrast to what is found in GW calcula-
tions on graphene nanoribbons [14].

Our starting point is a standard ground-state DFT
LDA calculation of infinite free-standing graphene. We
use a plane waves basis set (62 Ry cutoff) and peri-
odic boundary conditions on a hexagonal cell contain-
ing 2 carbon atoms (a = 2.4 Å) and 38 Bohr of vac-
uum along the z direction, large enough to isolate spuri-
ous replica of graphene sheets. We use Martins-Trouiller
norm-conserving pseudopotentials with s and p electrons
in the valence. We first calculate the ground-state energy
and electronic density, and then the Kohn-Sham (KS)
electronic structure to be used as starting point in the
following GW excited-state calculation.
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FIG. 1: Band plot of graphene. Solid thick lines: DFT-LDA
KS; circles and dashed lines: GW.

In the GW approximation [19, 20] the self-energy is

ΣGW(r, r′, ω) =
i

2π

∫

∞

−∞

dω′ G(r, r′, ω − ω′)W (r, r′, ω′)

that is the product of the Green’s function G and the dy-
namically screened interaction W (ω) = ε−1(ω)v defined
as the bare Coulombian interaction v screened by the
dynamical dielectric function ε−1(ω). Vertex corrections
are neglected both in the self-energy and in the polar-
izability (hence in W ). In the standard ab initio GW
resolution procedure one builds G and W using the DFT
KS electronic structure. The integral over the frequency
is performed by a CD method [21] which consists in a de-
formation of the real axis contour such as to calculate the
self-energy as an integral along the imaginary axis minus
a contribution arising from the residual of the contour-
included poles of G. This is the most accurate method to
perform a GW calculation. We also considered the stan-
dard plasmon-pole model (PPM) approach [20]. Once
the integration is performed, we calculate the GW quasi-
particle energies using a first-order perturbation theory
expansion of Σ around the LDA exchange-correlation po-
tential vLDA

xc and the KS energies ω = ǫKS
nk ,

ǫGW
nk = ǫKS

nk + Z
〈

nk
∣

∣ΣGW
(

ω = ǫKS
nk

)

− vLDA
xc

∣

∣nk
〉

where Z = (1 − ∂ΣGW/∂ω
∣

∣

ω=ǫKS

nk

)−1 is the renormaliza-

tion factor. We compare these energies to the positions
of QP peaks in the spectral function

An(k, ω) =
π−1|ℑΣn(k, ω)|

[ω − ǫKS
nk + vxcnk −ℜΣn(k, ω)]2 + [ℑΣn]2

calculated at the given k point in the Brillouin zone and
projected on the considered n band.
We used the ABINIT code. Convergence was achieved

with 715 plane waves (10 Ry) to represent the wavefunc-
tions and the exchange part Σx of the self-energy, 150
and 200 bands to calculate respectively W and Σ [27].
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FIG. 2: Focus on the band plot Dirac point region. Solid thick
line: DFT-LDA KS; circles and thin lines: GW CD; squares:
GW PPM1 (ωp ≃ 15 eV); dashed line: fit over the GW CD
linear region.

The dimension of W and of the correlation part Σc as re-
ciprocal space matrices was 169 (6 Ry). Imaginary axis
integrations were carried out by a Gauss quadrature us-
ing 10 nodes for the most accurate calculations and W
was sampled every 0.2 eV over 100 frequencies on the real
axis. The Brillouin zone was sampled with a (10 10 1)
Monkhorst-Pack k-point grid.

In Fig. 1 we compare the KS DFT-LDA (thick lines)
and the quasiparticle GW (circles and dashed lines)
electronic structures. Exchange end correlations effects
slightly affect the band shapes. Relevant effects are a
lowering of the σ bands and an increase (up to +20%) of
the gaps at M (4 → 4.8 eV) and at Γ (6.4 → 7 eV). This
is a normal behavior of GW and in agreement with other
calculations [22, 23]. We now focus on the Fermi energy
Dirac point (K) region (Fig. 2). As previously obtained
[5], the DFT KS π and π∗ (thick lines) band dispersion is
linear in the first ∼ 0.5 Å−1 from the Dirac K point. The
DFT KS Fermi velocity is 0.95 · 106 ms−1. This underes-
timates by a 15% the experimental value. The dots and
thin lines represent the GW band plot calculated by the
CD method. The first evident self-energy effect is the loss
of linearity along the region 0.05 Å−1 close to the Dirac K
point. However outside that region the linearity is soon
recovered but with a slope larger than the DFT KS. A fit
of the GW band with a straight line (dashed line) gives a
Fermi velocity of 1.12·106 ms−1 (1.14 with ath = 2.45 Å).
Thus the GW self-energy renormalizes by a +17% the
DFT Fermi velocity and achieves a good agreement with
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k method −∆vLDA
xc ∆Σx ∆ΣGW

c Z ∆ǫGW

K CD −0.023 0.032 −0.008 0.729 +0.001

0.328 CD −0.011 0.493 −0.689 ≃ 0.71 −0.121

0.328 PPM1 −0.011 0.493 −0.316 ≃ 0.76 +0.127

0.328 PPM2 −0.011 0.493 −0.453 0.537 +0.016

0.328 CD IRcut −0.011 0.493 −0.273 0.771 +0.162

TABLE I: Exchange and correlation components differences
between bands 5 and 4, renormalization factor Z and GW
band gap opening (energies in eV; Z as pure numbers).

the experimental measure of 1.1 ·106 ms−1 [2]. The resid-
ual overestimation of 2∼4% should be compensated by
negative e-ph renormalization effects (−4% in Ref. [13]).

We now focus on the non-linear region. In all the k-
points far from the Dirac point, the GW correction acts
in the usual direction to open the gap between DFT KS
bands. On the other hand at k = (0.328, 0.328, 0) (re-
duced coordinates), that is at ∼ 0.025 Å−1 from K, we
have found an unusual negative GW correction of −0.12
eV [28] which generates a kink at ∼ 0.1 eV from the Dirac
point. This result reproduces the experimental ARPES
scenario of Ref. [6] where a kink interpreted as due to e-e

many-body effects is found more or less in this position.
The position of our GW kink is also close to the position
indicated in the other ARPES experiment (gray arrows
in Fig. 3(d) of Ref. [8] at 0.035 Å−1 and 0.17 eV).

The negative GW correction conjuring the kink results
from an unusual balance between the exchange and the
correlation energy (see Table I). Indeed, the exchange en-
ergy difference between the bottom-of-conduction band 5
and the top-of-valence band 4, 〈∆Σx〉, is typically several
times larger than the difference in the correlation energy
〈∆Σc〉 which opposes to the exchange energy [19, 20].
At the kink ∆Σc is ≃ 0.7 eV, larger than ∆Σx ≃ 0.5 eV.
Therefore the negative correction to the band gap is due
to a correlation energy stronger than usual. We report
on Fig. 2 and Table I the result obtained by a PPM GW
calculation (indicated as PPM1 and squares). Far from
the Dirac point and exactly at the Dirac point (where the
gap correction vanishes), the PPM GW bands precisely
recover the CD result. PPM and CD start to deviate
in the kink region and at the kink point the PPM pro-
vides, in contrast to CD, a positive GW correction. This
has an immediate interpretation. In the PPM approach
the dynamical dependence of the energy-loss function
−ℑε−1 entering into W and the GW self-energy, is repre-
sented by a single plasmon-pole feature which is fitted to
ℜε−1 = 1+Ω2/(ω2 − ω2

p). This is a good approximation
in all systems where the energy-loss function presents a
single plasmon feature. In graphene the energy-loss func-
tion −ℑε−1(q ≃ 0, ω), as calculated from first-principles
by the DP code in the RPA approximation (solid line
in Fig. 3), shows two major features: the total π + σ
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FIG. 3: Graphene energy-loss function at q ≃ 0. Solid line:
RPA with local-field effects (LFE); arrows: positions of the
PPM1 (dot-dashed) and PPM2 (dashed) poles.

plasmon at ∼ 15 eV and the π plasmon at ∼ 5 eV (see
Fig. 1(e) of Ref. [24] and Ref. [25]). Furthermore, at
the lowest energies there is a shoulder due to the π → π∗

SPE. In our PPM1GW calculation, the plasmon-pole fre-
quency at q ≃ 0 sets to ωp = 15 eV (dot-dashed arrow)
at the left side of the total plasmon peak. It reproduces
the main energy-loss feature and implicitly accounts also
for the low energy part of the spectrum. Other PPM
calculations are examined (PPM2 in Fig. 3 and Table I).
Forcing the plasmon-pole to adjust to ωp ≃ 5 eV, the low
energy part of the energy-loss is explicitly considered. In
this case the resulting GW correction is around 0, closer
to the correct GW CD result. Finally, we performed a
CD calculation where ε−1 is computed cutting off low
energy π → π∗ SPE (2.5 eV IR cutoff). The low energy
shoulder is suppressed (dotted line in Fig. 3) and the
intensity of the π plasmon is also unavoidably reduced.
The IR cutoff has the effect to produce a positive GW
correction even beyond the PPM1 result, thus validating
the good quality of the PPM. From all these results we
can deduce that both the π plasmon and the low energy
π → π∗ SPE shoulder provide the crucial contribution to
the correlation energy and play a major role in conjuring
the negative GW correction and the kink.

The last important result of our GW calculation is that
many-body effects, within the numerical error bar, do not
open the band gap at the Dirac point. Both the CD and
the PPM do not change the DFT-LDA 0 band gap and
band 4 and 5 keep degenerate at K. [29] We find no indi-
cation for a band gap opening even when looking at the
spectral function. In Fig. 4 we reported the real (bottom
panel) and the module of the imaginary part (middle) of
the self-energy at the Dirac K point projected onto bands
4 (solid line) and 5 (dashed line). The intersection of the
real part of Σnk(ω) with the straight line ω − ǫKS

nk + vxcnk
gives the position of the QP peak. Although ℜΣ is differ-
ent for bands 4 and 5, the intersections occur at the same
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point, so that the QP peaks are degenerate. The corre-
spondent ℑΣ is in practice numerically 0. In the spectral
function (top panel) we observe well defined QP peaks
and weak π and π + σ plasmon satellites pointing to a
normal Fermi liquid, unlike Ref.s [15, 16, 17, 18]. Thus
our calculation excludes a band gap opening, even only
apparent [18], induced by a significant transfer of weigth
from QP peaks to strong satellite plasmarons [16].
Finally we want to discuss possible mechanisms which

can explain the presented picture. A simple kink, i.e.
a slope change of the bands in one point, has been ob-
tained in Ref. [26] by invoking a purely dynamical, k-
independent, mechanism; this model is most adequate
for strongly correlated systems like some transition metal
oxides. The situation in graphene, with its negative GW
correction and consequent s-shaped kink, requires a more
complex description. We can indeed understand the re-
sults by using a simplified PPM which accounts only for
the low-lying π → π∗ SPE and the π plasmon. It has
been shown [25] that for this plasmon we can assume a
linear dispersion ωp(q) = ω0

p + αq with a finite ω0
p 6= 0.

Together with other straightforward assumptions, this
model leads to a correlation energy in the form

ΣGW
c ≃

Ω2

vFω0
p

[

log((vF + α)k + ω0
p)− log(αk + ω0

p)
]

,

which in the limit k → ∞ tends to a constant whereas in
the limit k → kF is linear like the exchange energy Σx ∼

k, but with a coefficient Ω2/2ω0
p

2
times the exchange.

This hypothesis is compatible with a zero band gap at
k = kF and yields a large-k region where the exchange
dominates and renormalizes the Fermi velocity. If Ω >
2ω0

p, it yields a region where the correlation dominates
and provides negative GW corrections (the kink).

In conclusion, we presented an ab initio many-body
GW calculation in graphene. The GW self-energy renor-
malizes by a 17% the DFT Fermi velocity but does not
open a gap at K. Close to the Dirac K point the linear
band dispersion is considerably affected by correlation,
leading to the appearance of a kink.
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