
HAL Id: hal-00347220
https://hal.science/hal-00347220

Submitted on 16 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-driven engineering of composite Web services
using UML-S

Christophe Dumez, Jaafar Gaber, Maxime Wack

To cite this version:
Christophe Dumez, Jaafar Gaber, Maxime Wack. Model-driven engineering of composite Web ser-
vices using UML-S. The 10th International Conference on Information Integration and Web-based
Applications & Services (iiWAS2008), 2008, pp.200. �hal-00347220�

https://hal.science/hal-00347220
https://hal.archives-ouvertes.fr

Model-Driven Engineering of composite
Web services using UML-S

Christophe Dumez
SeT laboratory
Belfort, France

christophe.dumez@utbm.fr

Jaafar Gaber
SeT laboratory
Belfort, France

gaber@utbm.fr

Maxime Wack
SeT laboratory
Belfort, France

maxime.wack@utbm.fr

ABSTRACT
Based on top of Web protocols and XML language, Web
services are emerging as a framework to provide application-
to-application interaction. An important challenge is their
integration in order to provide new value-added compos-
ite services, allowing consequently Business-to-Business re-
lationships. Therefore, many composition languages have
been proposed in the past few years. However, a weak-
ness of these languages is that they are difficult to use in
early stages of development, such as specification. Thus, an
extension to UML 2.0, named UML-S, was introduced to
develop composite Web services conforming to the model-
driven engineering vision. This paper introduces the nec-
essary transformation rules between UML-S and low-level
code to comply with MDE approach.

Categories and Subject Descriptors
H.3.5 [Information Storage And Retrieval]: Online In-
formation Services—Web-based services; I.6.5 [Simulation

And Modeling]: Model Development—Modeling method-
ologies

General Terms
Design, Languages, Standardization

Keywords
Service oriented architecture, Web services, Unified model-
ing language, Model-based engineering, BPEL

1. INTRODUCTION
Data transfer and information availability are considered

as the keys for successful organizations. Interactions across
organizational boundaries are of great importance. In the
past few years, Web services have imposed themselves as the
emerging technology for implementing ad-hoc collaborations
between organizations. Many researches focus on Web ser-
vices composition [2].Although many composition languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2008 November 24-26, 2008, Linz, Austria.
Copyright 2008 ACM 978-1-60558-349-5/08/0011 ...$5.00.

were proposed [1, 6, 9], Web services interactions are still dif-
ficult to define, mainly because early stages of development
such as specification were underestimated. UML-S (or UML
for Services) was defined to address this issue, realizing the
model-driven engineering vision.

The proposed UML 2.0 extension is a convenient method
for modeling services and their interactions at specification
time. It enables developers build composite Web services by
following the principles of MDE.

The remainder of this paper is structured as follows. A
survey of existing approaches to compose Web services ac-
cording to MDE vision is presented in section 2. Later on,
UML-S is presented in details in section 3. Transforma-
tion rules from WSDL 2.0 to UML-S and from UML-S to
WS-BPEL 2.0 [1] are given. Finally, section 4 draws the
conclusion and presents future work.

2. RELATED WORK
UML was already considered to describe Web services

composition. In [8], an approach using UML activity di-
agrams to do so was presented by Skogan et al. They pro-
vide a way to model the coordination and the sequencing
of the interactions between Web services. Although they
present basic transformation rules between UML diagrams
and BPEL [1] or WorkSCo, they do not consider flow con-
trol patterns. Their study is limited to basic activities such
as variable assignment, Web service invocation, parameters
reception and response output.

In [11], Wohed et al. proposed a pattern based analysis of
BPEL4WS. The main purpose of this paper was to evaluate
the capabilities and limitations of BPEL4WS. They stud-
ied how the main flow control patterns could be expressed
in BPEL. Unfortunately, they reported that some patterns
such as multiple merge, discriminator and its generalization,
the N-out-of-M join are unsupported by BPEL and most of
the implementation solutions provided require editing to be
correct in latest WS-BPEL 2.0.

In [4], Dumez et al. introduced UML-S, an UML 2.0 pro-
file to model Web services as well as their composition. Web
services interfaces are modeled using UML-S class diagrams
although their interactions are represented using activity di-
agrams, due to the dynamism involved. In [7], Nait-Sidi-
Moh et al. provide the necessary means to verify and vali-
date UML-S models. Since UML is a semi-formal language,
it lacks sufficient formalism to apply directly on its diagram
mathematical techniques. Therefore, they provide transfor-
mation rules between UML-S and adapted Petri nets to solve
said issue. The properties which should be verified are iden-

Figure 1: Class diagram generation from WSDL 2.0

tified and the method is applied on an example.

3. UML-S: UML FOR SERVICES
UML-S (UML for Services) is an extension to UML 2.0

that allows for modeling Web services as well as their in-
teractions. In UML-S, both class diagrams and activity
diagrams are used to model and specify respectively Web
services interfaces and their interactions.

First, we provide a profile based on UML 2.0 class dia-
grams in section 3.1 and transformation rules from WSDL
2.0 to said diagram are provided in section 3.2. After that,
a profile based on UML 2.0 activity modeling is given in
section 3.3. Finally, transformation rules from UML-S to
WS-BPEL 2.0 are introduced in section 3.4.

3.1 UML-S class diagram
UML defines a class diagram as a static-structure which

describes a software system. It models the system’s classes
as well as their attributes and methods. The relationships
between the classes are also represented. To model Web ser-
vices interfaces, UML-S makes the analogy between a class
and a Web service. To distinguish a Web service from an
usual UML class, UML-S adds a ≪WebService≫ stereotype
to classes corresponding to Web services.

3.2 WSDL 2.0 to UML-S class diagram
Web Service Description Language (WSDL) is a XML

based language, recommended by W3C, that provides a model
to describe Web services. The WSDL description of a Web
service presents its methods, its messages and complex types
involved.

It is worth noting that UML-S class diagrams can directly
be generated from the Web services’ WSDL, as presented in
figure 1. Indeed, a UML-S class diagram can be considered
as a user-friendly mean for representing the Web services’
WSDLs.

In this part, we provide the basic transformations rules to
convert a WSDL 2.0 file into an UML-S class diagram. First

of all, the WSDL parser should locate the service section. It
indicates the name of the service that will be used to name
the WebService class, as well as the name of the interface
(used to be called portType in WSDL 1.1).

Once the interface’s name is known, the parser needs to
find it in the WSDL file. The interface section allows to fill
in part of the Webservice class’ methods. Indeed, it men-
tions the names of the methods provided by the Web service
using operation tags. The parser is also able to retrieve from
the operation sections the names of the methods’ input/out-
put messages.

Once the names of the input / output messages are re-
trieved, the parser can find their definition in the types sec-
tion of the WSDL. Indeed, since WSDL 2.0, messages are de-
fined using XML schema in the types section, with the other
complex types, instead of using separate message sections.
Messages are defined using an element tag, from which, the
parser is able to retrieve the names of the parameters (or out-
put if it is an output message) as well as their type (complex
or not). At this stage, it is possible to generate the whole
WebService class. The only missing things are the classes
corresponding to the complex types handled by the Web ser-
vice and the association links between the Web service and
the said classes.

In element tags, simple types are prefixed with xsd names-
pace. The ones using a different namespace are complex
types. They should be represented as classes in the UML-S
diagram (without any stereotype) and an association should
be added between the WebService class and the complex
type class.

Complex types are also defined in the types section of the
WSDL, using XML schema. From the XML definition of
the complex type, it is possible to fill in the content of the
UML-S class, that is to say its properties (names and types).

At this point, the parser is thus able to generate the
whole class diagram corresponding the imported Web ser-
vice’s WSDL. Converting a WSDL document into a class di-
agram is straightforward given the similarity of both models.
However, UML-S class diagram is a lot more user-friendly
than WSDL and allows for a better understanding of the
Web service.

3.3 UML-S activity diagram
Although the class diagram is very useful to help visu-

alizing the Web services interfaces and the complex types
involved, it lacks the dynamism implied by Web services
interactions.

Activity diagrams are particularly adapted to model busi-
ness processes. A business process can be defined as a set of
coordinated tasks, achieving a business goal. In the context
of Web services composition, an activity models the internal
behavior of a composite Web service’s method, and an ac-
tion (i.e. step of an activity) corresponds to a call to another
Web service, which induces interaction.

UML activity diagram has built-in support for the five
main flow control patterns mentioned by Aalst in [10] and
supported by most composition languages, namely the se-
quence, parallel split, synchronization, exclusive choice and
simple merge.

Aalst also enumerates more advanced flow control pat-
terns which are also supported by UML-S, using stereotypes
to extend original UML. Web services are unreliable, there-
fore it can be interesting to contact several similar services

Figure 2: UML-S activity example

and use only the first response received. The Discriminator,
described by [5], allows to do so: it waits for one of the in-
coming parallel branches to complete before continuing and
”ignores” the others. The N-out-of-M Join pattern [3] is a
generalization of the discriminator. Instead of waiting for
one branch to complete, it waits for N branches and ignores
the others. The Multi-choice will allow the execution of one
or several branches in parallel, based on a decision. After a
Multi-choice, one can use two different patterns to join the
incoming branches: the Multiple merge or the Synchronizing
merge that adds synchronization feature.

An example of UML-S activity diagram is presented in
figure 2. UML-S activity diagrams are presented more ex-
haustively in [4].

3.4 WS-BPEL 2.0 transformation rules
As stated earlier in this paper, UML-S allows to develop

composite Web services according to MDE principles. This
implies that UML-S models can be converted into platform
specific code using a given set of transformation rules. In
this part, the necessary rules to generate WS-BPEL 2.0 code
from UML-S diagrams are provided.

Business Process Execution Language (WS-BPEL or BPEL
for short) [1] is an execution language for business processes
that is widely used and that was standardized by OASIS,
making it a good candidate for UML-S code generation.

In the following, WS-BPEL 2.0 transformation rules are
provided for almost all of the flow control patterns supported
by UML-S, that is to say sequence, parallel split, synchro-
nization, exclusive Choice, simple merge, multi-choice, syn-
chronizing merge, discriminator, N-out-of-M join, and while
loop. Unfortunately, the remaining pattern (multiple merge)
is unsupported in WS-BPEL 2.0 and we could not find a
workaround for it. Indeed, the multiple merge cannot be
achieved because BPEL is block structured and it is impos-
sible for two threads of execution to run through the same
path in the same process instance. Concerning the discrimi-
nator pattern (and its generalization, the N-out-of-M join),
it cannot be achieved using links in the flow construct. In-
deed, when joining incoming links, there is always a join-
Condition (implicit OR joinCondition if not explicitly spec-
ified). The problem is that the joinCondition requires the
status of all incoming links to be known prior evaluation,
which induces an undesired synchronization. This limita-
tion was mentioned by Wohed et al. in [11]. However, we
managed to find a way around this limitation, using BPEL

fault mechanism as presented in figures 4 and 5.
A sequence can be written in BPEL using the sequence

activity or using links activities within a flow construct.
Both the parallel split and the synchronization patterns

can be expressed in BPEL with a flow activity within a
sequence construct.

Concerning the exclusive choice, it was permitted to ex-
press it in an easy manner in BPEL4WS 1.1, using a switch
activity. However, The switch is no longer supported in WS-
BPEL 2.0. Therefore, it is now required to express it using
the way inherited by WSFL, that is to say using links in a
flow construct. The corresponding design choice is repre-
sented in figure 3. Note that the BPEL code is the same for
an exclusive choice and a multi-choice. Indeed, it will be an
exclusive choice provided that the conditions (C1 and C2
in figure 3) are disjoined, a multi-choice otherwise (because
several execution branches can be chosen and executed in
parallel).

<sequence>

<Activ i ty A/>

<!−− XOR/OR Cho i c e −−>

<flow>

<l inks>

<l ink name=”L1”/>

<l ink name=”L2”/>

</l inks>

<empty>

<sources>

<source linkName=”L1”>

<transitionCondition>

$C1
</transitionCondition>

</source>

</sources>

</empty>

<empty>

<sources>

<source linkName=”L2”>

<transitionCondition>

$C2
</transitionCondition>

</source>

</sources>

</empty>

<Activ i ty B>

<targets>

<target linkName=”L1”/>

</targets>

</Act iv i ty B>

<Activ i ty C>

<targets>

<target linkName=”L2”/>

</targets>

</Act iv i ty C>

</flow>

<!−− S im p l e / S y n c h r o n i z i n g
Merge −−>

<ac t iv i t y D/>

</sequence>

Figure 3: Choice and Merge patterns

In the code provided in figure 3, a flow is used within
a sequence construct. As a consequence, it will act as a
simple merge if the transition conditions are disjoined or as
a synchronizing merge otherwise.

In [11], Wohed et al. could not find a solution to express
the discriminator pattern using BPEL, leaving the problem
unsolved. In figure 4, we propose a suitable solution. As one
can see, our proposal makes use of BPEL fault mechanism.
Indeed, each of the parallel execution branches throws a fault
(named ”F” in the example) once it is completed. A scope
activity called discriminator was added to include the flow

activity. A fault handler is added in this scope to catch
fault ”F”. In the catch activity, a simple empty activity is
used, because faults are merely used here to get out the flow
construct once one execution branch is completed. In the
example, Activity D will be executed one time only, when
one of the parallel execution branches was completed.

<sequence>

<Activ i ty A/>

<!−− P a r a l l e l s p l i t −−>

<scope name=”
d i s c r im ina to r”>

<faultHandlers>

<catch faultName=”F”>

<empty/>

</catch>

</faultHandlers>

<flow>

<sequence>

<Activ i ty B/>

<throw faultName=”F”/>

</sequence>

<sequence>

<Act iv i ty C/>

<throw faultName=”F”/>

</sequence>

</flow>

</scope>

<!−− d i s c r i m i n a t o r −−>

<Act iv i ty D/>

</sequence>

Figure 4: Discriminator pattern

<sequence>

<Activ i ty A/>

<!−− P a r a l l e l s p l i t −−>

<scope name=”n−j o i n”>

<variables>

<variable name=”completed
”

type=”xsd : i n t”>

<from>0</from>

</variable>

</variables>

<faultHandlers>

<catch faultName=”F”>

<empty/>

</catch>

</faultHandlers>

<flow>

<sequence>

<Act ivi ty B/>

<assign>

<copy>

<from>

$completed + 1
</from>

<to>$completed </to>

</copy>

</assign>

<i f >

<condition>

$completed = N
</condition>

<throw faultName=”F”/>

</ i f >

</sequence>

<sequence>

<Act ivi ty C/>

<assign>

<copy>

<from>

$completed + 1
</from>

<to>$completed </to>

</copy>

</assign>

<i f >

<condition>

$completed = N
</condition>

<throw faultName=”F”/>

</ i f >

</sequence>

</flow>

</scope>

<!−− N ou t o f M j o i n −−>

<Activ ity D/>

</sequence>

Figure 5: N-out-of-M Join pattern

In figure 5, the discriminator BPEL code was adapted
in order to express its generalized pattern, the N-out-of-M
Join. The proposed code makes use of an additional vari-
able in order to store the number of branches that are al-
ready completed. Once this value reaches N (the number
of branches that one is awaiting for), a fault is thrown in
order to get out of the flow construct. With this code, syn-
chronization is made with N branches out of M and the
remaining branches are simply ignored.

4. CONCLUSION
Building composite Web services remains a difficult task

although it could be simplified through providing sufficient
support for traditional workflow modeling. Thus, needs were
identified and it was explained how UML class diagram and
activity diagram could be extended to meet these needs.

This paper introduced UML-S (UML for Services), an
UML 2.0 extension consisting of an UML profile and guide-
lines develop composite Web services according to MDE
principles. UML-S can be used in early stages of develop-
ment, to help specify graphically Web services interfaces and
their interactions. It is then possible to generate platform-
specific code from these high-level UML-S models using the
transformations rules provided in this paper.

One of the objectives of the EU project called ASSET is
the implementation of a platform of coordinated and dis-
tributed location-based services. UML-S was introduced as
a first step towards fulfilling this particular goal.

Further development issues will be addressed in the fu-
ture and a fully functional UML-S framework is currently
under development. Future work will also involve Max-plus
algebra based analysis and evaluation.

5. ACKNOWLEDGMENTS
This work is supported by the EU project ASSET (Ad-

vanced Safety and Driver Support for Essential Road Trans-
port, 2008-2011).

6. REFERENCES
[1] Business process execution language (bpel), oasis,.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html.

[2] M. Bakhouya and J. Gaber. Service composition
approaches for ubiquitous and pervasive computing
environments: A survey. Agent Systems in Electronic
Business, Ed. Eldon Li and Soe-Tsyr Yuan, IGI
Global, (978-1-59904-588-7):323–350, 2007.

[3] M. Dumas and A. H. ter Hofstede. Uml activity
diagrams as a workflow specification language. *UML*
2001 — The Unified Modeling Language Modeling
Languages Concepts and Tools, 2185:76, 2001.

[4] C. Dumez, A. Nait-Sidi-Moh, J. Gaber, and M. Wack.
Modeling and specification of web services composition
using uml-s. The 4th International Conference on Next
Generation Web Services (NWeSP’08), 2008.

[5] R. Hamadi and B. Benatallah. A petri net-based
model for web service composition. In ADC ’03:
Proceedings of the 14th Australasian database
conference, pages 191–200, 2003.

[6] F. Leymann. Web services flow language (wsfl 1.0).
http:// www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
2001.

[7] A. Nait-Sidi-Moh, C. Dumez, J. Gaber, and M. Wack.
Petri net based verification and validation of uml-s
models. Submitted to the 23rd IEEE International
Conference on Advanced Information Networking and
Applications(AINA2009), 2008.

[8] D. Skogan, R. Groenmo, and I. Solheim. Web service
composition in uml. In Proceedings. Eighth IEEE
International Enterprise Distributed Object Computing
Conference, 2004. EDOC 2004., pages 47–57, 2004.

[9] S. Thatte. Xlang: Web services for business process
design, microsoft corporation.
http://msdn.microsoft.com/en-
us/library/aa577463.aspx,
2001.

[10] W. van der Aalst. Don’t go with the flow: Web
services composition standards exposed. IEEE
Intelligent Systems, 18:72–76, 2003.

[11] P. Wohed, W. M. P. v. d. Aalst, M. Dumas, and A. H.
M. t. Hofstede. Pattern based analysis of bpel4ws.
QUT Technical report, FIT-TR-2002-04, Queensland
University of Technology, Brisbane, 2002.

